]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/minloc1_4_i8.c
re PR libfortran/19106 ([4.0 only] segfault in executable for print *,sum(a,dim=2...
[thirdparty/gcc.git] / libgfortran / generated / minloc1_4_i8.c
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include <limits.h>
36 #include "libgfortran.h"
37
38
39 extern void minloc1_4_i8 (gfc_array_i4 *, gfc_array_i8 *, index_type *);
40 export_proto(minloc1_4_i8);
41
42 void
43 minloc1_4_i8 (gfc_array_i4 *retarray, gfc_array_i8 *array, index_type *pdim)
44 {
45 index_type count[GFC_MAX_DIMENSIONS - 1];
46 index_type extent[GFC_MAX_DIMENSIONS - 1];
47 index_type sstride[GFC_MAX_DIMENSIONS - 1];
48 index_type dstride[GFC_MAX_DIMENSIONS - 1];
49 GFC_INTEGER_8 *base;
50 GFC_INTEGER_4 *dest;
51 index_type rank;
52 index_type n;
53 index_type len;
54 index_type delta;
55 index_type dim;
56
57 /* Make dim zero based to avoid confusion. */
58 dim = (*pdim) - 1;
59 rank = GFC_DESCRIPTOR_RANK (array) - 1;
60 if (array->dim[0].stride == 0)
61 array->dim[0].stride = 1;
62
63 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
64 delta = array->dim[dim].stride;
65
66 for (n = 0; n < dim; n++)
67 {
68 sstride[n] = array->dim[n].stride;
69 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
70 }
71 for (n = dim; n < rank; n++)
72 {
73 sstride[n] = array->dim[n + 1].stride;
74 extent[n] =
75 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
76 }
77
78 if (retarray->data == NULL)
79 {
80 for (n = 0; n < rank; n++)
81 {
82 retarray->dim[n].lbound = 0;
83 retarray->dim[n].ubound = extent[n]-1;
84 if (n == 0)
85 retarray->dim[n].stride = 1;
86 else
87 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
88 }
89
90 retarray->data
91 = internal_malloc_size (sizeof (GFC_INTEGER_4)
92 * retarray->dim[rank-1].stride
93 * extent[rank-1]);
94 retarray->base = 0;
95 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
96 }
97 else
98 {
99 if (retarray->dim[0].stride == 0)
100 retarray->dim[0].stride = 1;
101
102 if (rank != GFC_DESCRIPTOR_RANK (retarray))
103 runtime_error ("rank of return array incorrect");
104 }
105
106 for (n = 0; n < rank; n++)
107 {
108 count[n] = 0;
109 dstride[n] = retarray->dim[n].stride;
110 if (extent[n] <= 0)
111 len = 0;
112 }
113
114 base = array->data;
115 dest = retarray->data;
116
117 while (base)
118 {
119 GFC_INTEGER_8 *src;
120 GFC_INTEGER_4 result;
121 src = base;
122 {
123
124 GFC_INTEGER_8 minval;
125 minval = GFC_INTEGER_8_HUGE;
126 result = 1;
127 if (len <= 0)
128 *dest = 0;
129 else
130 {
131 for (n = 0; n < len; n++, src += delta)
132 {
133
134 if (*src < minval)
135 {
136 minval = *src;
137 result = (GFC_INTEGER_4)n + 1;
138 }
139 }
140 *dest = result;
141 }
142 }
143 /* Advance to the next element. */
144 count[0]++;
145 base += sstride[0];
146 dest += dstride[0];
147 n = 0;
148 while (count[n] == extent[n])
149 {
150 /* When we get to the end of a dimension, reset it and increment
151 the next dimension. */
152 count[n] = 0;
153 /* We could precalculate these products, but this is a less
154 frequently used path so proabably not worth it. */
155 base -= sstride[n] * extent[n];
156 dest -= dstride[n] * extent[n];
157 n++;
158 if (n == rank)
159 {
160 /* Break out of the look. */
161 base = NULL;
162 break;
163 }
164 else
165 {
166 count[n]++;
167 base += sstride[n];
168 dest += dstride[n];
169 }
170 }
171 }
172 }
173
174
175 extern void mminloc1_4_i8 (gfc_array_i4 *, gfc_array_i8 *, index_type *,
176 gfc_array_l4 *);
177 export_proto(mminloc1_4_i8);
178
179 void
180 mminloc1_4_i8 (gfc_array_i4 * retarray, gfc_array_i8 * array,
181 index_type *pdim, gfc_array_l4 * mask)
182 {
183 index_type count[GFC_MAX_DIMENSIONS - 1];
184 index_type extent[GFC_MAX_DIMENSIONS - 1];
185 index_type sstride[GFC_MAX_DIMENSIONS - 1];
186 index_type dstride[GFC_MAX_DIMENSIONS - 1];
187 index_type mstride[GFC_MAX_DIMENSIONS - 1];
188 GFC_INTEGER_4 *dest;
189 GFC_INTEGER_8 *base;
190 GFC_LOGICAL_4 *mbase;
191 int rank;
192 int dim;
193 index_type n;
194 index_type len;
195 index_type delta;
196 index_type mdelta;
197
198 dim = (*pdim) - 1;
199 rank = GFC_DESCRIPTOR_RANK (array) - 1;
200 if (array->dim[0].stride == 0)
201 array->dim[0].stride = 1;
202
203 if (mask->dim[0].stride == 0)
204 mask->dim[0].stride = 1;
205
206 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
207 if (len <= 0)
208 return;
209 delta = array->dim[dim].stride;
210 mdelta = mask->dim[dim].stride;
211
212 for (n = 0; n < dim; n++)
213 {
214 sstride[n] = array->dim[n].stride;
215 mstride[n] = mask->dim[n].stride;
216 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
217 }
218 for (n = dim; n < rank; n++)
219 {
220 sstride[n] = array->dim[n + 1].stride;
221 mstride[n] = mask->dim[n + 1].stride;
222 extent[n] =
223 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
224 }
225
226 if (retarray->data == NULL)
227 {
228 for (n = 0; n < rank; n++)
229 {
230 retarray->dim[n].lbound = 0;
231 retarray->dim[n].ubound = extent[n]-1;
232 if (n == 0)
233 retarray->dim[n].stride = 1;
234 else
235 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
236 }
237
238 retarray->data
239 = internal_malloc_size (sizeof (GFC_INTEGER_4)
240 * retarray->dim[rank-1].stride
241 * extent[rank-1]);
242 retarray->base = 0;
243 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
244 }
245 else
246 {
247 if (retarray->dim[0].stride == 0)
248 retarray->dim[0].stride = 1;
249
250 if (rank != GFC_DESCRIPTOR_RANK (retarray))
251 runtime_error ("rank of return array incorrect");
252 }
253
254 for (n = 0; n < rank; n++)
255 {
256 count[n] = 0;
257 dstride[n] = retarray->dim[n].stride;
258 if (extent[n] <= 0)
259 return;
260 }
261
262 dest = retarray->data;
263 base = array->data;
264 mbase = mask->data;
265
266 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
267 {
268 /* This allows the same loop to be used for all logical types. */
269 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
270 for (n = 0; n < rank; n++)
271 mstride[n] <<= 1;
272 mdelta <<= 1;
273 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
274 }
275
276 while (base)
277 {
278 GFC_INTEGER_8 *src;
279 GFC_LOGICAL_4 *msrc;
280 GFC_INTEGER_4 result;
281 src = base;
282 msrc = mbase;
283 {
284
285 GFC_INTEGER_8 minval;
286 minval = GFC_INTEGER_8_HUGE;
287 result = 1;
288 if (len <= 0)
289 *dest = 0;
290 else
291 {
292 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
293 {
294
295 if (*msrc && *src < minval)
296 {
297 minval = *src;
298 result = (GFC_INTEGER_4)n + 1;
299 }
300 }
301 *dest = result;
302 }
303 }
304 /* Advance to the next element. */
305 count[0]++;
306 base += sstride[0];
307 mbase += mstride[0];
308 dest += dstride[0];
309 n = 0;
310 while (count[n] == extent[n])
311 {
312 /* When we get to the end of a dimension, reset it and increment
313 the next dimension. */
314 count[n] = 0;
315 /* We could precalculate these products, but this is a less
316 frequently used path so proabably not worth it. */
317 base -= sstride[n] * extent[n];
318 mbase -= mstride[n] * extent[n];
319 dest -= dstride[n] * extent[n];
320 n++;
321 if (n == rank)
322 {
323 /* Break out of the look. */
324 base = NULL;
325 break;
326 }
327 else
328 {
329 count[n]++;
330 base += sstride[n];
331 mbase += mstride[n];
332 dest += dstride[n];
333 }
334 }
335 }
336 }
337