]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/minval_i8.c
re PR libfortran/19308 (I/O library should support more real and integer kinds)
[thirdparty/gcc.git] / libgfortran / generated / minval_i8.c
1 /* Implementation of the MINVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include "libgfortran.h"
36
37
38 #if defined (HAVE_GFC_INTEGER_8) && defined (HAVE_GFC_INTEGER_8)
39
40
41 extern void minval_i8 (gfc_array_i8 *, gfc_array_i8 *, index_type *);
42 export_proto(minval_i8);
43
44 void
45 minval_i8 (gfc_array_i8 *retarray, gfc_array_i8 *array, index_type *pdim)
46 {
47 index_type count[GFC_MAX_DIMENSIONS];
48 index_type extent[GFC_MAX_DIMENSIONS];
49 index_type sstride[GFC_MAX_DIMENSIONS];
50 index_type dstride[GFC_MAX_DIMENSIONS];
51 GFC_INTEGER_8 *base;
52 GFC_INTEGER_8 *dest;
53 index_type rank;
54 index_type n;
55 index_type len;
56 index_type delta;
57 index_type dim;
58
59 /* Make dim zero based to avoid confusion. */
60 dim = (*pdim) - 1;
61 rank = GFC_DESCRIPTOR_RANK (array) - 1;
62
63 /* TODO: It should be a front end job to correctly set the strides. */
64
65 if (array->dim[0].stride == 0)
66 array->dim[0].stride = 1;
67
68 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
69 delta = array->dim[dim].stride;
70
71 for (n = 0; n < dim; n++)
72 {
73 sstride[n] = array->dim[n].stride;
74 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
75 }
76 for (n = dim; n < rank; n++)
77 {
78 sstride[n] = array->dim[n + 1].stride;
79 extent[n] =
80 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
81 }
82
83 if (retarray->data == NULL)
84 {
85 for (n = 0; n < rank; n++)
86 {
87 retarray->dim[n].lbound = 0;
88 retarray->dim[n].ubound = extent[n]-1;
89 if (n == 0)
90 retarray->dim[n].stride = 1;
91 else
92 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
93 }
94
95 retarray->data
96 = internal_malloc_size (sizeof (GFC_INTEGER_8)
97 * retarray->dim[rank-1].stride
98 * extent[rank-1]);
99 retarray->offset = 0;
100 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
101 }
102 else
103 {
104 if (retarray->dim[0].stride == 0)
105 retarray->dim[0].stride = 1;
106
107 if (rank != GFC_DESCRIPTOR_RANK (retarray))
108 runtime_error ("rank of return array incorrect");
109 }
110
111 for (n = 0; n < rank; n++)
112 {
113 count[n] = 0;
114 dstride[n] = retarray->dim[n].stride;
115 if (extent[n] <= 0)
116 len = 0;
117 }
118
119 base = array->data;
120 dest = retarray->data;
121
122 while (base)
123 {
124 GFC_INTEGER_8 *src;
125 GFC_INTEGER_8 result;
126 src = base;
127 {
128
129 result = GFC_INTEGER_8_HUGE;
130 if (len <= 0)
131 *dest = GFC_INTEGER_8_HUGE;
132 else
133 {
134 for (n = 0; n < len; n++, src += delta)
135 {
136
137 if (*src < result)
138 result = *src;
139 }
140 *dest = result;
141 }
142 }
143 /* Advance to the next element. */
144 count[0]++;
145 base += sstride[0];
146 dest += dstride[0];
147 n = 0;
148 while (count[n] == extent[n])
149 {
150 /* When we get to the end of a dimension, reset it and increment
151 the next dimension. */
152 count[n] = 0;
153 /* We could precalculate these products, but this is a less
154 frequently used path so proabably not worth it. */
155 base -= sstride[n] * extent[n];
156 dest -= dstride[n] * extent[n];
157 n++;
158 if (n == rank)
159 {
160 /* Break out of the look. */
161 base = NULL;
162 break;
163 }
164 else
165 {
166 count[n]++;
167 base += sstride[n];
168 dest += dstride[n];
169 }
170 }
171 }
172 }
173
174
175 extern void mminval_i8 (gfc_array_i8 *, gfc_array_i8 *, index_type *,
176 gfc_array_l4 *);
177 export_proto(mminval_i8);
178
179 void
180 mminval_i8 (gfc_array_i8 * retarray, gfc_array_i8 * array,
181 index_type *pdim, gfc_array_l4 * mask)
182 {
183 index_type count[GFC_MAX_DIMENSIONS];
184 index_type extent[GFC_MAX_DIMENSIONS];
185 index_type sstride[GFC_MAX_DIMENSIONS];
186 index_type dstride[GFC_MAX_DIMENSIONS];
187 index_type mstride[GFC_MAX_DIMENSIONS];
188 GFC_INTEGER_8 *dest;
189 GFC_INTEGER_8 *base;
190 GFC_LOGICAL_4 *mbase;
191 int rank;
192 int dim;
193 index_type n;
194 index_type len;
195 index_type delta;
196 index_type mdelta;
197
198 dim = (*pdim) - 1;
199 rank = GFC_DESCRIPTOR_RANK (array) - 1;
200
201 /* TODO: It should be a front end job to correctly set the strides. */
202
203 if (array->dim[0].stride == 0)
204 array->dim[0].stride = 1;
205
206 if (mask->dim[0].stride == 0)
207 mask->dim[0].stride = 1;
208
209 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
210 if (len <= 0)
211 return;
212 delta = array->dim[dim].stride;
213 mdelta = mask->dim[dim].stride;
214
215 for (n = 0; n < dim; n++)
216 {
217 sstride[n] = array->dim[n].stride;
218 mstride[n] = mask->dim[n].stride;
219 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
220 }
221 for (n = dim; n < rank; n++)
222 {
223 sstride[n] = array->dim[n + 1].stride;
224 mstride[n] = mask->dim[n + 1].stride;
225 extent[n] =
226 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
227 }
228
229 if (retarray->data == NULL)
230 {
231 for (n = 0; n < rank; n++)
232 {
233 retarray->dim[n].lbound = 0;
234 retarray->dim[n].ubound = extent[n]-1;
235 if (n == 0)
236 retarray->dim[n].stride = 1;
237 else
238 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
239 }
240
241 retarray->data
242 = internal_malloc_size (sizeof (GFC_INTEGER_8)
243 * retarray->dim[rank-1].stride
244 * extent[rank-1]);
245 retarray->offset = 0;
246 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
247 }
248 else
249 {
250 if (retarray->dim[0].stride == 0)
251 retarray->dim[0].stride = 1;
252
253 if (rank != GFC_DESCRIPTOR_RANK (retarray))
254 runtime_error ("rank of return array incorrect");
255 }
256
257 for (n = 0; n < rank; n++)
258 {
259 count[n] = 0;
260 dstride[n] = retarray->dim[n].stride;
261 if (extent[n] <= 0)
262 return;
263 }
264
265 dest = retarray->data;
266 base = array->data;
267 mbase = mask->data;
268
269 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
270 {
271 /* This allows the same loop to be used for all logical types. */
272 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
273 for (n = 0; n < rank; n++)
274 mstride[n] <<= 1;
275 mdelta <<= 1;
276 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
277 }
278
279 while (base)
280 {
281 GFC_INTEGER_8 *src;
282 GFC_LOGICAL_4 *msrc;
283 GFC_INTEGER_8 result;
284 src = base;
285 msrc = mbase;
286 {
287
288 result = GFC_INTEGER_8_HUGE;
289 if (len <= 0)
290 *dest = GFC_INTEGER_8_HUGE;
291 else
292 {
293 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
294 {
295
296 if (*msrc && *src < result)
297 result = *src;
298 }
299 *dest = result;
300 }
301 }
302 /* Advance to the next element. */
303 count[0]++;
304 base += sstride[0];
305 mbase += mstride[0];
306 dest += dstride[0];
307 n = 0;
308 while (count[n] == extent[n])
309 {
310 /* When we get to the end of a dimension, reset it and increment
311 the next dimension. */
312 count[n] = 0;
313 /* We could precalculate these products, but this is a less
314 frequently used path so proabably not worth it. */
315 base -= sstride[n] * extent[n];
316 mbase -= mstride[n] * extent[n];
317 dest -= dstride[n] * extent[n];
318 n++;
319 if (n == rank)
320 {
321 /* Break out of the look. */
322 base = NULL;
323 break;
324 }
325 else
326 {
327 count[n]++;
328 base += sstride[n];
329 mbase += mstride[n];
330 dest += dstride[n];
331 }
332 }
333 }
334 }
335
336 #endif