]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/minloc1_4_i8.c
cpu_time.c: Don't include headers already included by libgfortran.h.
[thirdparty/gcc.git] / libgfortran / generated / minloc1_4_i8.c
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <limits.h>
35 #include "libgfortran.h"
36
37
38 #if defined (HAVE_GFC_INTEGER_8) && defined (HAVE_GFC_INTEGER_4)
39
40
41 extern void minloc1_4_i8 (gfc_array_i4 * const restrict,
42 gfc_array_i8 * const restrict, const index_type * const restrict);
43 export_proto(minloc1_4_i8);
44
45 void
46 minloc1_4_i8 (gfc_array_i4 * const restrict retarray,
47 gfc_array_i8 * const restrict array,
48 const index_type * const restrict pdim)
49 {
50 index_type count[GFC_MAX_DIMENSIONS];
51 index_type extent[GFC_MAX_DIMENSIONS];
52 index_type sstride[GFC_MAX_DIMENSIONS];
53 index_type dstride[GFC_MAX_DIMENSIONS];
54 const GFC_INTEGER_8 * restrict base;
55 GFC_INTEGER_4 * restrict dest;
56 index_type rank;
57 index_type n;
58 index_type len;
59 index_type delta;
60 index_type dim;
61
62 /* Make dim zero based to avoid confusion. */
63 dim = (*pdim) - 1;
64 rank = GFC_DESCRIPTOR_RANK (array) - 1;
65
66 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
67 delta = array->dim[dim].stride;
68
69 for (n = 0; n < dim; n++)
70 {
71 sstride[n] = array->dim[n].stride;
72 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
73
74 if (extent[n] < 0)
75 extent[n] = 0;
76 }
77 for (n = dim; n < rank; n++)
78 {
79 sstride[n] = array->dim[n + 1].stride;
80 extent[n] =
81 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
82
83 if (extent[n] < 0)
84 extent[n] = 0;
85 }
86
87 if (retarray->data == NULL)
88 {
89 size_t alloc_size;
90
91 for (n = 0; n < rank; n++)
92 {
93 retarray->dim[n].lbound = 0;
94 retarray->dim[n].ubound = extent[n]-1;
95 if (n == 0)
96 retarray->dim[n].stride = 1;
97 else
98 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
99 }
100
101 retarray->offset = 0;
102 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
103
104 alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
105 * extent[rank-1];
106
107 if (alloc_size == 0)
108 {
109 /* Make sure we have a zero-sized array. */
110 retarray->dim[0].lbound = 0;
111 retarray->dim[0].ubound = -1;
112 return;
113 }
114 else
115 retarray->data = internal_malloc_size (alloc_size);
116 }
117 else
118 {
119 if (rank != GFC_DESCRIPTOR_RANK (retarray))
120 runtime_error ("rank of return array incorrect");
121 }
122
123 for (n = 0; n < rank; n++)
124 {
125 count[n] = 0;
126 dstride[n] = retarray->dim[n].stride;
127 if (extent[n] <= 0)
128 len = 0;
129 }
130
131 base = array->data;
132 dest = retarray->data;
133
134 while (base)
135 {
136 const GFC_INTEGER_8 * restrict src;
137 GFC_INTEGER_4 result;
138 src = base;
139 {
140
141 GFC_INTEGER_8 minval;
142 minval = GFC_INTEGER_8_HUGE;
143 result = 0;
144 if (len <= 0)
145 *dest = 0;
146 else
147 {
148 for (n = 0; n < len; n++, src += delta)
149 {
150
151 if (*src < minval || !result)
152 {
153 minval = *src;
154 result = (GFC_INTEGER_4)n + 1;
155 }
156 }
157 *dest = result;
158 }
159 }
160 /* Advance to the next element. */
161 count[0]++;
162 base += sstride[0];
163 dest += dstride[0];
164 n = 0;
165 while (count[n] == extent[n])
166 {
167 /* When we get to the end of a dimension, reset it and increment
168 the next dimension. */
169 count[n] = 0;
170 /* We could precalculate these products, but this is a less
171 frequently used path so probably not worth it. */
172 base -= sstride[n] * extent[n];
173 dest -= dstride[n] * extent[n];
174 n++;
175 if (n == rank)
176 {
177 /* Break out of the look. */
178 base = NULL;
179 break;
180 }
181 else
182 {
183 count[n]++;
184 base += sstride[n];
185 dest += dstride[n];
186 }
187 }
188 }
189 }
190
191
192 extern void mminloc1_4_i8 (gfc_array_i4 * const restrict,
193 gfc_array_i8 * const restrict, const index_type * const restrict,
194 gfc_array_l4 * const restrict);
195 export_proto(mminloc1_4_i8);
196
197 void
198 mminloc1_4_i8 (gfc_array_i4 * const restrict retarray,
199 gfc_array_i8 * const restrict array,
200 const index_type * const restrict pdim,
201 gfc_array_l4 * const restrict mask)
202 {
203 index_type count[GFC_MAX_DIMENSIONS];
204 index_type extent[GFC_MAX_DIMENSIONS];
205 index_type sstride[GFC_MAX_DIMENSIONS];
206 index_type dstride[GFC_MAX_DIMENSIONS];
207 index_type mstride[GFC_MAX_DIMENSIONS];
208 GFC_INTEGER_4 * restrict dest;
209 const GFC_INTEGER_8 * restrict base;
210 const GFC_LOGICAL_4 * restrict mbase;
211 int rank;
212 int dim;
213 index_type n;
214 index_type len;
215 index_type delta;
216 index_type mdelta;
217
218 dim = (*pdim) - 1;
219 rank = GFC_DESCRIPTOR_RANK (array) - 1;
220
221 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
222 if (len <= 0)
223 return;
224 delta = array->dim[dim].stride;
225 mdelta = mask->dim[dim].stride;
226
227 for (n = 0; n < dim; n++)
228 {
229 sstride[n] = array->dim[n].stride;
230 mstride[n] = mask->dim[n].stride;
231 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
232
233 if (extent[n] < 0)
234 extent[n] = 0;
235
236 }
237 for (n = dim; n < rank; n++)
238 {
239 sstride[n] = array->dim[n + 1].stride;
240 mstride[n] = mask->dim[n + 1].stride;
241 extent[n] =
242 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
243
244 if (extent[n] < 0)
245 extent[n] = 0;
246 }
247
248 if (retarray->data == NULL)
249 {
250 size_t alloc_size;
251
252 for (n = 0; n < rank; n++)
253 {
254 retarray->dim[n].lbound = 0;
255 retarray->dim[n].ubound = extent[n]-1;
256 if (n == 0)
257 retarray->dim[n].stride = 1;
258 else
259 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
260 }
261
262 alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
263 * extent[rank-1];
264
265 retarray->offset = 0;
266 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
267
268 if (alloc_size == 0)
269 {
270 /* Make sure we have a zero-sized array. */
271 retarray->dim[0].lbound = 0;
272 retarray->dim[0].ubound = -1;
273 return;
274 }
275 else
276 retarray->data = internal_malloc_size (alloc_size);
277
278 }
279 else
280 {
281 if (rank != GFC_DESCRIPTOR_RANK (retarray))
282 runtime_error ("rank of return array incorrect");
283 }
284
285 for (n = 0; n < rank; n++)
286 {
287 count[n] = 0;
288 dstride[n] = retarray->dim[n].stride;
289 if (extent[n] <= 0)
290 return;
291 }
292
293 dest = retarray->data;
294 base = array->data;
295 mbase = mask->data;
296
297 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
298 {
299 /* This allows the same loop to be used for all logical types. */
300 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
301 for (n = 0; n < rank; n++)
302 mstride[n] <<= 1;
303 mdelta <<= 1;
304 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
305 }
306
307 while (base)
308 {
309 const GFC_INTEGER_8 * restrict src;
310 const GFC_LOGICAL_4 * restrict msrc;
311 GFC_INTEGER_4 result;
312 src = base;
313 msrc = mbase;
314 {
315
316 GFC_INTEGER_8 minval;
317 minval = GFC_INTEGER_8_HUGE;
318 result = 0;
319 if (len <= 0)
320 *dest = 0;
321 else
322 {
323 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
324 {
325
326 if (*msrc && (*src < minval || !result))
327 {
328 minval = *src;
329 result = (GFC_INTEGER_4)n + 1;
330 }
331 }
332 *dest = result;
333 }
334 }
335 /* Advance to the next element. */
336 count[0]++;
337 base += sstride[0];
338 mbase += mstride[0];
339 dest += dstride[0];
340 n = 0;
341 while (count[n] == extent[n])
342 {
343 /* When we get to the end of a dimension, reset it and increment
344 the next dimension. */
345 count[n] = 0;
346 /* We could precalculate these products, but this is a less
347 frequently used path so probably not worth it. */
348 base -= sstride[n] * extent[n];
349 mbase -= mstride[n] * extent[n];
350 dest -= dstride[n] * extent[n];
351 n++;
352 if (n == rank)
353 {
354 /* Break out of the look. */
355 base = NULL;
356 break;
357 }
358 else
359 {
360 count[n]++;
361 base += sstride[n];
362 mbase += mstride[n];
363 dest += dstride[n];
364 }
365 }
366 }
367 }
368
369
370 extern void sminloc1_4_i8 (gfc_array_i4 * const restrict,
371 gfc_array_i8 * const restrict, const index_type * const restrict,
372 GFC_LOGICAL_4 *);
373 export_proto(sminloc1_4_i8);
374
375 void
376 sminloc1_4_i8 (gfc_array_i4 * const restrict retarray,
377 gfc_array_i8 * const restrict array,
378 const index_type * const restrict pdim,
379 GFC_LOGICAL_4 * mask)
380 {
381 index_type rank;
382 index_type n;
383 index_type dstride;
384 GFC_INTEGER_4 *dest;
385
386 if (*mask)
387 {
388 minloc1_4_i8 (retarray, array, pdim);
389 return;
390 }
391 rank = GFC_DESCRIPTOR_RANK (array);
392 if (rank <= 0)
393 runtime_error ("Rank of array needs to be > 0");
394
395 if (retarray->data == NULL)
396 {
397 retarray->dim[0].lbound = 0;
398 retarray->dim[0].ubound = rank-1;
399 retarray->dim[0].stride = 1;
400 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
401 retarray->offset = 0;
402 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
403 }
404 else
405 {
406 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
407 runtime_error ("rank of return array does not equal 1");
408
409 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
410 runtime_error ("dimension of return array incorrect");
411 }
412
413 dstride = retarray->dim[0].stride;
414 dest = retarray->data;
415
416 for (n = 0; n < rank; n++)
417 dest[n * dstride] = 0 ;
418 }
419
420 #endif