]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/reshape_r4.c
Update copyright years in libgfortran.
[thirdparty/gcc.git] / libgfortran / generated / reshape_r4.c
1 /* Implementation of the RESHAPE intrinsic
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
29
30
31 #if defined (HAVE_GFC_REAL_4)
32
33 typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
34
35
36 extern void reshape_r4 (gfc_array_r4 * const restrict,
37 gfc_array_r4 * const restrict,
38 shape_type * const restrict,
39 gfc_array_r4 * const restrict,
40 shape_type * const restrict);
41 export_proto(reshape_r4);
42
43 void
44 reshape_r4 (gfc_array_r4 * const restrict ret,
45 gfc_array_r4 * const restrict source,
46 shape_type * const restrict shape,
47 gfc_array_r4 * const restrict pad,
48 shape_type * const restrict order)
49 {
50 /* r.* indicates the return array. */
51 index_type rcount[GFC_MAX_DIMENSIONS];
52 index_type rextent[GFC_MAX_DIMENSIONS];
53 index_type rstride[GFC_MAX_DIMENSIONS];
54 index_type rstride0;
55 index_type rdim;
56 index_type rsize;
57 index_type rs;
58 index_type rex;
59 GFC_REAL_4 *rptr;
60 /* s.* indicates the source array. */
61 index_type scount[GFC_MAX_DIMENSIONS];
62 index_type sextent[GFC_MAX_DIMENSIONS];
63 index_type sstride[GFC_MAX_DIMENSIONS];
64 index_type sstride0;
65 index_type sdim;
66 index_type ssize;
67 const GFC_REAL_4 *sptr;
68 /* p.* indicates the pad array. */
69 index_type pcount[GFC_MAX_DIMENSIONS];
70 index_type pextent[GFC_MAX_DIMENSIONS];
71 index_type pstride[GFC_MAX_DIMENSIONS];
72 index_type pdim;
73 index_type psize;
74 const GFC_REAL_4 *pptr;
75
76 const GFC_REAL_4 *src;
77 int n;
78 int dim;
79 int sempty, pempty, shape_empty;
80 index_type shape_data[GFC_MAX_DIMENSIONS];
81
82 rdim = GFC_DESCRIPTOR_EXTENT(shape,0);
83 if (rdim != GFC_DESCRIPTOR_RANK(ret))
84 runtime_error("rank of return array incorrect in RESHAPE intrinsic");
85
86 shape_empty = 0;
87
88 for (n = 0; n < rdim; n++)
89 {
90 shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)];
91 if (shape_data[n] <= 0)
92 {
93 shape_data[n] = 0;
94 shape_empty = 1;
95 }
96 }
97
98 if (ret->base_addr == NULL)
99 {
100 index_type alloc_size;
101
102 rs = 1;
103 for (n = 0; n < rdim; n++)
104 {
105 rex = shape_data[n];
106
107 GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs);
108
109 rs *= rex;
110 }
111 ret->offset = 0;
112
113 if (unlikely (rs < 1))
114 alloc_size = 1;
115 else
116 alloc_size = rs * sizeof (GFC_REAL_4);
117
118 ret->base_addr = xmalloc (alloc_size);
119 ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
120 }
121
122 if (shape_empty)
123 return;
124
125 if (pad)
126 {
127 pdim = GFC_DESCRIPTOR_RANK (pad);
128 psize = 1;
129 pempty = 0;
130 for (n = 0; n < pdim; n++)
131 {
132 pcount[n] = 0;
133 pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n);
134 pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n);
135 if (pextent[n] <= 0)
136 {
137 pempty = 1;
138 pextent[n] = 0;
139 }
140
141 if (psize == pstride[n])
142 psize *= pextent[n];
143 else
144 psize = 0;
145 }
146 pptr = pad->base_addr;
147 }
148 else
149 {
150 pdim = 0;
151 psize = 1;
152 pempty = 1;
153 pptr = NULL;
154 }
155
156 if (unlikely (compile_options.bounds_check))
157 {
158 index_type ret_extent, source_extent;
159
160 rs = 1;
161 for (n = 0; n < rdim; n++)
162 {
163 rs *= shape_data[n];
164 ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n);
165 if (ret_extent != shape_data[n])
166 runtime_error("Incorrect extent in return value of RESHAPE"
167 " intrinsic in dimension %ld: is %ld,"
168 " should be %ld", (long int) n+1,
169 (long int) ret_extent, (long int) shape_data[n]);
170 }
171
172 source_extent = 1;
173 sdim = GFC_DESCRIPTOR_RANK (source);
174 for (n = 0; n < sdim; n++)
175 {
176 index_type se;
177 se = GFC_DESCRIPTOR_EXTENT(source,n);
178 source_extent *= se > 0 ? se : 0;
179 }
180
181 if (rs > source_extent && (!pad || pempty))
182 runtime_error("Incorrect size in SOURCE argument to RESHAPE"
183 " intrinsic: is %ld, should be %ld",
184 (long int) source_extent, (long int) rs);
185
186 if (order)
187 {
188 int seen[GFC_MAX_DIMENSIONS];
189 index_type v;
190
191 for (n = 0; n < rdim; n++)
192 seen[n] = 0;
193
194 for (n = 0; n < rdim; n++)
195 {
196 v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
197
198 if (v < 0 || v >= rdim)
199 runtime_error("Value %ld out of range in ORDER argument"
200 " to RESHAPE intrinsic", (long int) v + 1);
201
202 if (seen[v] != 0)
203 runtime_error("Duplicate value %ld in ORDER argument to"
204 " RESHAPE intrinsic", (long int) v + 1);
205
206 seen[v] = 1;
207 }
208 }
209 }
210
211 rsize = 1;
212 for (n = 0; n < rdim; n++)
213 {
214 if (order)
215 dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
216 else
217 dim = n;
218
219 rcount[n] = 0;
220 rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
221 rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim);
222 if (rextent[n] < 0)
223 rextent[n] = 0;
224
225 if (rextent[n] != shape_data[dim])
226 runtime_error ("shape and target do not conform");
227
228 if (rsize == rstride[n])
229 rsize *= rextent[n];
230 else
231 rsize = 0;
232 if (rextent[n] <= 0)
233 return;
234 }
235
236 sdim = GFC_DESCRIPTOR_RANK (source);
237 ssize = 1;
238 sempty = 0;
239 for (n = 0; n < sdim; n++)
240 {
241 scount[n] = 0;
242 sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
243 sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
244 if (sextent[n] <= 0)
245 {
246 sempty = 1;
247 sextent[n] = 0;
248 }
249
250 if (ssize == sstride[n])
251 ssize *= sextent[n];
252 else
253 ssize = 0;
254 }
255
256 if (rsize != 0 && ssize != 0 && psize != 0)
257 {
258 rsize *= sizeof (GFC_REAL_4);
259 ssize *= sizeof (GFC_REAL_4);
260 psize *= sizeof (GFC_REAL_4);
261 reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr,
262 ssize, pad ? (char *)pad->base_addr : NULL, psize);
263 return;
264 }
265 rptr = ret->base_addr;
266 src = sptr = source->base_addr;
267 rstride0 = rstride[0];
268 sstride0 = sstride[0];
269
270 if (sempty && pempty)
271 abort ();
272
273 if (sempty)
274 {
275 /* Pretend we are using the pad array the first time around, too. */
276 src = pptr;
277 sptr = pptr;
278 sdim = pdim;
279 for (dim = 0; dim < pdim; dim++)
280 {
281 scount[dim] = pcount[dim];
282 sextent[dim] = pextent[dim];
283 sstride[dim] = pstride[dim];
284 sstride0 = pstride[0];
285 }
286 }
287
288 while (rptr)
289 {
290 /* Select between the source and pad arrays. */
291 *rptr = *src;
292 /* Advance to the next element. */
293 rptr += rstride0;
294 src += sstride0;
295 rcount[0]++;
296 scount[0]++;
297
298 /* Advance to the next destination element. */
299 n = 0;
300 while (rcount[n] == rextent[n])
301 {
302 /* When we get to the end of a dimension, reset it and increment
303 the next dimension. */
304 rcount[n] = 0;
305 /* We could precalculate these products, but this is a less
306 frequently used path so probably not worth it. */
307 rptr -= rstride[n] * rextent[n];
308 n++;
309 if (n == rdim)
310 {
311 /* Break out of the loop. */
312 rptr = NULL;
313 break;
314 }
315 else
316 {
317 rcount[n]++;
318 rptr += rstride[n];
319 }
320 }
321 /* Advance to the next source element. */
322 n = 0;
323 while (scount[n] == sextent[n])
324 {
325 /* When we get to the end of a dimension, reset it and increment
326 the next dimension. */
327 scount[n] = 0;
328 /* We could precalculate these products, but this is a less
329 frequently used path so probably not worth it. */
330 src -= sstride[n] * sextent[n];
331 n++;
332 if (n == sdim)
333 {
334 if (sptr && pad)
335 {
336 /* Switch to the pad array. */
337 sptr = NULL;
338 sdim = pdim;
339 for (dim = 0; dim < pdim; dim++)
340 {
341 scount[dim] = pcount[dim];
342 sextent[dim] = pextent[dim];
343 sstride[dim] = pstride[dim];
344 sstride0 = sstride[0];
345 }
346 }
347 /* We now start again from the beginning of the pad array. */
348 src = pptr;
349 break;
350 }
351 else
352 {
353 scount[n]++;
354 src += sstride[n];
355 }
356 }
357 }
358 }
359
360 #endif