]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/product_r4.c
iresolve.c (gfc_resolve_all, [...]): Use PREFIX.
[thirdparty/gcc.git] / libgfortran / generated / product_r4.c
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include "libgfortran.h"
26
27
28 extern void product_r4 (gfc_array_r4 *, gfc_array_r4 *, index_type *);
29 export_proto(product_r4);
30
31 void
32 product_r4 (gfc_array_r4 *retarray, gfc_array_r4 *array, index_type *pdim)
33 {
34 index_type count[GFC_MAX_DIMENSIONS - 1];
35 index_type extent[GFC_MAX_DIMENSIONS - 1];
36 index_type sstride[GFC_MAX_DIMENSIONS - 1];
37 index_type dstride[GFC_MAX_DIMENSIONS - 1];
38 GFC_REAL_4 *base;
39 GFC_REAL_4 *dest;
40 index_type rank;
41 index_type n;
42 index_type len;
43 index_type delta;
44 index_type dim;
45
46 /* Make dim zero based to avoid confusion. */
47 dim = (*pdim) - 1;
48 rank = GFC_DESCRIPTOR_RANK (array) - 1;
49 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
50 if (array->dim[0].stride == 0)
51 array->dim[0].stride = 1;
52 if (retarray->dim[0].stride == 0)
53 retarray->dim[0].stride = 1;
54
55 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
56 delta = array->dim[dim].stride;
57
58 for (n = 0; n < dim; n++)
59 {
60 sstride[n] = array->dim[n].stride;
61 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
62 }
63 for (n = dim; n < rank; n++)
64 {
65 sstride[n] = array->dim[n + 1].stride;
66 extent[n] =
67 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
68 }
69
70 if (retarray->data == NULL)
71 {
72 for (n = 0; n < rank; n++)
73 {
74 retarray->dim[n].lbound = 0;
75 retarray->dim[n].ubound = extent[n]-1;
76 if (n == 0)
77 retarray->dim[n].stride = 1;
78 else
79 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
80 }
81
82 retarray->data
83 = internal_malloc_size (sizeof (GFC_REAL_4)
84 * retarray->dim[rank-1].stride
85 * extent[rank-1]);
86 retarray->base = 0;
87 }
88
89 for (n = 0; n < rank; n++)
90 {
91 count[n] = 0;
92 dstride[n] = retarray->dim[n].stride;
93 if (extent[n] <= 0)
94 len = 0;
95 }
96
97 base = array->data;
98 dest = retarray->data;
99
100 while (base)
101 {
102 GFC_REAL_4 *src;
103 GFC_REAL_4 result;
104 src = base;
105 {
106
107 result = 1;
108 if (len <= 0)
109 *dest = 1;
110 else
111 {
112 for (n = 0; n < len; n++, src += delta)
113 {
114
115 result *= *src;
116 }
117 *dest = result;
118 }
119 }
120 /* Advance to the next element. */
121 count[0]++;
122 base += sstride[0];
123 dest += dstride[0];
124 n = 0;
125 while (count[n] == extent[n])
126 {
127 /* When we get to the end of a dimension, reset it and increment
128 the next dimension. */
129 count[n] = 0;
130 /* We could precalculate these products, but this is a less
131 frequently used path so proabably not worth it. */
132 base -= sstride[n] * extent[n];
133 dest -= dstride[n] * extent[n];
134 n++;
135 if (n == rank)
136 {
137 /* Break out of the look. */
138 base = NULL;
139 break;
140 }
141 else
142 {
143 count[n]++;
144 base += sstride[n];
145 dest += dstride[n];
146 }
147 }
148 }
149 }
150
151
152 extern void mproduct_r4 (gfc_array_r4 *, gfc_array_r4 *, index_type *,
153 gfc_array_l4 *);
154 export_proto(mproduct_r4);
155
156 void
157 mproduct_r4 (gfc_array_r4 * retarray, gfc_array_r4 * array,
158 index_type *pdim, gfc_array_l4 * mask)
159 {
160 index_type count[GFC_MAX_DIMENSIONS - 1];
161 index_type extent[GFC_MAX_DIMENSIONS - 1];
162 index_type sstride[GFC_MAX_DIMENSIONS - 1];
163 index_type dstride[GFC_MAX_DIMENSIONS - 1];
164 index_type mstride[GFC_MAX_DIMENSIONS - 1];
165 GFC_REAL_4 *dest;
166 GFC_REAL_4 *base;
167 GFC_LOGICAL_4 *mbase;
168 int rank;
169 int dim;
170 index_type n;
171 index_type len;
172 index_type delta;
173 index_type mdelta;
174
175 dim = (*pdim) - 1;
176 rank = GFC_DESCRIPTOR_RANK (array) - 1;
177 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
178 if (array->dim[0].stride == 0)
179 array->dim[0].stride = 1;
180 if (retarray->dim[0].stride == 0)
181 retarray->dim[0].stride = 1;
182
183 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
184 if (len <= 0)
185 return;
186 delta = array->dim[dim].stride;
187 mdelta = mask->dim[dim].stride;
188
189 for (n = 0; n < dim; n++)
190 {
191 sstride[n] = array->dim[n].stride;
192 mstride[n] = mask->dim[n].stride;
193 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
194 }
195 for (n = dim; n < rank; n++)
196 {
197 sstride[n] = array->dim[n + 1].stride;
198 mstride[n] = mask->dim[n + 1].stride;
199 extent[n] =
200 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
201 }
202
203 for (n = 0; n < rank; n++)
204 {
205 count[n] = 0;
206 dstride[n] = retarray->dim[n].stride;
207 if (extent[n] <= 0)
208 return;
209 }
210
211 dest = retarray->data;
212 base = array->data;
213 mbase = mask->data;
214
215 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
216 {
217 /* This allows the same loop to be used for all logical types. */
218 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
219 for (n = 0; n < rank; n++)
220 mstride[n] <<= 1;
221 mdelta <<= 1;
222 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
223 }
224
225 while (base)
226 {
227 GFC_REAL_4 *src;
228 GFC_LOGICAL_4 *msrc;
229 GFC_REAL_4 result;
230 src = base;
231 msrc = mbase;
232 {
233
234 result = 1;
235 if (len <= 0)
236 *dest = 1;
237 else
238 {
239 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
240 {
241
242 if (*msrc)
243 result *= *src;
244 }
245 *dest = result;
246 }
247 }
248 /* Advance to the next element. */
249 count[0]++;
250 base += sstride[0];
251 mbase += mstride[0];
252 dest += dstride[0];
253 n = 0;
254 while (count[n] == extent[n])
255 {
256 /* When we get to the end of a dimension, reset it and increment
257 the next dimension. */
258 count[n] = 0;
259 /* We could precalculate these products, but this is a less
260 frequently used path so proabably not worth it. */
261 base -= sstride[n] * extent[n];
262 mbase -= mstride[n] * extent[n];
263 dest -= dstride[n] * extent[n];
264 n++;
265 if (n == rank)
266 {
267 /* Break out of the look. */
268 base = NULL;
269 break;
270 }
271 else
272 {
273 count[n]++;
274 base += sstride[n];
275 mbase += mstride[n];
276 dest += dstride[n];
277 }
278 }
279 }
280 }
281