]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/product_i2.c
re PR libfortran/34670 (bounds checking for array intrinsics)
[thirdparty/gcc.git] / libgfortran / generated / product_i2.c
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
34
35
36 #if defined (HAVE_GFC_INTEGER_2) && defined (HAVE_GFC_INTEGER_2)
37
38
39 extern void product_i2 (gfc_array_i2 * const restrict,
40 gfc_array_i2 * const restrict, const index_type * const restrict);
41 export_proto(product_i2);
42
43 void
44 product_i2 (gfc_array_i2 * const restrict retarray,
45 gfc_array_i2 * const restrict array,
46 const index_type * const restrict pdim)
47 {
48 index_type count[GFC_MAX_DIMENSIONS];
49 index_type extent[GFC_MAX_DIMENSIONS];
50 index_type sstride[GFC_MAX_DIMENSIONS];
51 index_type dstride[GFC_MAX_DIMENSIONS];
52 const GFC_INTEGER_2 * restrict base;
53 GFC_INTEGER_2 * restrict dest;
54 index_type rank;
55 index_type n;
56 index_type len;
57 index_type delta;
58 index_type dim;
59
60 /* Make dim zero based to avoid confusion. */
61 dim = (*pdim) - 1;
62 rank = GFC_DESCRIPTOR_RANK (array) - 1;
63
64 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
65 delta = array->dim[dim].stride;
66
67 for (n = 0; n < dim; n++)
68 {
69 sstride[n] = array->dim[n].stride;
70 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
71
72 if (extent[n] < 0)
73 extent[n] = 0;
74 }
75 for (n = dim; n < rank; n++)
76 {
77 sstride[n] = array->dim[n + 1].stride;
78 extent[n] =
79 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
80
81 if (extent[n] < 0)
82 extent[n] = 0;
83 }
84
85 if (retarray->data == NULL)
86 {
87 size_t alloc_size;
88
89 for (n = 0; n < rank; n++)
90 {
91 retarray->dim[n].lbound = 0;
92 retarray->dim[n].ubound = extent[n]-1;
93 if (n == 0)
94 retarray->dim[n].stride = 1;
95 else
96 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
97 }
98
99 retarray->offset = 0;
100 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
101
102 alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
103 * extent[rank-1];
104
105 if (alloc_size == 0)
106 {
107 /* Make sure we have a zero-sized array. */
108 retarray->dim[0].lbound = 0;
109 retarray->dim[0].ubound = -1;
110 return;
111 }
112 else
113 retarray->data = internal_malloc_size (alloc_size);
114 }
115 else
116 {
117 if (rank != GFC_DESCRIPTOR_RANK (retarray))
118 runtime_error ("rank of return array incorrect in"
119 " PRODUCT intrinsic: is %d, should be %d",
120 GFC_DESCRIPTOR_RANK (retarray), rank);
121
122 if (compile_options.bounds_check)
123 {
124 for (n=0; n < rank; n++)
125 {
126 index_type ret_extent;
127
128 ret_extent = retarray->dim[n].ubound + 1
129 - retarray->dim[n].lbound;
130 if (extent[n] != ret_extent)
131 runtime_error ("Incorrect extent in return value of"
132 " PRODUCT intrinsic in dimension %d:"
133 " is %ld, should be %ld", n + 1,
134 (long int) ret_extent, (long int) extent[n]);
135 }
136 }
137 }
138
139 for (n = 0; n < rank; n++)
140 {
141 count[n] = 0;
142 dstride[n] = retarray->dim[n].stride;
143 if (extent[n] <= 0)
144 len = 0;
145 }
146
147 base = array->data;
148 dest = retarray->data;
149
150 while (base)
151 {
152 const GFC_INTEGER_2 * restrict src;
153 GFC_INTEGER_2 result;
154 src = base;
155 {
156
157 result = 1;
158 if (len <= 0)
159 *dest = 1;
160 else
161 {
162 for (n = 0; n < len; n++, src += delta)
163 {
164
165 result *= *src;
166 }
167 *dest = result;
168 }
169 }
170 /* Advance to the next element. */
171 count[0]++;
172 base += sstride[0];
173 dest += dstride[0];
174 n = 0;
175 while (count[n] == extent[n])
176 {
177 /* When we get to the end of a dimension, reset it and increment
178 the next dimension. */
179 count[n] = 0;
180 /* We could precalculate these products, but this is a less
181 frequently used path so probably not worth it. */
182 base -= sstride[n] * extent[n];
183 dest -= dstride[n] * extent[n];
184 n++;
185 if (n == rank)
186 {
187 /* Break out of the look. */
188 base = NULL;
189 break;
190 }
191 else
192 {
193 count[n]++;
194 base += sstride[n];
195 dest += dstride[n];
196 }
197 }
198 }
199 }
200
201
202 extern void mproduct_i2 (gfc_array_i2 * const restrict,
203 gfc_array_i2 * const restrict, const index_type * const restrict,
204 gfc_array_l1 * const restrict);
205 export_proto(mproduct_i2);
206
207 void
208 mproduct_i2 (gfc_array_i2 * const restrict retarray,
209 gfc_array_i2 * const restrict array,
210 const index_type * const restrict pdim,
211 gfc_array_l1 * const restrict mask)
212 {
213 index_type count[GFC_MAX_DIMENSIONS];
214 index_type extent[GFC_MAX_DIMENSIONS];
215 index_type sstride[GFC_MAX_DIMENSIONS];
216 index_type dstride[GFC_MAX_DIMENSIONS];
217 index_type mstride[GFC_MAX_DIMENSIONS];
218 GFC_INTEGER_2 * restrict dest;
219 const GFC_INTEGER_2 * restrict base;
220 const GFC_LOGICAL_1 * restrict mbase;
221 int rank;
222 int dim;
223 index_type n;
224 index_type len;
225 index_type delta;
226 index_type mdelta;
227 int mask_kind;
228
229 dim = (*pdim) - 1;
230 rank = GFC_DESCRIPTOR_RANK (array) - 1;
231
232 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
233 if (len <= 0)
234 return;
235
236 mbase = mask->data;
237
238 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
239
240 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
241 #ifdef HAVE_GFC_LOGICAL_16
242 || mask_kind == 16
243 #endif
244 )
245 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
246 else
247 runtime_error ("Funny sized logical array");
248
249 delta = array->dim[dim].stride;
250 mdelta = mask->dim[dim].stride * mask_kind;
251
252 for (n = 0; n < dim; n++)
253 {
254 sstride[n] = array->dim[n].stride;
255 mstride[n] = mask->dim[n].stride * mask_kind;
256 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
257
258 if (extent[n] < 0)
259 extent[n] = 0;
260
261 }
262 for (n = dim; n < rank; n++)
263 {
264 sstride[n] = array->dim[n + 1].stride;
265 mstride[n] = mask->dim[n + 1].stride * mask_kind;
266 extent[n] =
267 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
268
269 if (extent[n] < 0)
270 extent[n] = 0;
271 }
272
273 if (retarray->data == NULL)
274 {
275 size_t alloc_size;
276
277 for (n = 0; n < rank; n++)
278 {
279 retarray->dim[n].lbound = 0;
280 retarray->dim[n].ubound = extent[n]-1;
281 if (n == 0)
282 retarray->dim[n].stride = 1;
283 else
284 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
285 }
286
287 alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
288 * extent[rank-1];
289
290 retarray->offset = 0;
291 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
292
293 if (alloc_size == 0)
294 {
295 /* Make sure we have a zero-sized array. */
296 retarray->dim[0].lbound = 0;
297 retarray->dim[0].ubound = -1;
298 return;
299 }
300 else
301 retarray->data = internal_malloc_size (alloc_size);
302
303 }
304 else
305 {
306 if (rank != GFC_DESCRIPTOR_RANK (retarray))
307 runtime_error ("rank of return array incorrect in PRODUCT intrinsic");
308
309 if (compile_options.bounds_check)
310 {
311 for (n=0; n < rank; n++)
312 {
313 index_type ret_extent;
314
315 ret_extent = retarray->dim[n].ubound + 1
316 - retarray->dim[n].lbound;
317 if (extent[n] != ret_extent)
318 runtime_error ("Incorrect extent in return value of"
319 " PRODUCT intrinsic in dimension %d:"
320 " is %ld, should be %ld", n + 1,
321 (long int) ret_extent, (long int) extent[n]);
322 }
323 for (n=0; n<= rank; n++)
324 {
325 index_type mask_extent, array_extent;
326
327 array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound;
328 mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound;
329 if (array_extent != mask_extent)
330 runtime_error ("Incorrect extent in MASK argument of"
331 " PRODUCT intrinsic in dimension %d:"
332 " is %ld, should be %ld", n + 1,
333 (long int) mask_extent, (long int) array_extent);
334 }
335 }
336 }
337
338 for (n = 0; n < rank; n++)
339 {
340 count[n] = 0;
341 dstride[n] = retarray->dim[n].stride;
342 if (extent[n] <= 0)
343 return;
344 }
345
346 dest = retarray->data;
347 base = array->data;
348
349 while (base)
350 {
351 const GFC_INTEGER_2 * restrict src;
352 const GFC_LOGICAL_1 * restrict msrc;
353 GFC_INTEGER_2 result;
354 src = base;
355 msrc = mbase;
356 {
357
358 result = 1;
359 if (len <= 0)
360 *dest = 1;
361 else
362 {
363 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
364 {
365
366 if (*msrc)
367 result *= *src;
368 }
369 *dest = result;
370 }
371 }
372 /* Advance to the next element. */
373 count[0]++;
374 base += sstride[0];
375 mbase += mstride[0];
376 dest += dstride[0];
377 n = 0;
378 while (count[n] == extent[n])
379 {
380 /* When we get to the end of a dimension, reset it and increment
381 the next dimension. */
382 count[n] = 0;
383 /* We could precalculate these products, but this is a less
384 frequently used path so probably not worth it. */
385 base -= sstride[n] * extent[n];
386 mbase -= mstride[n] * extent[n];
387 dest -= dstride[n] * extent[n];
388 n++;
389 if (n == rank)
390 {
391 /* Break out of the look. */
392 base = NULL;
393 break;
394 }
395 else
396 {
397 count[n]++;
398 base += sstride[n];
399 mbase += mstride[n];
400 dest += dstride[n];
401 }
402 }
403 }
404 }
405
406
407 extern void sproduct_i2 (gfc_array_i2 * const restrict,
408 gfc_array_i2 * const restrict, const index_type * const restrict,
409 GFC_LOGICAL_4 *);
410 export_proto(sproduct_i2);
411
412 void
413 sproduct_i2 (gfc_array_i2 * const restrict retarray,
414 gfc_array_i2 * const restrict array,
415 const index_type * const restrict pdim,
416 GFC_LOGICAL_4 * mask)
417 {
418 index_type rank;
419 index_type n;
420 index_type dstride;
421 GFC_INTEGER_2 *dest;
422
423 if (*mask)
424 {
425 product_i2 (retarray, array, pdim);
426 return;
427 }
428 rank = GFC_DESCRIPTOR_RANK (array);
429 if (rank <= 0)
430 runtime_error ("Rank of array needs to be > 0");
431
432 if (retarray->data == NULL)
433 {
434 retarray->dim[0].lbound = 0;
435 retarray->dim[0].ubound = rank-1;
436 retarray->dim[0].stride = 1;
437 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
438 retarray->offset = 0;
439 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_2) * rank);
440 }
441 else
442 {
443 if (compile_options.bounds_check)
444 {
445 int ret_rank;
446 index_type ret_extent;
447
448 ret_rank = GFC_DESCRIPTOR_RANK (retarray);
449 if (ret_rank != 1)
450 runtime_error ("rank of return array in PRODUCT intrinsic"
451 " should be 1, is %d", ret_rank);
452
453 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
454 if (ret_extent != rank)
455 runtime_error ("dimension of return array incorrect");
456 }
457 }
458 dstride = retarray->dim[0].stride;
459 dest = retarray->data;
460
461 for (n = 0; n < rank; n++)
462 dest[n * dstride] = 1 ;
463 }
464
465 #endif