]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/minloc0_8_i16.c
re PR libfortran/34670 (bounds checking for array intrinsics)
[thirdparty/gcc.git] / libgfortran / generated / minloc0_8_i16.c
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <limits.h>
35
36
37 #if defined (HAVE_GFC_INTEGER_16) && defined (HAVE_GFC_INTEGER_8)
38
39
40 extern void minloc0_8_i16 (gfc_array_i8 * const restrict retarray,
41 gfc_array_i16 * const restrict array);
42 export_proto(minloc0_8_i16);
43
44 void
45 minloc0_8_i16 (gfc_array_i8 * const restrict retarray,
46 gfc_array_i16 * const restrict array)
47 {
48 index_type count[GFC_MAX_DIMENSIONS];
49 index_type extent[GFC_MAX_DIMENSIONS];
50 index_type sstride[GFC_MAX_DIMENSIONS];
51 index_type dstride;
52 const GFC_INTEGER_16 *base;
53 GFC_INTEGER_8 *dest;
54 index_type rank;
55 index_type n;
56
57 rank = GFC_DESCRIPTOR_RANK (array);
58 if (rank <= 0)
59 runtime_error ("Rank of array needs to be > 0");
60
61 if (retarray->data == NULL)
62 {
63 retarray->dim[0].lbound = 0;
64 retarray->dim[0].ubound = rank-1;
65 retarray->dim[0].stride = 1;
66 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
67 retarray->offset = 0;
68 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
69 }
70 else
71 {
72 if (compile_options.bounds_check)
73 {
74 int ret_rank;
75 index_type ret_extent;
76
77 ret_rank = GFC_DESCRIPTOR_RANK (retarray);
78 if (ret_rank != 1)
79 runtime_error ("rank of return array in MINLOC intrinsic"
80 " should be 1, is %d", ret_rank);
81
82 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
83 if (ret_extent != rank)
84 runtime_error ("Incorrect extent in return value of"
85 " MINLOC intrnisic: is %ld, should be %d",
86 (long int) ret_extent, rank);
87 }
88 }
89
90 dstride = retarray->dim[0].stride;
91 dest = retarray->data;
92 for (n = 0; n < rank; n++)
93 {
94 sstride[n] = array->dim[n].stride;
95 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
96 count[n] = 0;
97 if (extent[n] <= 0)
98 {
99 /* Set the return value. */
100 for (n = 0; n < rank; n++)
101 dest[n * dstride] = 0;
102 return;
103 }
104 }
105
106 base = array->data;
107
108 /* Initialize the return value. */
109 for (n = 0; n < rank; n++)
110 dest[n * dstride] = 0;
111 {
112
113 GFC_INTEGER_16 minval;
114
115 minval = GFC_INTEGER_16_HUGE;
116
117 while (base)
118 {
119 {
120 /* Implementation start. */
121
122 if (*base < minval || !dest[0])
123 {
124 minval = *base;
125 for (n = 0; n < rank; n++)
126 dest[n * dstride] = count[n] + 1;
127 }
128 /* Implementation end. */
129 }
130 /* Advance to the next element. */
131 count[0]++;
132 base += sstride[0];
133 n = 0;
134 while (count[n] == extent[n])
135 {
136 /* When we get to the end of a dimension, reset it and increment
137 the next dimension. */
138 count[n] = 0;
139 /* We could precalculate these products, but this is a less
140 frequently used path so probably not worth it. */
141 base -= sstride[n] * extent[n];
142 n++;
143 if (n == rank)
144 {
145 /* Break out of the loop. */
146 base = NULL;
147 break;
148 }
149 else
150 {
151 count[n]++;
152 base += sstride[n];
153 }
154 }
155 }
156 }
157 }
158
159
160 extern void mminloc0_8_i16 (gfc_array_i8 * const restrict,
161 gfc_array_i16 * const restrict, gfc_array_l1 * const restrict);
162 export_proto(mminloc0_8_i16);
163
164 void
165 mminloc0_8_i16 (gfc_array_i8 * const restrict retarray,
166 gfc_array_i16 * const restrict array,
167 gfc_array_l1 * const restrict mask)
168 {
169 index_type count[GFC_MAX_DIMENSIONS];
170 index_type extent[GFC_MAX_DIMENSIONS];
171 index_type sstride[GFC_MAX_DIMENSIONS];
172 index_type mstride[GFC_MAX_DIMENSIONS];
173 index_type dstride;
174 GFC_INTEGER_8 *dest;
175 const GFC_INTEGER_16 *base;
176 GFC_LOGICAL_1 *mbase;
177 int rank;
178 index_type n;
179 int mask_kind;
180
181 rank = GFC_DESCRIPTOR_RANK (array);
182 if (rank <= 0)
183 runtime_error ("Rank of array needs to be > 0");
184
185 if (retarray->data == NULL)
186 {
187 retarray->dim[0].lbound = 0;
188 retarray->dim[0].ubound = rank-1;
189 retarray->dim[0].stride = 1;
190 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
191 retarray->offset = 0;
192 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
193 }
194 else
195 {
196 if (compile_options.bounds_check)
197 {
198 int ret_rank, mask_rank;
199 index_type ret_extent;
200 int n;
201 index_type array_extent, mask_extent;
202
203 ret_rank = GFC_DESCRIPTOR_RANK (retarray);
204 if (ret_rank != 1)
205 runtime_error ("rank of return array in MINLOC intrinsic"
206 " should be 1, is %d", ret_rank);
207
208 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
209 if (ret_extent != rank)
210 runtime_error ("Incorrect extent in return value of"
211 " MINLOC intrnisic: is %ld, should be %d",
212 (long int) ret_extent, rank);
213
214 mask_rank = GFC_DESCRIPTOR_RANK (mask);
215 if (rank != mask_rank)
216 runtime_error ("rank of MASK argument in MINLOC intrnisic"
217 "should be %d, is %d", rank, mask_rank);
218
219 for (n=0; n<rank; n++)
220 {
221 array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound;
222 mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound;
223 if (array_extent != mask_extent)
224 runtime_error ("Incorrect extent in MASK argument of"
225 " MINLOC intrinsic in dimension %d:"
226 " is %ld, should be %ld", n + 1,
227 (long int) mask_extent, (long int) array_extent);
228 }
229 }
230 }
231
232 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
233
234 mbase = mask->data;
235
236 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
237 #ifdef HAVE_GFC_LOGICAL_16
238 || mask_kind == 16
239 #endif
240 )
241 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
242 else
243 runtime_error ("Funny sized logical array");
244
245 dstride = retarray->dim[0].stride;
246 dest = retarray->data;
247 for (n = 0; n < rank; n++)
248 {
249 sstride[n] = array->dim[n].stride;
250 mstride[n] = mask->dim[n].stride * mask_kind;
251 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
252 count[n] = 0;
253 if (extent[n] <= 0)
254 {
255 /* Set the return value. */
256 for (n = 0; n < rank; n++)
257 dest[n * dstride] = 0;
258 return;
259 }
260 }
261
262 base = array->data;
263
264 /* Initialize the return value. */
265 for (n = 0; n < rank; n++)
266 dest[n * dstride] = 0;
267 {
268
269 GFC_INTEGER_16 minval;
270
271 minval = GFC_INTEGER_16_HUGE;
272
273 while (base)
274 {
275 {
276 /* Implementation start. */
277
278 if (*mbase && (*base < minval || !dest[0]))
279 {
280 minval = *base;
281 for (n = 0; n < rank; n++)
282 dest[n * dstride] = count[n] + 1;
283 }
284 /* Implementation end. */
285 }
286 /* Advance to the next element. */
287 count[0]++;
288 base += sstride[0];
289 mbase += mstride[0];
290 n = 0;
291 while (count[n] == extent[n])
292 {
293 /* When we get to the end of a dimension, reset it and increment
294 the next dimension. */
295 count[n] = 0;
296 /* We could precalculate these products, but this is a less
297 frequently used path so probably not worth it. */
298 base -= sstride[n] * extent[n];
299 mbase -= mstride[n] * extent[n];
300 n++;
301 if (n == rank)
302 {
303 /* Break out of the loop. */
304 base = NULL;
305 break;
306 }
307 else
308 {
309 count[n]++;
310 base += sstride[n];
311 mbase += mstride[n];
312 }
313 }
314 }
315 }
316 }
317
318
319 extern void sminloc0_8_i16 (gfc_array_i8 * const restrict,
320 gfc_array_i16 * const restrict, GFC_LOGICAL_4 *);
321 export_proto(sminloc0_8_i16);
322
323 void
324 sminloc0_8_i16 (gfc_array_i8 * const restrict retarray,
325 gfc_array_i16 * const restrict array,
326 GFC_LOGICAL_4 * mask)
327 {
328 index_type rank;
329 index_type dstride;
330 index_type n;
331 GFC_INTEGER_8 *dest;
332
333 if (*mask)
334 {
335 minloc0_8_i16 (retarray, array);
336 return;
337 }
338
339 rank = GFC_DESCRIPTOR_RANK (array);
340
341 if (rank <= 0)
342 runtime_error ("Rank of array needs to be > 0");
343
344 if (retarray->data == NULL)
345 {
346 retarray->dim[0].lbound = 0;
347 retarray->dim[0].ubound = rank-1;
348 retarray->dim[0].stride = 1;
349 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
350 retarray->offset = 0;
351 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
352 }
353 else
354 {
355 if (compile_options.bounds_check)
356 {
357 int ret_rank;
358 index_type ret_extent;
359
360 ret_rank = GFC_DESCRIPTOR_RANK (retarray);
361 if (ret_rank != 1)
362 runtime_error ("rank of return array in MINLOC intrinsic"
363 " should be 1, is %d", ret_rank);
364
365 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
366 if (ret_extent != rank)
367 runtime_error ("dimension of return array incorrect");
368 }
369 }
370
371 dstride = retarray->dim[0].stride;
372 dest = retarray->data;
373 for (n = 0; n<rank; n++)
374 dest[n * dstride] = 0 ;
375 }
376 #endif