]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/product_i2.c
Update copyright years.
[thirdparty/gcc.git] / libgfortran / generated / product_i2.c
1 /* Implementation of the PRODUCT intrinsic
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27
28
29 #if defined (HAVE_GFC_INTEGER_2) && defined (HAVE_GFC_INTEGER_2)
30
31
32 extern void product_i2 (gfc_array_i2 * const restrict,
33 gfc_array_i2 * const restrict, const index_type * const restrict);
34 export_proto(product_i2);
35
36 void
37 product_i2 (gfc_array_i2 * const restrict retarray,
38 gfc_array_i2 * const restrict array,
39 const index_type * const restrict pdim)
40 {
41 index_type count[GFC_MAX_DIMENSIONS];
42 index_type extent[GFC_MAX_DIMENSIONS];
43 index_type sstride[GFC_MAX_DIMENSIONS];
44 index_type dstride[GFC_MAX_DIMENSIONS];
45 const GFC_INTEGER_2 * restrict base;
46 GFC_INTEGER_2 * restrict dest;
47 index_type rank;
48 index_type n;
49 index_type len;
50 index_type delta;
51 index_type dim;
52 int continue_loop;
53
54 /* Make dim zero based to avoid confusion. */
55 rank = GFC_DESCRIPTOR_RANK (array) - 1;
56 dim = (*pdim) - 1;
57
58 if (unlikely (dim < 0 || dim > rank))
59 {
60 runtime_error ("Dim argument incorrect in PRODUCT intrinsic: "
61 "is %ld, should be between 1 and %ld",
62 (long int) dim + 1, (long int) rank + 1);
63 }
64
65 len = GFC_DESCRIPTOR_EXTENT(array,dim);
66 if (len < 0)
67 len = 0;
68 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
69
70 for (n = 0; n < dim; n++)
71 {
72 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
73 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
74
75 if (extent[n] < 0)
76 extent[n] = 0;
77 }
78 for (n = dim; n < rank; n++)
79 {
80 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
81 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
82
83 if (extent[n] < 0)
84 extent[n] = 0;
85 }
86
87 if (retarray->base_addr == NULL)
88 {
89 size_t alloc_size, str;
90
91 for (n = 0; n < rank; n++)
92 {
93 if (n == 0)
94 str = 1;
95 else
96 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
97
98 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
99
100 }
101
102 retarray->offset = 0;
103 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
104
105 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
106
107 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_2));
108 if (alloc_size == 0)
109 {
110 /* Make sure we have a zero-sized array. */
111 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
112 return;
113
114 }
115 }
116 else
117 {
118 if (rank != GFC_DESCRIPTOR_RANK (retarray))
119 runtime_error ("rank of return array incorrect in"
120 " PRODUCT intrinsic: is %ld, should be %ld",
121 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
122 (long int) rank);
123
124 if (unlikely (compile_options.bounds_check))
125 bounds_ifunction_return ((array_t *) retarray, extent,
126 "return value", "PRODUCT");
127 }
128
129 for (n = 0; n < rank; n++)
130 {
131 count[n] = 0;
132 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
133 if (extent[n] <= 0)
134 return;
135 }
136
137 base = array->base_addr;
138 dest = retarray->base_addr;
139
140 continue_loop = 1;
141 while (continue_loop)
142 {
143 const GFC_INTEGER_2 * restrict src;
144 GFC_INTEGER_2 result;
145 src = base;
146 {
147
148 result = 1;
149 if (len <= 0)
150 *dest = 1;
151 else
152 {
153 for (n = 0; n < len; n++, src += delta)
154 {
155
156 result *= *src;
157 }
158
159 *dest = result;
160 }
161 }
162 /* Advance to the next element. */
163 count[0]++;
164 base += sstride[0];
165 dest += dstride[0];
166 n = 0;
167 while (count[n] == extent[n])
168 {
169 /* When we get to the end of a dimension, reset it and increment
170 the next dimension. */
171 count[n] = 0;
172 /* We could precalculate these products, but this is a less
173 frequently used path so probably not worth it. */
174 base -= sstride[n] * extent[n];
175 dest -= dstride[n] * extent[n];
176 n++;
177 if (n >= rank)
178 {
179 /* Break out of the loop. */
180 continue_loop = 0;
181 break;
182 }
183 else
184 {
185 count[n]++;
186 base += sstride[n];
187 dest += dstride[n];
188 }
189 }
190 }
191 }
192
193
194 extern void mproduct_i2 (gfc_array_i2 * const restrict,
195 gfc_array_i2 * const restrict, const index_type * const restrict,
196 gfc_array_l1 * const restrict);
197 export_proto(mproduct_i2);
198
199 void
200 mproduct_i2 (gfc_array_i2 * const restrict retarray,
201 gfc_array_i2 * const restrict array,
202 const index_type * const restrict pdim,
203 gfc_array_l1 * const restrict mask)
204 {
205 index_type count[GFC_MAX_DIMENSIONS];
206 index_type extent[GFC_MAX_DIMENSIONS];
207 index_type sstride[GFC_MAX_DIMENSIONS];
208 index_type dstride[GFC_MAX_DIMENSIONS];
209 index_type mstride[GFC_MAX_DIMENSIONS];
210 GFC_INTEGER_2 * restrict dest;
211 const GFC_INTEGER_2 * restrict base;
212 const GFC_LOGICAL_1 * restrict mbase;
213 index_type rank;
214 index_type dim;
215 index_type n;
216 index_type len;
217 index_type delta;
218 index_type mdelta;
219 int mask_kind;
220
221 dim = (*pdim) - 1;
222 rank = GFC_DESCRIPTOR_RANK (array) - 1;
223
224
225 if (unlikely (dim < 0 || dim > rank))
226 {
227 runtime_error ("Dim argument incorrect in PRODUCT intrinsic: "
228 "is %ld, should be between 1 and %ld",
229 (long int) dim + 1, (long int) rank + 1);
230 }
231
232 len = GFC_DESCRIPTOR_EXTENT(array,dim);
233 if (len <= 0)
234 return;
235
236 mbase = mask->base_addr;
237
238 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
239
240 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
241 #ifdef HAVE_GFC_LOGICAL_16
242 || mask_kind == 16
243 #endif
244 )
245 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
246 else
247 runtime_error ("Funny sized logical array");
248
249 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
250 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
251
252 for (n = 0; n < dim; n++)
253 {
254 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
255 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
256 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
257
258 if (extent[n] < 0)
259 extent[n] = 0;
260
261 }
262 for (n = dim; n < rank; n++)
263 {
264 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
265 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
266 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
267
268 if (extent[n] < 0)
269 extent[n] = 0;
270 }
271
272 if (retarray->base_addr == NULL)
273 {
274 size_t alloc_size, str;
275
276 for (n = 0; n < rank; n++)
277 {
278 if (n == 0)
279 str = 1;
280 else
281 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
282
283 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
284
285 }
286
287 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
288
289 retarray->offset = 0;
290 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
291
292 if (alloc_size == 0)
293 {
294 /* Make sure we have a zero-sized array. */
295 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
296 return;
297 }
298 else
299 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_2));
300
301 }
302 else
303 {
304 if (rank != GFC_DESCRIPTOR_RANK (retarray))
305 runtime_error ("rank of return array incorrect in PRODUCT intrinsic");
306
307 if (unlikely (compile_options.bounds_check))
308 {
309 bounds_ifunction_return ((array_t *) retarray, extent,
310 "return value", "PRODUCT");
311 bounds_equal_extents ((array_t *) mask, (array_t *) array,
312 "MASK argument", "PRODUCT");
313 }
314 }
315
316 for (n = 0; n < rank; n++)
317 {
318 count[n] = 0;
319 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
320 if (extent[n] <= 0)
321 return;
322 }
323
324 dest = retarray->base_addr;
325 base = array->base_addr;
326
327 while (base)
328 {
329 const GFC_INTEGER_2 * restrict src;
330 const GFC_LOGICAL_1 * restrict msrc;
331 GFC_INTEGER_2 result;
332 src = base;
333 msrc = mbase;
334 {
335
336 result = 1;
337 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
338 {
339
340 if (*msrc)
341 result *= *src;
342 }
343 *dest = result;
344 }
345 /* Advance to the next element. */
346 count[0]++;
347 base += sstride[0];
348 mbase += mstride[0];
349 dest += dstride[0];
350 n = 0;
351 while (count[n] == extent[n])
352 {
353 /* When we get to the end of a dimension, reset it and increment
354 the next dimension. */
355 count[n] = 0;
356 /* We could precalculate these products, but this is a less
357 frequently used path so probably not worth it. */
358 base -= sstride[n] * extent[n];
359 mbase -= mstride[n] * extent[n];
360 dest -= dstride[n] * extent[n];
361 n++;
362 if (n >= rank)
363 {
364 /* Break out of the loop. */
365 base = NULL;
366 break;
367 }
368 else
369 {
370 count[n]++;
371 base += sstride[n];
372 mbase += mstride[n];
373 dest += dstride[n];
374 }
375 }
376 }
377 }
378
379
380 extern void sproduct_i2 (gfc_array_i2 * const restrict,
381 gfc_array_i2 * const restrict, const index_type * const restrict,
382 GFC_LOGICAL_4 *);
383 export_proto(sproduct_i2);
384
385 void
386 sproduct_i2 (gfc_array_i2 * const restrict retarray,
387 gfc_array_i2 * const restrict array,
388 const index_type * const restrict pdim,
389 GFC_LOGICAL_4 * mask)
390 {
391 index_type count[GFC_MAX_DIMENSIONS];
392 index_type extent[GFC_MAX_DIMENSIONS];
393 index_type dstride[GFC_MAX_DIMENSIONS];
394 GFC_INTEGER_2 * restrict dest;
395 index_type rank;
396 index_type n;
397 index_type dim;
398
399
400 if (*mask)
401 {
402 product_i2 (retarray, array, pdim);
403 return;
404 }
405 /* Make dim zero based to avoid confusion. */
406 dim = (*pdim) - 1;
407 rank = GFC_DESCRIPTOR_RANK (array) - 1;
408
409 if (unlikely (dim < 0 || dim > rank))
410 {
411 runtime_error ("Dim argument incorrect in PRODUCT intrinsic: "
412 "is %ld, should be between 1 and %ld",
413 (long int) dim + 1, (long int) rank + 1);
414 }
415
416 for (n = 0; n < dim; n++)
417 {
418 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
419
420 if (extent[n] <= 0)
421 extent[n] = 0;
422 }
423
424 for (n = dim; n < rank; n++)
425 {
426 extent[n] =
427 GFC_DESCRIPTOR_EXTENT(array,n + 1);
428
429 if (extent[n] <= 0)
430 extent[n] = 0;
431 }
432
433 if (retarray->base_addr == NULL)
434 {
435 size_t alloc_size, str;
436
437 for (n = 0; n < rank; n++)
438 {
439 if (n == 0)
440 str = 1;
441 else
442 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
443
444 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
445
446 }
447
448 retarray->offset = 0;
449 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
450
451 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
452
453 if (alloc_size == 0)
454 {
455 /* Make sure we have a zero-sized array. */
456 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
457 return;
458 }
459 else
460 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_2));
461 }
462 else
463 {
464 if (rank != GFC_DESCRIPTOR_RANK (retarray))
465 runtime_error ("rank of return array incorrect in"
466 " PRODUCT intrinsic: is %ld, should be %ld",
467 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
468 (long int) rank);
469
470 if (unlikely (compile_options.bounds_check))
471 {
472 for (n=0; n < rank; n++)
473 {
474 index_type ret_extent;
475
476 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
477 if (extent[n] != ret_extent)
478 runtime_error ("Incorrect extent in return value of"
479 " PRODUCT intrinsic in dimension %ld:"
480 " is %ld, should be %ld", (long int) n + 1,
481 (long int) ret_extent, (long int) extent[n]);
482 }
483 }
484 }
485
486 for (n = 0; n < rank; n++)
487 {
488 count[n] = 0;
489 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
490 }
491
492 dest = retarray->base_addr;
493
494 while(1)
495 {
496 *dest = 1;
497 count[0]++;
498 dest += dstride[0];
499 n = 0;
500 while (count[n] == extent[n])
501 {
502 /* When we get to the end of a dimension, reset it and increment
503 the next dimension. */
504 count[n] = 0;
505 /* We could precalculate these products, but this is a less
506 frequently used path so probably not worth it. */
507 dest -= dstride[n] * extent[n];
508 n++;
509 if (n >= rank)
510 return;
511 else
512 {
513 count[n]++;
514 dest += dstride[n];
515 }
516 }
517 }
518 }
519
520 #endif