]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/reshape_i4.c
re PR libfortran/19308 (I/O library should support more real and integer kinds)
[thirdparty/gcc.git] / libgfortran / generated / reshape_i4.c
1 /* Implementation of the RESHAPE
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
35
36 #if defined (HAVE_GFC_INTEGER_4)
37
38 typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
39
40 /* The shape parameter is ignored. We can currently deduce the shape from the
41 return array. */
42
43 extern void reshape_4 (gfc_array_i4 *, gfc_array_i4 *, shape_type *,
44 gfc_array_i4 *, shape_type *);
45 export_proto(reshape_4);
46
47 void
48 reshape_4 (gfc_array_i4 * ret, gfc_array_i4 * source, shape_type * shape,
49 gfc_array_i4 * pad, shape_type * order)
50 {
51 /* r.* indicates the return array. */
52 index_type rcount[GFC_MAX_DIMENSIONS];
53 index_type rextent[GFC_MAX_DIMENSIONS];
54 index_type rstride[GFC_MAX_DIMENSIONS];
55 index_type rstride0;
56 index_type rdim;
57 index_type rsize;
58 index_type rs;
59 index_type rex;
60 GFC_INTEGER_4 *rptr;
61 /* s.* indicates the source array. */
62 index_type scount[GFC_MAX_DIMENSIONS];
63 index_type sextent[GFC_MAX_DIMENSIONS];
64 index_type sstride[GFC_MAX_DIMENSIONS];
65 index_type sstride0;
66 index_type sdim;
67 index_type ssize;
68 const GFC_INTEGER_4 *sptr;
69 /* p.* indicates the pad array. */
70 index_type pcount[GFC_MAX_DIMENSIONS];
71 index_type pextent[GFC_MAX_DIMENSIONS];
72 index_type pstride[GFC_MAX_DIMENSIONS];
73 index_type pdim;
74 index_type psize;
75 const GFC_INTEGER_4 *pptr;
76
77 const GFC_INTEGER_4 *src;
78 int n;
79 int dim;
80
81 if (source->dim[0].stride == 0)
82 source->dim[0].stride = 1;
83 if (shape->dim[0].stride == 0)
84 shape->dim[0].stride = 1;
85 if (pad && pad->dim[0].stride == 0)
86 pad->dim[0].stride = 1;
87 if (order && order->dim[0].stride == 0)
88 order->dim[0].stride = 1;
89
90 if (ret->data == NULL)
91 {
92 rdim = shape->dim[0].ubound - shape->dim[0].lbound + 1;
93 rs = 1;
94 for (n=0; n < rdim; n++)
95 {
96 ret->dim[n].lbound = 0;
97 rex = shape->data[n * shape->dim[0].stride];
98 ret->dim[n].ubound = rex - 1;
99 ret->dim[n].stride = rs;
100 rs *= rex;
101 }
102 ret->offset = 0;
103 ret->data = internal_malloc_size ( rs * sizeof (GFC_INTEGER_4));
104 ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
105 }
106 else
107 {
108 rdim = GFC_DESCRIPTOR_RANK (ret);
109 if (ret->dim[0].stride == 0)
110 ret->dim[0].stride = 1;
111 }
112
113 rsize = 1;
114 for (n = 0; n < rdim; n++)
115 {
116 if (order)
117 dim = order->data[n * order->dim[0].stride] - 1;
118 else
119 dim = n;
120
121 rcount[n] = 0;
122 rstride[n] = ret->dim[dim].stride;
123 rextent[n] = ret->dim[dim].ubound + 1 - ret->dim[dim].lbound;
124
125 if (rextent[n] != shape->data[dim * shape->dim[0].stride])
126 runtime_error ("shape and target do not conform");
127
128 if (rsize == rstride[n])
129 rsize *= rextent[n];
130 else
131 rsize = 0;
132 if (rextent[n] <= 0)
133 return;
134 }
135
136 sdim = GFC_DESCRIPTOR_RANK (source);
137 ssize = 1;
138 for (n = 0; n < sdim; n++)
139 {
140 scount[n] = 0;
141 sstride[n] = source->dim[n].stride;
142 sextent[n] = source->dim[n].ubound + 1 - source->dim[n].lbound;
143 if (sextent[n] <= 0)
144 abort ();
145
146 if (ssize == sstride[n])
147 ssize *= sextent[n];
148 else
149 ssize = 0;
150 }
151
152 if (pad)
153 {
154 pdim = GFC_DESCRIPTOR_RANK (pad);
155 psize = 1;
156 for (n = 0; n < pdim; n++)
157 {
158 pcount[n] = 0;
159 pstride[n] = pad->dim[n].stride;
160 pextent[n] = pad->dim[n].ubound + 1 - pad->dim[n].lbound;
161 if (pextent[n] <= 0)
162 abort ();
163 if (psize == pstride[n])
164 psize *= pextent[n];
165 else
166 psize = 0;
167 }
168 pptr = pad->data;
169 }
170 else
171 {
172 pdim = 0;
173 psize = 1;
174 pptr = NULL;
175 }
176
177 if (rsize != 0 && ssize != 0 && psize != 0)
178 {
179 rsize *= sizeof (GFC_INTEGER_4);
180 ssize *= sizeof (GFC_INTEGER_4);
181 psize *= sizeof (GFC_INTEGER_4);
182 reshape_packed ((char *)ret->data, rsize, (char *)source->data,
183 ssize, pad ? (char *)pad->data : NULL, psize);
184 return;
185 }
186 rptr = ret->data;
187 src = sptr = source->data;
188 rstride0 = rstride[0];
189 sstride0 = sstride[0];
190
191 while (rptr)
192 {
193 /* Select between the source and pad arrays. */
194 *rptr = *src;
195 /* Advance to the next element. */
196 rptr += rstride0;
197 src += sstride0;
198 rcount[0]++;
199 scount[0]++;
200 /* Advance to the next destination element. */
201 n = 0;
202 while (rcount[n] == rextent[n])
203 {
204 /* When we get to the end of a dimension, reset it and increment
205 the next dimension. */
206 rcount[n] = 0;
207 /* We could precalculate these products, but this is a less
208 frequently used path so proabably not worth it. */
209 rptr -= rstride[n] * rextent[n];
210 n++;
211 if (n == rdim)
212 {
213 /* Break out of the loop. */
214 rptr = NULL;
215 break;
216 }
217 else
218 {
219 rcount[n]++;
220 rptr += rstride[n];
221 }
222 }
223 /* Advance to the next source element. */
224 n = 0;
225 while (scount[n] == sextent[n])
226 {
227 /* When we get to the end of a dimension, reset it and increment
228 the next dimension. */
229 scount[n] = 0;
230 /* We could precalculate these products, but this is a less
231 frequently used path so proabably not worth it. */
232 src -= sstride[n] * sextent[n];
233 n++;
234 if (n == sdim)
235 {
236 if (sptr && pad)
237 {
238 /* Switch to the pad array. */
239 sptr = NULL;
240 sdim = pdim;
241 for (dim = 0; dim < pdim; dim++)
242 {
243 scount[dim] = pcount[dim];
244 sextent[dim] = pextent[dim];
245 sstride[dim] = pstride[dim];
246 sstride0 = sstride[0];
247 }
248 }
249 /* We now start again from the beginning of the pad array. */
250 src = pptr;
251 break;
252 }
253 else
254 {
255 scount[n]++;
256 src += sstride[n];
257 }
258 }
259 }
260 }
261
262 #endif