]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/minval_r10.c
Licensing changes to GPLv3 resp. GPLv3 with GCC Runtime Exception.
[thirdparty/gcc.git] / libgfortran / generated / minval_r10.c
1 /* Implementation of the MINVAL intrinsic
2 Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
29
30
31 #if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_REAL_10)
32
33
34 extern void minval_r10 (gfc_array_r10 * const restrict,
35 gfc_array_r10 * const restrict, const index_type * const restrict);
36 export_proto(minval_r10);
37
38 void
39 minval_r10 (gfc_array_r10 * const restrict retarray,
40 gfc_array_r10 * const restrict array,
41 const index_type * const restrict pdim)
42 {
43 index_type count[GFC_MAX_DIMENSIONS];
44 index_type extent[GFC_MAX_DIMENSIONS];
45 index_type sstride[GFC_MAX_DIMENSIONS];
46 index_type dstride[GFC_MAX_DIMENSIONS];
47 const GFC_REAL_10 * restrict base;
48 GFC_REAL_10 * restrict dest;
49 index_type rank;
50 index_type n;
51 index_type len;
52 index_type delta;
53 index_type dim;
54 int continue_loop;
55
56 /* Make dim zero based to avoid confusion. */
57 dim = (*pdim) - 1;
58 rank = GFC_DESCRIPTOR_RANK (array) - 1;
59
60 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
61 if (len < 0)
62 len = 0;
63 delta = array->dim[dim].stride;
64
65 for (n = 0; n < dim; n++)
66 {
67 sstride[n] = array->dim[n].stride;
68 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
69
70 if (extent[n] < 0)
71 extent[n] = 0;
72 }
73 for (n = dim; n < rank; n++)
74 {
75 sstride[n] = array->dim[n + 1].stride;
76 extent[n] =
77 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
78
79 if (extent[n] < 0)
80 extent[n] = 0;
81 }
82
83 if (retarray->data == NULL)
84 {
85 size_t alloc_size;
86
87 for (n = 0; n < rank; n++)
88 {
89 retarray->dim[n].lbound = 0;
90 retarray->dim[n].ubound = extent[n]-1;
91 if (n == 0)
92 retarray->dim[n].stride = 1;
93 else
94 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
95 }
96
97 retarray->offset = 0;
98 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
99
100 alloc_size = sizeof (GFC_REAL_10) * retarray->dim[rank-1].stride
101 * extent[rank-1];
102
103 if (alloc_size == 0)
104 {
105 /* Make sure we have a zero-sized array. */
106 retarray->dim[0].lbound = 0;
107 retarray->dim[0].ubound = -1;
108 return;
109 }
110 else
111 retarray->data = internal_malloc_size (alloc_size);
112 }
113 else
114 {
115 if (rank != GFC_DESCRIPTOR_RANK (retarray))
116 runtime_error ("rank of return array incorrect in"
117 " MINVAL intrinsic: is %ld, should be %ld",
118 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
119 (long int) rank);
120
121 if (unlikely (compile_options.bounds_check))
122 {
123 for (n=0; n < rank; n++)
124 {
125 index_type ret_extent;
126
127 ret_extent = retarray->dim[n].ubound + 1
128 - retarray->dim[n].lbound;
129 if (extent[n] != ret_extent)
130 runtime_error ("Incorrect extent in return value of"
131 " MINVAL intrinsic in dimension %ld:"
132 " is %ld, should be %ld", (long int) n + 1,
133 (long int) ret_extent, (long int) extent[n]);
134 }
135 }
136 }
137
138 for (n = 0; n < rank; n++)
139 {
140 count[n] = 0;
141 dstride[n] = retarray->dim[n].stride;
142 if (extent[n] <= 0)
143 len = 0;
144 }
145
146 base = array->data;
147 dest = retarray->data;
148
149 continue_loop = 1;
150 while (continue_loop)
151 {
152 const GFC_REAL_10 * restrict src;
153 GFC_REAL_10 result;
154 src = base;
155 {
156
157 result = GFC_REAL_10_HUGE;
158 if (len <= 0)
159 *dest = GFC_REAL_10_HUGE;
160 else
161 {
162 for (n = 0; n < len; n++, src += delta)
163 {
164
165 if (*src < result)
166 result = *src;
167 }
168 *dest = result;
169 }
170 }
171 /* Advance to the next element. */
172 count[0]++;
173 base += sstride[0];
174 dest += dstride[0];
175 n = 0;
176 while (count[n] == extent[n])
177 {
178 /* When we get to the end of a dimension, reset it and increment
179 the next dimension. */
180 count[n] = 0;
181 /* We could precalculate these products, but this is a less
182 frequently used path so probably not worth it. */
183 base -= sstride[n] * extent[n];
184 dest -= dstride[n] * extent[n];
185 n++;
186 if (n == rank)
187 {
188 /* Break out of the look. */
189 continue_loop = 0;
190 break;
191 }
192 else
193 {
194 count[n]++;
195 base += sstride[n];
196 dest += dstride[n];
197 }
198 }
199 }
200 }
201
202
203 extern void mminval_r10 (gfc_array_r10 * const restrict,
204 gfc_array_r10 * const restrict, const index_type * const restrict,
205 gfc_array_l1 * const restrict);
206 export_proto(mminval_r10);
207
208 void
209 mminval_r10 (gfc_array_r10 * const restrict retarray,
210 gfc_array_r10 * const restrict array,
211 const index_type * const restrict pdim,
212 gfc_array_l1 * const restrict mask)
213 {
214 index_type count[GFC_MAX_DIMENSIONS];
215 index_type extent[GFC_MAX_DIMENSIONS];
216 index_type sstride[GFC_MAX_DIMENSIONS];
217 index_type dstride[GFC_MAX_DIMENSIONS];
218 index_type mstride[GFC_MAX_DIMENSIONS];
219 GFC_REAL_10 * restrict dest;
220 const GFC_REAL_10 * restrict base;
221 const GFC_LOGICAL_1 * restrict mbase;
222 int rank;
223 int dim;
224 index_type n;
225 index_type len;
226 index_type delta;
227 index_type mdelta;
228 int mask_kind;
229
230 dim = (*pdim) - 1;
231 rank = GFC_DESCRIPTOR_RANK (array) - 1;
232
233 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
234 if (len <= 0)
235 return;
236
237 mbase = mask->data;
238
239 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
240
241 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
242 #ifdef HAVE_GFC_LOGICAL_16
243 || mask_kind == 16
244 #endif
245 )
246 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
247 else
248 runtime_error ("Funny sized logical array");
249
250 delta = array->dim[dim].stride;
251 mdelta = mask->dim[dim].stride * mask_kind;
252
253 for (n = 0; n < dim; n++)
254 {
255 sstride[n] = array->dim[n].stride;
256 mstride[n] = mask->dim[n].stride * mask_kind;
257 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
258
259 if (extent[n] < 0)
260 extent[n] = 0;
261
262 }
263 for (n = dim; n < rank; n++)
264 {
265 sstride[n] = array->dim[n + 1].stride;
266 mstride[n] = mask->dim[n + 1].stride * mask_kind;
267 extent[n] =
268 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
269
270 if (extent[n] < 0)
271 extent[n] = 0;
272 }
273
274 if (retarray->data == NULL)
275 {
276 size_t alloc_size;
277
278 for (n = 0; n < rank; n++)
279 {
280 retarray->dim[n].lbound = 0;
281 retarray->dim[n].ubound = extent[n]-1;
282 if (n == 0)
283 retarray->dim[n].stride = 1;
284 else
285 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
286 }
287
288 alloc_size = sizeof (GFC_REAL_10) * retarray->dim[rank-1].stride
289 * extent[rank-1];
290
291 retarray->offset = 0;
292 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
293
294 if (alloc_size == 0)
295 {
296 /* Make sure we have a zero-sized array. */
297 retarray->dim[0].lbound = 0;
298 retarray->dim[0].ubound = -1;
299 return;
300 }
301 else
302 retarray->data = internal_malloc_size (alloc_size);
303
304 }
305 else
306 {
307 if (rank != GFC_DESCRIPTOR_RANK (retarray))
308 runtime_error ("rank of return array incorrect in MINVAL intrinsic");
309
310 if (unlikely (compile_options.bounds_check))
311 {
312 for (n=0; n < rank; n++)
313 {
314 index_type ret_extent;
315
316 ret_extent = retarray->dim[n].ubound + 1
317 - retarray->dim[n].lbound;
318 if (extent[n] != ret_extent)
319 runtime_error ("Incorrect extent in return value of"
320 " MINVAL intrinsic in dimension %ld:"
321 " is %ld, should be %ld", (long int) n + 1,
322 (long int) ret_extent, (long int) extent[n]);
323 }
324 for (n=0; n<= rank; n++)
325 {
326 index_type mask_extent, array_extent;
327
328 array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound;
329 mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound;
330 if (array_extent != mask_extent)
331 runtime_error ("Incorrect extent in MASK argument of"
332 " MINVAL intrinsic in dimension %ld:"
333 " is %ld, should be %ld", (long int) n + 1,
334 (long int) mask_extent, (long int) array_extent);
335 }
336 }
337 }
338
339 for (n = 0; n < rank; n++)
340 {
341 count[n] = 0;
342 dstride[n] = retarray->dim[n].stride;
343 if (extent[n] <= 0)
344 return;
345 }
346
347 dest = retarray->data;
348 base = array->data;
349
350 while (base)
351 {
352 const GFC_REAL_10 * restrict src;
353 const GFC_LOGICAL_1 * restrict msrc;
354 GFC_REAL_10 result;
355 src = base;
356 msrc = mbase;
357 {
358
359 result = GFC_REAL_10_HUGE;
360 if (len <= 0)
361 *dest = GFC_REAL_10_HUGE;
362 else
363 {
364 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
365 {
366
367 if (*msrc && *src < result)
368 result = *src;
369 }
370 *dest = result;
371 }
372 }
373 /* Advance to the next element. */
374 count[0]++;
375 base += sstride[0];
376 mbase += mstride[0];
377 dest += dstride[0];
378 n = 0;
379 while (count[n] == extent[n])
380 {
381 /* When we get to the end of a dimension, reset it and increment
382 the next dimension. */
383 count[n] = 0;
384 /* We could precalculate these products, but this is a less
385 frequently used path so probably not worth it. */
386 base -= sstride[n] * extent[n];
387 mbase -= mstride[n] * extent[n];
388 dest -= dstride[n] * extent[n];
389 n++;
390 if (n == rank)
391 {
392 /* Break out of the look. */
393 base = NULL;
394 break;
395 }
396 else
397 {
398 count[n]++;
399 base += sstride[n];
400 mbase += mstride[n];
401 dest += dstride[n];
402 }
403 }
404 }
405 }
406
407
408 extern void sminval_r10 (gfc_array_r10 * const restrict,
409 gfc_array_r10 * const restrict, const index_type * const restrict,
410 GFC_LOGICAL_4 *);
411 export_proto(sminval_r10);
412
413 void
414 sminval_r10 (gfc_array_r10 * const restrict retarray,
415 gfc_array_r10 * const restrict array,
416 const index_type * const restrict pdim,
417 GFC_LOGICAL_4 * mask)
418 {
419 index_type count[GFC_MAX_DIMENSIONS];
420 index_type extent[GFC_MAX_DIMENSIONS];
421 index_type sstride[GFC_MAX_DIMENSIONS];
422 index_type dstride[GFC_MAX_DIMENSIONS];
423 GFC_REAL_10 * restrict dest;
424 index_type rank;
425 index_type n;
426 index_type dim;
427
428
429 if (*mask)
430 {
431 minval_r10 (retarray, array, pdim);
432 return;
433 }
434 /* Make dim zero based to avoid confusion. */
435 dim = (*pdim) - 1;
436 rank = GFC_DESCRIPTOR_RANK (array) - 1;
437
438 for (n = 0; n < dim; n++)
439 {
440 sstride[n] = array->dim[n].stride;
441 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
442
443 if (extent[n] <= 0)
444 extent[n] = 0;
445 }
446
447 for (n = dim; n < rank; n++)
448 {
449 sstride[n] = array->dim[n + 1].stride;
450 extent[n] =
451 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
452
453 if (extent[n] <= 0)
454 extent[n] = 0;
455 }
456
457 if (retarray->data == NULL)
458 {
459 size_t alloc_size;
460
461 for (n = 0; n < rank; n++)
462 {
463 retarray->dim[n].lbound = 0;
464 retarray->dim[n].ubound = extent[n]-1;
465 if (n == 0)
466 retarray->dim[n].stride = 1;
467 else
468 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
469 }
470
471 retarray->offset = 0;
472 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
473
474 alloc_size = sizeof (GFC_REAL_10) * retarray->dim[rank-1].stride
475 * extent[rank-1];
476
477 if (alloc_size == 0)
478 {
479 /* Make sure we have a zero-sized array. */
480 retarray->dim[0].lbound = 0;
481 retarray->dim[0].ubound = -1;
482 return;
483 }
484 else
485 retarray->data = internal_malloc_size (alloc_size);
486 }
487 else
488 {
489 if (rank != GFC_DESCRIPTOR_RANK (retarray))
490 runtime_error ("rank of return array incorrect in"
491 " MINVAL intrinsic: is %ld, should be %ld",
492 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
493 (long int) rank);
494
495 if (unlikely (compile_options.bounds_check))
496 {
497 for (n=0; n < rank; n++)
498 {
499 index_type ret_extent;
500
501 ret_extent = retarray->dim[n].ubound + 1
502 - retarray->dim[n].lbound;
503 if (extent[n] != ret_extent)
504 runtime_error ("Incorrect extent in return value of"
505 " MINVAL intrinsic in dimension %ld:"
506 " is %ld, should be %ld", (long int) n + 1,
507 (long int) ret_extent, (long int) extent[n]);
508 }
509 }
510 }
511
512 for (n = 0; n < rank; n++)
513 {
514 count[n] = 0;
515 dstride[n] = retarray->dim[n].stride;
516 }
517
518 dest = retarray->data;
519
520 while(1)
521 {
522 *dest = GFC_REAL_10_HUGE;
523 count[0]++;
524 dest += dstride[0];
525 n = 0;
526 while (count[n] == extent[n])
527 {
528 /* When we get to the end of a dimension, reset it and increment
529 the next dimension. */
530 count[n] = 0;
531 /* We could precalculate these products, but this is a less
532 frequently used path so probably not worth it. */
533 dest -= dstride[n] * extent[n];
534 n++;
535 if (n == rank)
536 return;
537 else
538 {
539 count[n]++;
540 dest += dstride[n];
541 }
542 }
543 }
544 }
545
546 #endif