]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxval_i4.c
re PR fortran/35993 (wrong answer for all array intrinsics with scalar mask)
[thirdparty/gcc.git] / libgfortran / generated / maxval_i4.c
1 /* Implementation of the MAXVAL intrinsic
2 Copyright 2002, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
34
35
36 #if defined (HAVE_GFC_INTEGER_4) && defined (HAVE_GFC_INTEGER_4)
37
38
39 extern void maxval_i4 (gfc_array_i4 * const restrict,
40 gfc_array_i4 * const restrict, const index_type * const restrict);
41 export_proto(maxval_i4);
42
43 void
44 maxval_i4 (gfc_array_i4 * const restrict retarray,
45 gfc_array_i4 * const restrict array,
46 const index_type * const restrict pdim)
47 {
48 index_type count[GFC_MAX_DIMENSIONS];
49 index_type extent[GFC_MAX_DIMENSIONS];
50 index_type sstride[GFC_MAX_DIMENSIONS];
51 index_type dstride[GFC_MAX_DIMENSIONS];
52 const GFC_INTEGER_4 * restrict base;
53 GFC_INTEGER_4 * restrict dest;
54 index_type rank;
55 index_type n;
56 index_type len;
57 index_type delta;
58 index_type dim;
59
60 /* Make dim zero based to avoid confusion. */
61 dim = (*pdim) - 1;
62 rank = GFC_DESCRIPTOR_RANK (array) - 1;
63
64 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
65 delta = array->dim[dim].stride;
66
67 for (n = 0; n < dim; n++)
68 {
69 sstride[n] = array->dim[n].stride;
70 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
71
72 if (extent[n] < 0)
73 extent[n] = 0;
74 }
75 for (n = dim; n < rank; n++)
76 {
77 sstride[n] = array->dim[n + 1].stride;
78 extent[n] =
79 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
80
81 if (extent[n] < 0)
82 extent[n] = 0;
83 }
84
85 if (retarray->data == NULL)
86 {
87 size_t alloc_size;
88
89 for (n = 0; n < rank; n++)
90 {
91 retarray->dim[n].lbound = 0;
92 retarray->dim[n].ubound = extent[n]-1;
93 if (n == 0)
94 retarray->dim[n].stride = 1;
95 else
96 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
97 }
98
99 retarray->offset = 0;
100 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
101
102 alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
103 * extent[rank-1];
104
105 if (alloc_size == 0)
106 {
107 /* Make sure we have a zero-sized array. */
108 retarray->dim[0].lbound = 0;
109 retarray->dim[0].ubound = -1;
110 return;
111 }
112 else
113 retarray->data = internal_malloc_size (alloc_size);
114 }
115 else
116 {
117 if (rank != GFC_DESCRIPTOR_RANK (retarray))
118 runtime_error ("rank of return array incorrect in"
119 " MAXVAL intrinsic: is %ld, should be %ld",
120 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
121 (long int) rank);
122
123 if (compile_options.bounds_check)
124 {
125 for (n=0; n < rank; n++)
126 {
127 index_type ret_extent;
128
129 ret_extent = retarray->dim[n].ubound + 1
130 - retarray->dim[n].lbound;
131 if (extent[n] != ret_extent)
132 runtime_error ("Incorrect extent in return value of"
133 " MAXVAL intrinsic in dimension %ld:"
134 " is %ld, should be %ld", (long int) n + 1,
135 (long int) ret_extent, (long int) extent[n]);
136 }
137 }
138 }
139
140 for (n = 0; n < rank; n++)
141 {
142 count[n] = 0;
143 dstride[n] = retarray->dim[n].stride;
144 if (extent[n] <= 0)
145 len = 0;
146 }
147
148 base = array->data;
149 dest = retarray->data;
150
151 while (base)
152 {
153 const GFC_INTEGER_4 * restrict src;
154 GFC_INTEGER_4 result;
155 src = base;
156 {
157
158 result = (-GFC_INTEGER_4_HUGE-1);
159 if (len <= 0)
160 *dest = (-GFC_INTEGER_4_HUGE-1);
161 else
162 {
163 for (n = 0; n < len; n++, src += delta)
164 {
165
166 if (*src > result)
167 result = *src;
168 }
169 *dest = result;
170 }
171 }
172 /* Advance to the next element. */
173 count[0]++;
174 base += sstride[0];
175 dest += dstride[0];
176 n = 0;
177 while (count[n] == extent[n])
178 {
179 /* When we get to the end of a dimension, reset it and increment
180 the next dimension. */
181 count[n] = 0;
182 /* We could precalculate these products, but this is a less
183 frequently used path so probably not worth it. */
184 base -= sstride[n] * extent[n];
185 dest -= dstride[n] * extent[n];
186 n++;
187 if (n == rank)
188 {
189 /* Break out of the look. */
190 base = NULL;
191 break;
192 }
193 else
194 {
195 count[n]++;
196 base += sstride[n];
197 dest += dstride[n];
198 }
199 }
200 }
201 }
202
203
204 extern void mmaxval_i4 (gfc_array_i4 * const restrict,
205 gfc_array_i4 * const restrict, const index_type * const restrict,
206 gfc_array_l1 * const restrict);
207 export_proto(mmaxval_i4);
208
209 void
210 mmaxval_i4 (gfc_array_i4 * const restrict retarray,
211 gfc_array_i4 * const restrict array,
212 const index_type * const restrict pdim,
213 gfc_array_l1 * const restrict mask)
214 {
215 index_type count[GFC_MAX_DIMENSIONS];
216 index_type extent[GFC_MAX_DIMENSIONS];
217 index_type sstride[GFC_MAX_DIMENSIONS];
218 index_type dstride[GFC_MAX_DIMENSIONS];
219 index_type mstride[GFC_MAX_DIMENSIONS];
220 GFC_INTEGER_4 * restrict dest;
221 const GFC_INTEGER_4 * restrict base;
222 const GFC_LOGICAL_1 * restrict mbase;
223 int rank;
224 int dim;
225 index_type n;
226 index_type len;
227 index_type delta;
228 index_type mdelta;
229 int mask_kind;
230
231 dim = (*pdim) - 1;
232 rank = GFC_DESCRIPTOR_RANK (array) - 1;
233
234 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
235 if (len <= 0)
236 return;
237
238 mbase = mask->data;
239
240 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
241
242 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
243 #ifdef HAVE_GFC_LOGICAL_16
244 || mask_kind == 16
245 #endif
246 )
247 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
248 else
249 runtime_error ("Funny sized logical array");
250
251 delta = array->dim[dim].stride;
252 mdelta = mask->dim[dim].stride * mask_kind;
253
254 for (n = 0; n < dim; n++)
255 {
256 sstride[n] = array->dim[n].stride;
257 mstride[n] = mask->dim[n].stride * mask_kind;
258 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
259
260 if (extent[n] < 0)
261 extent[n] = 0;
262
263 }
264 for (n = dim; n < rank; n++)
265 {
266 sstride[n] = array->dim[n + 1].stride;
267 mstride[n] = mask->dim[n + 1].stride * mask_kind;
268 extent[n] =
269 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
270
271 if (extent[n] < 0)
272 extent[n] = 0;
273 }
274
275 if (retarray->data == NULL)
276 {
277 size_t alloc_size;
278
279 for (n = 0; n < rank; n++)
280 {
281 retarray->dim[n].lbound = 0;
282 retarray->dim[n].ubound = extent[n]-1;
283 if (n == 0)
284 retarray->dim[n].stride = 1;
285 else
286 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
287 }
288
289 alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
290 * extent[rank-1];
291
292 retarray->offset = 0;
293 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
294
295 if (alloc_size == 0)
296 {
297 /* Make sure we have a zero-sized array. */
298 retarray->dim[0].lbound = 0;
299 retarray->dim[0].ubound = -1;
300 return;
301 }
302 else
303 retarray->data = internal_malloc_size (alloc_size);
304
305 }
306 else
307 {
308 if (rank != GFC_DESCRIPTOR_RANK (retarray))
309 runtime_error ("rank of return array incorrect in MAXVAL intrinsic");
310
311 if (compile_options.bounds_check)
312 {
313 for (n=0; n < rank; n++)
314 {
315 index_type ret_extent;
316
317 ret_extent = retarray->dim[n].ubound + 1
318 - retarray->dim[n].lbound;
319 if (extent[n] != ret_extent)
320 runtime_error ("Incorrect extent in return value of"
321 " MAXVAL intrinsic in dimension %ld:"
322 " is %ld, should be %ld", (long int) n + 1,
323 (long int) ret_extent, (long int) extent[n]);
324 }
325 for (n=0; n<= rank; n++)
326 {
327 index_type mask_extent, array_extent;
328
329 array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound;
330 mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound;
331 if (array_extent != mask_extent)
332 runtime_error ("Incorrect extent in MASK argument of"
333 " MAXVAL intrinsic in dimension %ld:"
334 " is %ld, should be %ld", (long int) n + 1,
335 (long int) mask_extent, (long int) array_extent);
336 }
337 }
338 }
339
340 for (n = 0; n < rank; n++)
341 {
342 count[n] = 0;
343 dstride[n] = retarray->dim[n].stride;
344 if (extent[n] <= 0)
345 return;
346 }
347
348 dest = retarray->data;
349 base = array->data;
350
351 while (base)
352 {
353 const GFC_INTEGER_4 * restrict src;
354 const GFC_LOGICAL_1 * restrict msrc;
355 GFC_INTEGER_4 result;
356 src = base;
357 msrc = mbase;
358 {
359
360 result = (-GFC_INTEGER_4_HUGE-1);
361 if (len <= 0)
362 *dest = (-GFC_INTEGER_4_HUGE-1);
363 else
364 {
365 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
366 {
367
368 if (*msrc && *src > result)
369 result = *src;
370 }
371 *dest = result;
372 }
373 }
374 /* Advance to the next element. */
375 count[0]++;
376 base += sstride[0];
377 mbase += mstride[0];
378 dest += dstride[0];
379 n = 0;
380 while (count[n] == extent[n])
381 {
382 /* When we get to the end of a dimension, reset it and increment
383 the next dimension. */
384 count[n] = 0;
385 /* We could precalculate these products, but this is a less
386 frequently used path so probably not worth it. */
387 base -= sstride[n] * extent[n];
388 mbase -= mstride[n] * extent[n];
389 dest -= dstride[n] * extent[n];
390 n++;
391 if (n == rank)
392 {
393 /* Break out of the look. */
394 base = NULL;
395 break;
396 }
397 else
398 {
399 count[n]++;
400 base += sstride[n];
401 mbase += mstride[n];
402 dest += dstride[n];
403 }
404 }
405 }
406 }
407
408
409 extern void smaxval_i4 (gfc_array_i4 * const restrict,
410 gfc_array_i4 * const restrict, const index_type * const restrict,
411 GFC_LOGICAL_4 *);
412 export_proto(smaxval_i4);
413
414 void
415 smaxval_i4 (gfc_array_i4 * const restrict retarray,
416 gfc_array_i4 * const restrict array,
417 const index_type * const restrict pdim,
418 GFC_LOGICAL_4 * mask)
419 {
420 index_type count[GFC_MAX_DIMENSIONS];
421 index_type extent[GFC_MAX_DIMENSIONS];
422 index_type sstride[GFC_MAX_DIMENSIONS];
423 index_type dstride[GFC_MAX_DIMENSIONS];
424 GFC_INTEGER_4 * restrict dest;
425 index_type rank;
426 index_type n;
427 index_type dim;
428
429
430 if (*mask)
431 {
432 maxval_i4 (retarray, array, pdim);
433 return;
434 }
435 /* Make dim zero based to avoid confusion. */
436 dim = (*pdim) - 1;
437 rank = GFC_DESCRIPTOR_RANK (array) - 1;
438
439 for (n = 0; n < dim; n++)
440 {
441 sstride[n] = array->dim[n].stride;
442 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
443
444 if (extent[n] <= 0)
445 extent[n] = 0;
446 }
447
448 for (n = dim; n < rank; n++)
449 {
450 sstride[n] = array->dim[n + 1].stride;
451 extent[n] =
452 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
453
454 if (extent[n] <= 0)
455 extent[n] = 0;
456 }
457
458 if (retarray->data == NULL)
459 {
460 size_t alloc_size;
461
462 for (n = 0; n < rank; n++)
463 {
464 retarray->dim[n].lbound = 0;
465 retarray->dim[n].ubound = extent[n]-1;
466 if (n == 0)
467 retarray->dim[n].stride = 1;
468 else
469 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
470 }
471
472 retarray->offset = 0;
473 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
474
475 alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
476 * extent[rank-1];
477
478 if (alloc_size == 0)
479 {
480 /* Make sure we have a zero-sized array. */
481 retarray->dim[0].lbound = 0;
482 retarray->dim[0].ubound = -1;
483 return;
484 }
485 else
486 retarray->data = internal_malloc_size (alloc_size);
487 }
488 else
489 {
490 if (rank != GFC_DESCRIPTOR_RANK (retarray))
491 runtime_error ("rank of return array incorrect in"
492 " MAXVAL intrinsic: is %ld, should be %ld",
493 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
494 (long int) rank);
495
496 if (compile_options.bounds_check)
497 {
498 for (n=0; n < rank; n++)
499 {
500 index_type ret_extent;
501
502 ret_extent = retarray->dim[n].ubound + 1
503 - retarray->dim[n].lbound;
504 if (extent[n] != ret_extent)
505 runtime_error ("Incorrect extent in return value of"
506 " MAXVAL intrinsic in dimension %ld:"
507 " is %ld, should be %ld", (long int) n + 1,
508 (long int) ret_extent, (long int) extent[n]);
509 }
510 }
511 }
512
513 for (n = 0; n < rank; n++)
514 {
515 count[n] = 0;
516 dstride[n] = retarray->dim[n].stride;
517 }
518
519 dest = retarray->data;
520
521 while(1)
522 {
523 *dest = (-GFC_INTEGER_4_HUGE-1);
524 count[0]++;
525 dest += dstride[0];
526 n = 0;
527 while (count[n] == extent[n])
528 {
529 /* When we get to the end of a dimension, reset it and increment
530 the next dimension. */
531 count[n] = 0;
532 /* We could precalculate these products, but this is a less
533 frequently used path so probably not worth it. */
534 dest -= dstride[n] * extent[n];
535 n++;
536 if (n == rank)
537 return;
538 else
539 {
540 count[n]++;
541 dest += dstride[n];
542 }
543 }
544 }
545 }
546
547 #endif