]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/pack_c10.c
abort.c: Remove unused headers.
[thirdparty/gcc.git] / libgfortran / generated / pack_c10.c
1 /* Specific implementation of the PACK intrinsic
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Ligbfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <string.h>
29
30
31 #if defined (HAVE_GFC_COMPLEX_10)
32
33 /* PACK is specified as follows:
34
35 13.14.80 PACK (ARRAY, MASK, [VECTOR])
36
37 Description: Pack an array into an array of rank one under the
38 control of a mask.
39
40 Class: Transformational function.
41
42 Arguments:
43 ARRAY may be of any type. It shall not be scalar.
44 MASK shall be of type LOGICAL. It shall be conformable with ARRAY.
45 VECTOR (optional) shall be of the same type and type parameters
46 as ARRAY. VECTOR shall have at least as many elements as
47 there are true elements in MASK. If MASK is a scalar
48 with the value true, VECTOR shall have at least as many
49 elements as there are in ARRAY.
50
51 Result Characteristics: The result is an array of rank one with the
52 same type and type parameters as ARRAY. If VECTOR is present, the
53 result size is that of VECTOR; otherwise, the result size is the
54 number /t/ of true elements in MASK unless MASK is scalar with the
55 value true, in which case the result size is the size of ARRAY.
56
57 Result Value: Element /i/ of the result is the element of ARRAY
58 that corresponds to the /i/th true element of MASK, taking elements
59 in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
60 present and has size /n/ > /t/, element /i/ of the result has the
61 value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.
62
63 Examples: The nonzero elements of an array M with the value
64 | 0 0 0 |
65 | 9 0 0 | may be "gathered" by the function PACK. The result of
66 | 0 0 7 |
67 PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
68 VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].
69
70 There are two variants of the PACK intrinsic: one, where MASK is
71 array valued, and the other one where MASK is scalar. */
72
73 void
74 pack_c10 (gfc_array_c10 *ret, const gfc_array_c10 *array,
75 const gfc_array_l1 *mask, const gfc_array_c10 *vector)
76 {
77 /* r.* indicates the return array. */
78 index_type rstride0;
79 GFC_COMPLEX_10 * restrict rptr;
80 /* s.* indicates the source array. */
81 index_type sstride[GFC_MAX_DIMENSIONS];
82 index_type sstride0;
83 const GFC_COMPLEX_10 *sptr;
84 /* m.* indicates the mask array. */
85 index_type mstride[GFC_MAX_DIMENSIONS];
86 index_type mstride0;
87 const GFC_LOGICAL_1 *mptr;
88
89 index_type count[GFC_MAX_DIMENSIONS];
90 index_type extent[GFC_MAX_DIMENSIONS];
91 int zero_sized;
92 index_type n;
93 index_type dim;
94 index_type nelem;
95 index_type total;
96 int mask_kind;
97
98 dim = GFC_DESCRIPTOR_RANK (array);
99
100 mptr = mask->base_addr;
101
102 /* Use the same loop for all logical types, by using GFC_LOGICAL_1
103 and using shifting to address size and endian issues. */
104
105 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
106
107 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
108 #ifdef HAVE_GFC_LOGICAL_16
109 || mask_kind == 16
110 #endif
111 )
112 {
113 /* Do not convert a NULL pointer as we use test for NULL below. */
114 if (mptr)
115 mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
116 }
117 else
118 runtime_error ("Funny sized logical array");
119
120 zero_sized = 0;
121 for (n = 0; n < dim; n++)
122 {
123 count[n] = 0;
124 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
125 if (extent[n] <= 0)
126 zero_sized = 1;
127 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
128 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
129 }
130 if (sstride[0] == 0)
131 sstride[0] = 1;
132 if (mstride[0] == 0)
133 mstride[0] = mask_kind;
134
135 if (zero_sized)
136 sptr = NULL;
137 else
138 sptr = array->base_addr;
139
140 if (ret->base_addr == NULL || unlikely (compile_options.bounds_check))
141 {
142 /* Count the elements, either for allocating memory or
143 for bounds checking. */
144
145 if (vector != NULL)
146 {
147 /* The return array will have as many
148 elements as there are in VECTOR. */
149 total = GFC_DESCRIPTOR_EXTENT(vector,0);
150 if (total < 0)
151 {
152 total = 0;
153 vector = NULL;
154 }
155 }
156 else
157 {
158 /* We have to count the true elements in MASK. */
159 total = count_0 (mask);
160 }
161
162 if (ret->base_addr == NULL)
163 {
164 /* Setup the array descriptor. */
165 GFC_DIMENSION_SET(ret->dim[0], 0, total-1, 1);
166
167 ret->offset = 0;
168
169 /* xmallocarray allocates a single byte for zero size. */
170 ret->base_addr = xmallocarray (total, sizeof (GFC_COMPLEX_10));
171
172 if (total == 0)
173 return;
174 }
175 else
176 {
177 /* We come here because of range checking. */
178 index_type ret_extent;
179
180 ret_extent = GFC_DESCRIPTOR_EXTENT(ret,0);
181 if (total != ret_extent)
182 runtime_error ("Incorrect extent in return value of PACK intrinsic;"
183 " is %ld, should be %ld", (long int) total,
184 (long int) ret_extent);
185 }
186 }
187
188 rstride0 = GFC_DESCRIPTOR_STRIDE(ret,0);
189 if (rstride0 == 0)
190 rstride0 = 1;
191 sstride0 = sstride[0];
192 mstride0 = mstride[0];
193 rptr = ret->base_addr;
194
195 while (sptr && mptr)
196 {
197 /* Test this element. */
198 if (*mptr)
199 {
200 /* Add it. */
201 *rptr = *sptr;
202 rptr += rstride0;
203 }
204 /* Advance to the next element. */
205 sptr += sstride0;
206 mptr += mstride0;
207 count[0]++;
208 n = 0;
209 while (count[n] == extent[n])
210 {
211 /* When we get to the end of a dimension, reset it and increment
212 the next dimension. */
213 count[n] = 0;
214 /* We could precalculate these products, but this is a less
215 frequently used path so probably not worth it. */
216 sptr -= sstride[n] * extent[n];
217 mptr -= mstride[n] * extent[n];
218 n++;
219 if (n >= dim)
220 {
221 /* Break out of the loop. */
222 sptr = NULL;
223 break;
224 }
225 else
226 {
227 count[n]++;
228 sptr += sstride[n];
229 mptr += mstride[n];
230 }
231 }
232 }
233
234 /* Add any remaining elements from VECTOR. */
235 if (vector)
236 {
237 n = GFC_DESCRIPTOR_EXTENT(vector,0);
238 nelem = ((rptr - ret->base_addr) / rstride0);
239 if (n > nelem)
240 {
241 sstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
242 if (sstride0 == 0)
243 sstride0 = 1;
244
245 sptr = vector->base_addr + sstride0 * nelem;
246 n -= nelem;
247 while (n--)
248 {
249 *rptr = *sptr;
250 rptr += rstride0;
251 sptr += sstride0;
252 }
253 }
254 }
255 }
256
257 #endif
258