]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxval_i4.c
Makefile.am: Remove references to types.m4.
[thirdparty/gcc.git] / libgfortran / generated / maxval_i4.c
1 /* Implementation of the MAXVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include <float.h>
26 #include "libgfortran.h"
27
28 void
29 __maxval_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array, index_type *pdim)
30 {
31 index_type count[GFC_MAX_DIMENSIONS - 1];
32 index_type extent[GFC_MAX_DIMENSIONS - 1];
33 index_type sstride[GFC_MAX_DIMENSIONS - 1];
34 index_type dstride[GFC_MAX_DIMENSIONS - 1];
35 GFC_INTEGER_4 *base;
36 GFC_INTEGER_4 *dest;
37 index_type rank;
38 index_type n;
39 index_type len;
40 index_type delta;
41 index_type dim;
42
43 /* Make dim zero based to avoid confusion. */
44 dim = (*pdim) - 1;
45 rank = GFC_DESCRIPTOR_RANK (array) - 1;
46 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
47 if (array->dim[0].stride == 0)
48 array->dim[0].stride = 1;
49 if (retarray->dim[0].stride == 0)
50 retarray->dim[0].stride = 1;
51
52 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
53 delta = array->dim[dim].stride;
54
55 for (n = 0; n < dim; n++)
56 {
57 sstride[n] = array->dim[n].stride;
58 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
59 }
60 for (n = dim; n < rank; n++)
61 {
62 sstride[n] = array->dim[n + 1].stride;
63 extent[n] =
64 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
65 }
66
67 for (n = 0; n < rank; n++)
68 {
69 count[n] = 0;
70 dstride[n] = retarray->dim[n].stride;
71 if (extent[n] <= 0)
72 len = 0;
73 }
74
75 base = array->data;
76 dest = retarray->data;
77
78 while (base)
79 {
80 GFC_INTEGER_4 *src;
81 GFC_INTEGER_4 result;
82 src = base;
83 {
84
85 result = -GFC_INTEGER_4_HUGE;
86 if (len <= 0)
87 *dest = -GFC_INTEGER_4_HUGE;
88 else
89 {
90 for (n = 0; n < len; n++, src += delta)
91 {
92
93 if (*src > result)
94 result = *src;
95 }
96 *dest = result;
97 }
98 }
99 /* Advance to the next element. */
100 count[0]++;
101 base += sstride[0];
102 dest += dstride[0];
103 n = 0;
104 while (count[n] == extent[n])
105 {
106 /* When we get to the end of a dimension, reset it and increment
107 the next dimension. */
108 count[n] = 0;
109 /* We could precalculate these products, but this is a less
110 frequently used path so proabably not worth it. */
111 base -= sstride[n] * extent[n];
112 dest -= dstride[n] * extent[n];
113 n++;
114 if (n == rank)
115 {
116 /* Break out of the look. */
117 base = NULL;
118 break;
119 }
120 else
121 {
122 count[n]++;
123 base += sstride[n];
124 dest += dstride[n];
125 }
126 }
127 }
128 }
129
130 void
131 __mmaxval_i4 (gfc_array_i4 * retarray, gfc_array_i4 * array, index_type *pdim, gfc_array_l4 * mask)
132 {
133 index_type count[GFC_MAX_DIMENSIONS - 1];
134 index_type extent[GFC_MAX_DIMENSIONS - 1];
135 index_type sstride[GFC_MAX_DIMENSIONS - 1];
136 index_type dstride[GFC_MAX_DIMENSIONS - 1];
137 index_type mstride[GFC_MAX_DIMENSIONS - 1];
138 GFC_INTEGER_4 *dest;
139 GFC_INTEGER_4 *base;
140 GFC_LOGICAL_4 *mbase;
141 int rank;
142 int dim;
143 index_type n;
144 index_type len;
145 index_type delta;
146 index_type mdelta;
147
148 dim = (*pdim) - 1;
149 rank = GFC_DESCRIPTOR_RANK (array) - 1;
150 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
151 if (array->dim[0].stride == 0)
152 array->dim[0].stride = 1;
153 if (retarray->dim[0].stride == 0)
154 retarray->dim[0].stride = 1;
155
156 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
157 if (len <= 0)
158 return;
159 delta = array->dim[dim].stride;
160 mdelta = mask->dim[dim].stride;
161
162 for (n = 0; n < dim; n++)
163 {
164 sstride[n] = array->dim[n].stride;
165 mstride[n] = mask->dim[n].stride;
166 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
167 }
168 for (n = dim; n < rank; n++)
169 {
170 sstride[n] = array->dim[n + 1].stride;
171 mstride[n] = mask->dim[n + 1].stride;
172 extent[n] =
173 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
174 }
175
176 for (n = 0; n < rank; n++)
177 {
178 count[n] = 0;
179 dstride[n] = retarray->dim[n].stride;
180 if (extent[n] <= 0)
181 return;
182 }
183
184 dest = retarray->data;
185 base = array->data;
186 mbase = mask->data;
187
188 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
189 {
190 /* This allows the same loop to be used for all logical types. */
191 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
192 for (n = 0; n < rank; n++)
193 mstride[n] <<= 1;
194 mdelta <<= 1;
195 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
196 }
197
198 while (base)
199 {
200 GFC_INTEGER_4 *src;
201 GFC_LOGICAL_4 *msrc;
202 GFC_INTEGER_4 result;
203 src = base;
204 msrc = mbase;
205 {
206
207 result = -GFC_INTEGER_4_HUGE;
208 if (len <= 0)
209 *dest = -GFC_INTEGER_4_HUGE;
210 else
211 {
212 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
213 {
214
215 if (*msrc && *src > result)
216 result = *src;
217 }
218 *dest = result;
219 }
220 }
221 /* Advance to the next element. */
222 count[0]++;
223 base += sstride[0];
224 mbase += mstride[0];
225 dest += dstride[0];
226 n = 0;
227 while (count[n] == extent[n])
228 {
229 /* When we get to the end of a dimension, reset it and increment
230 the next dimension. */
231 count[n] = 0;
232 /* We could precalculate these products, but this is a less
233 frequently used path so proabably not worth it. */
234 base -= sstride[n] * extent[n];
235 mbase -= mstride[n] * extent[n];
236 dest -= dstride[n] * extent[n];
237 n++;
238 if (n == rank)
239 {
240 /* Break out of the look. */
241 base = NULL;
242 break;
243 }
244 else
245 {
246 count[n]++;
247 base += sstride[n];
248 mbase += mstride[n];
249 dest += dstride[n];
250 }
251 }
252 }
253 }
254