]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/product_r8.c
acinclude.m4 (LIBGFOR_CHECK_ATTRIBUTE_VISIBILITY): New.
[thirdparty/gcc.git] / libgfortran / generated / product_r8.c
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include "libgfortran.h"
26
27
28 extern void __product_r8 (gfc_array_r8 *, gfc_array_r8 *, index_type *);
29 export_proto_np(__product_r8);
30
31 void
32 __product_r8 (gfc_array_r8 *retarray, gfc_array_r8 *array, index_type *pdim)
33 {
34 index_type count[GFC_MAX_DIMENSIONS - 1];
35 index_type extent[GFC_MAX_DIMENSIONS - 1];
36 index_type sstride[GFC_MAX_DIMENSIONS - 1];
37 index_type dstride[GFC_MAX_DIMENSIONS - 1];
38 GFC_REAL_8 *base;
39 GFC_REAL_8 *dest;
40 index_type rank;
41 index_type n;
42 index_type len;
43 index_type delta;
44 index_type dim;
45
46 /* Make dim zero based to avoid confusion. */
47 dim = (*pdim) - 1;
48 rank = GFC_DESCRIPTOR_RANK (array) - 1;
49 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
50 if (array->dim[0].stride == 0)
51 array->dim[0].stride = 1;
52 if (retarray->dim[0].stride == 0)
53 retarray->dim[0].stride = 1;
54
55 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
56 delta = array->dim[dim].stride;
57
58 for (n = 0; n < dim; n++)
59 {
60 sstride[n] = array->dim[n].stride;
61 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
62 }
63 for (n = dim; n < rank; n++)
64 {
65 sstride[n] = array->dim[n + 1].stride;
66 extent[n] =
67 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
68 }
69
70 if (retarray->data == NULL)
71 {
72 for (n = 0; n < rank; n++)
73 {
74 retarray->dim[n].lbound = 0;
75 retarray->dim[n].ubound = extent[n]-1;
76 if (n == 0)
77 retarray->dim[n].stride = 1;
78 else
79 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
80 }
81
82 retarray->data
83 = internal_malloc_size (sizeof (GFC_REAL_8)
84 * retarray->dim[rank-1].stride
85 * extent[rank-1]);
86 retarray->base = 0;
87 }
88
89 for (n = 0; n < rank; n++)
90 {
91 count[n] = 0;
92 dstride[n] = retarray->dim[n].stride;
93 if (extent[n] <= 0)
94 len = 0;
95 }
96
97 base = array->data;
98 dest = retarray->data;
99
100 while (base)
101 {
102 GFC_REAL_8 *src;
103 GFC_REAL_8 result;
104 src = base;
105 {
106
107 result = 1;
108 if (len <= 0)
109 *dest = 1;
110 else
111 {
112 for (n = 0; n < len; n++, src += delta)
113 {
114
115 result *= *src;
116 }
117 *dest = result;
118 }
119 }
120 /* Advance to the next element. */
121 count[0]++;
122 base += sstride[0];
123 dest += dstride[0];
124 n = 0;
125 while (count[n] == extent[n])
126 {
127 /* When we get to the end of a dimension, reset it and increment
128 the next dimension. */
129 count[n] = 0;
130 /* We could precalculate these products, but this is a less
131 frequently used path so proabably not worth it. */
132 base -= sstride[n] * extent[n];
133 dest -= dstride[n] * extent[n];
134 n++;
135 if (n == rank)
136 {
137 /* Break out of the look. */
138 base = NULL;
139 break;
140 }
141 else
142 {
143 count[n]++;
144 base += sstride[n];
145 dest += dstride[n];
146 }
147 }
148 }
149 }
150
151
152 extern void __mproduct_r8 (gfc_array_r8 *, gfc_array_r8 *, index_type *,
153 gfc_array_l4 *);
154 export_proto_np(__mproduct_r8);
155
156 void
157 __mproduct_r8 (gfc_array_r8 * retarray, gfc_array_r8 * array, index_type *pdim, gfc_array_l4 * mask)
158 {
159 index_type count[GFC_MAX_DIMENSIONS - 1];
160 index_type extent[GFC_MAX_DIMENSIONS - 1];
161 index_type sstride[GFC_MAX_DIMENSIONS - 1];
162 index_type dstride[GFC_MAX_DIMENSIONS - 1];
163 index_type mstride[GFC_MAX_DIMENSIONS - 1];
164 GFC_REAL_8 *dest;
165 GFC_REAL_8 *base;
166 GFC_LOGICAL_4 *mbase;
167 int rank;
168 int dim;
169 index_type n;
170 index_type len;
171 index_type delta;
172 index_type mdelta;
173
174 dim = (*pdim) - 1;
175 rank = GFC_DESCRIPTOR_RANK (array) - 1;
176 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
177 if (array->dim[0].stride == 0)
178 array->dim[0].stride = 1;
179 if (retarray->dim[0].stride == 0)
180 retarray->dim[0].stride = 1;
181
182 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
183 if (len <= 0)
184 return;
185 delta = array->dim[dim].stride;
186 mdelta = mask->dim[dim].stride;
187
188 for (n = 0; n < dim; n++)
189 {
190 sstride[n] = array->dim[n].stride;
191 mstride[n] = mask->dim[n].stride;
192 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
193 }
194 for (n = dim; n < rank; n++)
195 {
196 sstride[n] = array->dim[n + 1].stride;
197 mstride[n] = mask->dim[n + 1].stride;
198 extent[n] =
199 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
200 }
201
202 for (n = 0; n < rank; n++)
203 {
204 count[n] = 0;
205 dstride[n] = retarray->dim[n].stride;
206 if (extent[n] <= 0)
207 return;
208 }
209
210 dest = retarray->data;
211 base = array->data;
212 mbase = mask->data;
213
214 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
215 {
216 /* This allows the same loop to be used for all logical types. */
217 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
218 for (n = 0; n < rank; n++)
219 mstride[n] <<= 1;
220 mdelta <<= 1;
221 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
222 }
223
224 while (base)
225 {
226 GFC_REAL_8 *src;
227 GFC_LOGICAL_4 *msrc;
228 GFC_REAL_8 result;
229 src = base;
230 msrc = mbase;
231 {
232
233 result = 1;
234 if (len <= 0)
235 *dest = 1;
236 else
237 {
238 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
239 {
240
241 if (*msrc)
242 result *= *src;
243 }
244 *dest = result;
245 }
246 }
247 /* Advance to the next element. */
248 count[0]++;
249 base += sstride[0];
250 mbase += mstride[0];
251 dest += dstride[0];
252 n = 0;
253 while (count[n] == extent[n])
254 {
255 /* When we get to the end of a dimension, reset it and increment
256 the next dimension. */
257 count[n] = 0;
258 /* We could precalculate these products, but this is a less
259 frequently used path so proabably not worth it. */
260 base -= sstride[n] * extent[n];
261 mbase -= mstride[n] * extent[n];
262 dest -= dstride[n] * extent[n];
263 n++;
264 if (n == rank)
265 {
266 /* Break out of the look. */
267 base = NULL;
268 break;
269 }
270 else
271 {
272 count[n]++;
273 base += sstride[n];
274 mbase += mstride[n];
275 dest += dstride[n];
276 }
277 }
278 }
279 }
280