]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxval_i4.c
re PR libfortran/21354 ([4.0 only] Rank 7 not handled correctly)
[thirdparty/gcc.git] / libgfortran / generated / maxval_i4.c
1 /* Implementation of the MAXVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include "libgfortran.h"
36
37
38 extern void maxval_i4 (gfc_array_i4 *, gfc_array_i4 *, index_type *);
39 export_proto(maxval_i4);
40
41 void
42 maxval_i4 (gfc_array_i4 *retarray, gfc_array_i4 *array, index_type *pdim)
43 {
44 index_type count[GFC_MAX_DIMENSIONS];
45 index_type extent[GFC_MAX_DIMENSIONS];
46 index_type sstride[GFC_MAX_DIMENSIONS];
47 index_type dstride[GFC_MAX_DIMENSIONS];
48 GFC_INTEGER_4 *base;
49 GFC_INTEGER_4 *dest;
50 index_type rank;
51 index_type n;
52 index_type len;
53 index_type delta;
54 index_type dim;
55
56 /* Make dim zero based to avoid confusion. */
57 dim = (*pdim) - 1;
58 rank = GFC_DESCRIPTOR_RANK (array) - 1;
59
60 /* TODO: It should be a front end job to correctly set the strides. */
61
62 if (array->dim[0].stride == 0)
63 array->dim[0].stride = 1;
64
65 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
66 delta = array->dim[dim].stride;
67
68 for (n = 0; n < dim; n++)
69 {
70 sstride[n] = array->dim[n].stride;
71 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
72 }
73 for (n = dim; n < rank; n++)
74 {
75 sstride[n] = array->dim[n + 1].stride;
76 extent[n] =
77 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
78 }
79
80 if (retarray->data == NULL)
81 {
82 for (n = 0; n < rank; n++)
83 {
84 retarray->dim[n].lbound = 0;
85 retarray->dim[n].ubound = extent[n]-1;
86 if (n == 0)
87 retarray->dim[n].stride = 1;
88 else
89 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
90 }
91
92 retarray->data
93 = internal_malloc_size (sizeof (GFC_INTEGER_4)
94 * retarray->dim[rank-1].stride
95 * extent[rank-1]);
96 retarray->base = 0;
97 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
98 }
99 else
100 {
101 if (retarray->dim[0].stride == 0)
102 retarray->dim[0].stride = 1;
103
104 if (rank != GFC_DESCRIPTOR_RANK (retarray))
105 runtime_error ("rank of return array incorrect");
106 }
107
108 for (n = 0; n < rank; n++)
109 {
110 count[n] = 0;
111 dstride[n] = retarray->dim[n].stride;
112 if (extent[n] <= 0)
113 len = 0;
114 }
115
116 base = array->data;
117 dest = retarray->data;
118
119 while (base)
120 {
121 GFC_INTEGER_4 *src;
122 GFC_INTEGER_4 result;
123 src = base;
124 {
125
126 result = -GFC_INTEGER_4_HUGE;
127 if (len <= 0)
128 *dest = -GFC_INTEGER_4_HUGE;
129 else
130 {
131 for (n = 0; n < len; n++, src += delta)
132 {
133
134 if (*src > result)
135 result = *src;
136 }
137 *dest = result;
138 }
139 }
140 /* Advance to the next element. */
141 count[0]++;
142 base += sstride[0];
143 dest += dstride[0];
144 n = 0;
145 while (count[n] == extent[n])
146 {
147 /* When we get to the end of a dimension, reset it and increment
148 the next dimension. */
149 count[n] = 0;
150 /* We could precalculate these products, but this is a less
151 frequently used path so proabably not worth it. */
152 base -= sstride[n] * extent[n];
153 dest -= dstride[n] * extent[n];
154 n++;
155 if (n == rank)
156 {
157 /* Break out of the look. */
158 base = NULL;
159 break;
160 }
161 else
162 {
163 count[n]++;
164 base += sstride[n];
165 dest += dstride[n];
166 }
167 }
168 }
169 }
170
171
172 extern void mmaxval_i4 (gfc_array_i4 *, gfc_array_i4 *, index_type *,
173 gfc_array_l4 *);
174 export_proto(mmaxval_i4);
175
176 void
177 mmaxval_i4 (gfc_array_i4 * retarray, gfc_array_i4 * array,
178 index_type *pdim, gfc_array_l4 * mask)
179 {
180 index_type count[GFC_MAX_DIMENSIONS];
181 index_type extent[GFC_MAX_DIMENSIONS];
182 index_type sstride[GFC_MAX_DIMENSIONS];
183 index_type dstride[GFC_MAX_DIMENSIONS];
184 index_type mstride[GFC_MAX_DIMENSIONS];
185 GFC_INTEGER_4 *dest;
186 GFC_INTEGER_4 *base;
187 GFC_LOGICAL_4 *mbase;
188 int rank;
189 int dim;
190 index_type n;
191 index_type len;
192 index_type delta;
193 index_type mdelta;
194
195 dim = (*pdim) - 1;
196 rank = GFC_DESCRIPTOR_RANK (array) - 1;
197
198 /* TODO: It should be a front end job to correctly set the strides. */
199
200 if (array->dim[0].stride == 0)
201 array->dim[0].stride = 1;
202
203 if (mask->dim[0].stride == 0)
204 mask->dim[0].stride = 1;
205
206 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
207 if (len <= 0)
208 return;
209 delta = array->dim[dim].stride;
210 mdelta = mask->dim[dim].stride;
211
212 for (n = 0; n < dim; n++)
213 {
214 sstride[n] = array->dim[n].stride;
215 mstride[n] = mask->dim[n].stride;
216 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
217 }
218 for (n = dim; n < rank; n++)
219 {
220 sstride[n] = array->dim[n + 1].stride;
221 mstride[n] = mask->dim[n + 1].stride;
222 extent[n] =
223 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
224 }
225
226 if (retarray->data == NULL)
227 {
228 for (n = 0; n < rank; n++)
229 {
230 retarray->dim[n].lbound = 0;
231 retarray->dim[n].ubound = extent[n]-1;
232 if (n == 0)
233 retarray->dim[n].stride = 1;
234 else
235 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
236 }
237
238 retarray->data
239 = internal_malloc_size (sizeof (GFC_INTEGER_4)
240 * retarray->dim[rank-1].stride
241 * extent[rank-1]);
242 retarray->base = 0;
243 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
244 }
245 else
246 {
247 if (retarray->dim[0].stride == 0)
248 retarray->dim[0].stride = 1;
249
250 if (rank != GFC_DESCRIPTOR_RANK (retarray))
251 runtime_error ("rank of return array incorrect");
252 }
253
254 for (n = 0; n < rank; n++)
255 {
256 count[n] = 0;
257 dstride[n] = retarray->dim[n].stride;
258 if (extent[n] <= 0)
259 return;
260 }
261
262 dest = retarray->data;
263 base = array->data;
264 mbase = mask->data;
265
266 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
267 {
268 /* This allows the same loop to be used for all logical types. */
269 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
270 for (n = 0; n < rank; n++)
271 mstride[n] <<= 1;
272 mdelta <<= 1;
273 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
274 }
275
276 while (base)
277 {
278 GFC_INTEGER_4 *src;
279 GFC_LOGICAL_4 *msrc;
280 GFC_INTEGER_4 result;
281 src = base;
282 msrc = mbase;
283 {
284
285 result = -GFC_INTEGER_4_HUGE;
286 if (len <= 0)
287 *dest = -GFC_INTEGER_4_HUGE;
288 else
289 {
290 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
291 {
292
293 if (*msrc && *src > result)
294 result = *src;
295 }
296 *dest = result;
297 }
298 }
299 /* Advance to the next element. */
300 count[0]++;
301 base += sstride[0];
302 mbase += mstride[0];
303 dest += dstride[0];
304 n = 0;
305 while (count[n] == extent[n])
306 {
307 /* When we get to the end of a dimension, reset it and increment
308 the next dimension. */
309 count[n] = 0;
310 /* We could precalculate these products, but this is a less
311 frequently used path so proabably not worth it. */
312 base -= sstride[n] * extent[n];
313 mbase -= mstride[n] * extent[n];
314 dest -= dstride[n] * extent[n];
315 n++;
316 if (n == rank)
317 {
318 /* Break out of the look. */
319 base = NULL;
320 break;
321 }
322 else
323 {
324 count[n]++;
325 base += sstride[n];
326 mbase += mstride[n];
327 dest += dstride[n];
328 }
329 }
330 }
331 }
332