]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/minval_i2.c
[multiple changes]
[thirdparty/gcc.git] / libgfortran / generated / minval_i2.c
1 /* Implementation of the MINVAL intrinsic
2 Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
29
30
31 #if defined (HAVE_GFC_INTEGER_2) && defined (HAVE_GFC_INTEGER_2)
32
33
34 extern void minval_i2 (gfc_array_i2 * const restrict,
35 gfc_array_i2 * const restrict, const index_type * const restrict);
36 export_proto(minval_i2);
37
38 void
39 minval_i2 (gfc_array_i2 * const restrict retarray,
40 gfc_array_i2 * const restrict array,
41 const index_type * const restrict pdim)
42 {
43 index_type count[GFC_MAX_DIMENSIONS];
44 index_type extent[GFC_MAX_DIMENSIONS];
45 index_type sstride[GFC_MAX_DIMENSIONS];
46 index_type dstride[GFC_MAX_DIMENSIONS];
47 const GFC_INTEGER_2 * restrict base;
48 GFC_INTEGER_2 * restrict dest;
49 index_type rank;
50 index_type n;
51 index_type len;
52 index_type delta;
53 index_type dim;
54 int continue_loop;
55
56 /* Make dim zero based to avoid confusion. */
57 dim = (*pdim) - 1;
58 rank = GFC_DESCRIPTOR_RANK (array) - 1;
59
60 len = GFC_DESCRIPTOR_EXTENT(array,dim);
61 if (len < 0)
62 len = 0;
63 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
64
65 for (n = 0; n < dim; n++)
66 {
67 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
68 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
69
70 if (extent[n] < 0)
71 extent[n] = 0;
72 }
73 for (n = dim; n < rank; n++)
74 {
75 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
76 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
77
78 if (extent[n] < 0)
79 extent[n] = 0;
80 }
81
82 if (retarray->data == NULL)
83 {
84 size_t alloc_size, str;
85
86 for (n = 0; n < rank; n++)
87 {
88 if (n == 0)
89 str = 1;
90 else
91 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
92
93 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
94
95 }
96
97 retarray->offset = 0;
98 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
99
100 alloc_size = sizeof (GFC_INTEGER_2) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
101 * extent[rank-1];
102
103 if (alloc_size == 0)
104 {
105 /* Make sure we have a zero-sized array. */
106 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
107 return;
108
109 }
110 else
111 retarray->data = internal_malloc_size (alloc_size);
112 }
113 else
114 {
115 if (rank != GFC_DESCRIPTOR_RANK (retarray))
116 runtime_error ("rank of return array incorrect in"
117 " MINVAL intrinsic: is %ld, should be %ld",
118 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
119 (long int) rank);
120
121 if (unlikely (compile_options.bounds_check))
122 bounds_ifunction_return ((array_t *) retarray, extent,
123 "return value", "MINVAL");
124 }
125
126 for (n = 0; n < rank; n++)
127 {
128 count[n] = 0;
129 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
130 if (extent[n] <= 0)
131 len = 0;
132 }
133
134 base = array->data;
135 dest = retarray->data;
136
137 continue_loop = 1;
138 while (continue_loop)
139 {
140 const GFC_INTEGER_2 * restrict src;
141 GFC_INTEGER_2 result;
142 src = base;
143 {
144
145 result = GFC_INTEGER_2_HUGE;
146 if (len <= 0)
147 *dest = GFC_INTEGER_2_HUGE;
148 else
149 {
150 for (n = 0; n < len; n++, src += delta)
151 {
152
153 if (*src < result)
154 result = *src;
155 }
156 *dest = result;
157 }
158 }
159 /* Advance to the next element. */
160 count[0]++;
161 base += sstride[0];
162 dest += dstride[0];
163 n = 0;
164 while (count[n] == extent[n])
165 {
166 /* When we get to the end of a dimension, reset it and increment
167 the next dimension. */
168 count[n] = 0;
169 /* We could precalculate these products, but this is a less
170 frequently used path so probably not worth it. */
171 base -= sstride[n] * extent[n];
172 dest -= dstride[n] * extent[n];
173 n++;
174 if (n == rank)
175 {
176 /* Break out of the look. */
177 continue_loop = 0;
178 break;
179 }
180 else
181 {
182 count[n]++;
183 base += sstride[n];
184 dest += dstride[n];
185 }
186 }
187 }
188 }
189
190
191 extern void mminval_i2 (gfc_array_i2 * const restrict,
192 gfc_array_i2 * const restrict, const index_type * const restrict,
193 gfc_array_l1 * const restrict);
194 export_proto(mminval_i2);
195
196 void
197 mminval_i2 (gfc_array_i2 * const restrict retarray,
198 gfc_array_i2 * const restrict array,
199 const index_type * const restrict pdim,
200 gfc_array_l1 * const restrict mask)
201 {
202 index_type count[GFC_MAX_DIMENSIONS];
203 index_type extent[GFC_MAX_DIMENSIONS];
204 index_type sstride[GFC_MAX_DIMENSIONS];
205 index_type dstride[GFC_MAX_DIMENSIONS];
206 index_type mstride[GFC_MAX_DIMENSIONS];
207 GFC_INTEGER_2 * restrict dest;
208 const GFC_INTEGER_2 * restrict base;
209 const GFC_LOGICAL_1 * restrict mbase;
210 int rank;
211 int dim;
212 index_type n;
213 index_type len;
214 index_type delta;
215 index_type mdelta;
216 int mask_kind;
217
218 dim = (*pdim) - 1;
219 rank = GFC_DESCRIPTOR_RANK (array) - 1;
220
221 len = GFC_DESCRIPTOR_EXTENT(array,dim);
222 if (len <= 0)
223 return;
224
225 mbase = mask->data;
226
227 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
228
229 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
230 #ifdef HAVE_GFC_LOGICAL_16
231 || mask_kind == 16
232 #endif
233 )
234 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
235 else
236 runtime_error ("Funny sized logical array");
237
238 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
239 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
240
241 for (n = 0; n < dim; n++)
242 {
243 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
244 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
245 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
246
247 if (extent[n] < 0)
248 extent[n] = 0;
249
250 }
251 for (n = dim; n < rank; n++)
252 {
253 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
254 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
255 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
256
257 if (extent[n] < 0)
258 extent[n] = 0;
259 }
260
261 if (retarray->data == NULL)
262 {
263 size_t alloc_size, str;
264
265 for (n = 0; n < rank; n++)
266 {
267 if (n == 0)
268 str = 1;
269 else
270 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
271
272 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
273
274 }
275
276 alloc_size = sizeof (GFC_INTEGER_2) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
277 * extent[rank-1];
278
279 retarray->offset = 0;
280 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
281
282 if (alloc_size == 0)
283 {
284 /* Make sure we have a zero-sized array. */
285 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
286 return;
287 }
288 else
289 retarray->data = internal_malloc_size (alloc_size);
290
291 }
292 else
293 {
294 if (rank != GFC_DESCRIPTOR_RANK (retarray))
295 runtime_error ("rank of return array incorrect in MINVAL intrinsic");
296
297 if (unlikely (compile_options.bounds_check))
298 {
299 bounds_ifunction_return ((array_t *) retarray, extent,
300 "return value", "MINVAL");
301 bounds_equal_extents ((array_t *) mask, (array_t *) array,
302 "MASK argument", "MINVAL");
303 }
304 }
305
306 for (n = 0; n < rank; n++)
307 {
308 count[n] = 0;
309 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
310 if (extent[n] <= 0)
311 return;
312 }
313
314 dest = retarray->data;
315 base = array->data;
316
317 while (base)
318 {
319 const GFC_INTEGER_2 * restrict src;
320 const GFC_LOGICAL_1 * restrict msrc;
321 GFC_INTEGER_2 result;
322 src = base;
323 msrc = mbase;
324 {
325
326 result = GFC_INTEGER_2_HUGE;
327 if (len <= 0)
328 *dest = GFC_INTEGER_2_HUGE;
329 else
330 {
331 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
332 {
333
334 if (*msrc && *src < result)
335 result = *src;
336 }
337 *dest = result;
338 }
339 }
340 /* Advance to the next element. */
341 count[0]++;
342 base += sstride[0];
343 mbase += mstride[0];
344 dest += dstride[0];
345 n = 0;
346 while (count[n] == extent[n])
347 {
348 /* When we get to the end of a dimension, reset it and increment
349 the next dimension. */
350 count[n] = 0;
351 /* We could precalculate these products, but this is a less
352 frequently used path so probably not worth it. */
353 base -= sstride[n] * extent[n];
354 mbase -= mstride[n] * extent[n];
355 dest -= dstride[n] * extent[n];
356 n++;
357 if (n == rank)
358 {
359 /* Break out of the look. */
360 base = NULL;
361 break;
362 }
363 else
364 {
365 count[n]++;
366 base += sstride[n];
367 mbase += mstride[n];
368 dest += dstride[n];
369 }
370 }
371 }
372 }
373
374
375 extern void sminval_i2 (gfc_array_i2 * const restrict,
376 gfc_array_i2 * const restrict, const index_type * const restrict,
377 GFC_LOGICAL_4 *);
378 export_proto(sminval_i2);
379
380 void
381 sminval_i2 (gfc_array_i2 * const restrict retarray,
382 gfc_array_i2 * const restrict array,
383 const index_type * const restrict pdim,
384 GFC_LOGICAL_4 * mask)
385 {
386 index_type count[GFC_MAX_DIMENSIONS];
387 index_type extent[GFC_MAX_DIMENSIONS];
388 index_type sstride[GFC_MAX_DIMENSIONS];
389 index_type dstride[GFC_MAX_DIMENSIONS];
390 GFC_INTEGER_2 * restrict dest;
391 index_type rank;
392 index_type n;
393 index_type dim;
394
395
396 if (*mask)
397 {
398 minval_i2 (retarray, array, pdim);
399 return;
400 }
401 /* Make dim zero based to avoid confusion. */
402 dim = (*pdim) - 1;
403 rank = GFC_DESCRIPTOR_RANK (array) - 1;
404
405 for (n = 0; n < dim; n++)
406 {
407 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
408 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
409
410 if (extent[n] <= 0)
411 extent[n] = 0;
412 }
413
414 for (n = dim; n < rank; n++)
415 {
416 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
417 extent[n] =
418 GFC_DESCRIPTOR_EXTENT(array,n + 1);
419
420 if (extent[n] <= 0)
421 extent[n] = 0;
422 }
423
424 if (retarray->data == NULL)
425 {
426 size_t alloc_size, str;
427
428 for (n = 0; n < rank; n++)
429 {
430 if (n == 0)
431 str = 1;
432 else
433 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
434
435 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
436
437 }
438
439 retarray->offset = 0;
440 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
441
442 alloc_size = sizeof (GFC_INTEGER_2) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
443 * extent[rank-1];
444
445 if (alloc_size == 0)
446 {
447 /* Make sure we have a zero-sized array. */
448 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
449 return;
450 }
451 else
452 retarray->data = internal_malloc_size (alloc_size);
453 }
454 else
455 {
456 if (rank != GFC_DESCRIPTOR_RANK (retarray))
457 runtime_error ("rank of return array incorrect in"
458 " MINVAL intrinsic: is %ld, should be %ld",
459 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
460 (long int) rank);
461
462 if (unlikely (compile_options.bounds_check))
463 {
464 for (n=0; n < rank; n++)
465 {
466 index_type ret_extent;
467
468 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
469 if (extent[n] != ret_extent)
470 runtime_error ("Incorrect extent in return value of"
471 " MINVAL intrinsic in dimension %ld:"
472 " is %ld, should be %ld", (long int) n + 1,
473 (long int) ret_extent, (long int) extent[n]);
474 }
475 }
476 }
477
478 for (n = 0; n < rank; n++)
479 {
480 count[n] = 0;
481 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
482 }
483
484 dest = retarray->data;
485
486 while(1)
487 {
488 *dest = GFC_INTEGER_2_HUGE;
489 count[0]++;
490 dest += dstride[0];
491 n = 0;
492 while (count[n] == extent[n])
493 {
494 /* When we get to the end of a dimension, reset it and increment
495 the next dimension. */
496 count[n] = 0;
497 /* We could precalculate these products, but this is a less
498 frequently used path so probably not worth it. */
499 dest -= dstride[n] * extent[n];
500 n++;
501 if (n == rank)
502 return;
503 else
504 {
505 count[n]++;
506 dest += dstride[n];
507 }
508 }
509 }
510 }
511
512 #endif