]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/sum_i8.c
re PR fortran/54613 ([F08] Add FINDLOC plus support MAXLOC/MINLOC with KIND=/BACK=)
[thirdparty/gcc.git] / libgfortran / generated / sum_i8.c
1 /* Implementation of the SUM intrinsic
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27
28
29 #if defined (HAVE_GFC_INTEGER_8) && defined (HAVE_GFC_INTEGER_8)
30
31
32 extern void sum_i8 (gfc_array_i8 * const restrict,
33 gfc_array_i8 * const restrict, const index_type * const restrict);
34 export_proto(sum_i8);
35
36 void
37 sum_i8 (gfc_array_i8 * const restrict retarray,
38 gfc_array_i8 * const restrict array,
39 const index_type * const restrict pdim)
40 {
41 index_type count[GFC_MAX_DIMENSIONS];
42 index_type extent[GFC_MAX_DIMENSIONS];
43 index_type sstride[GFC_MAX_DIMENSIONS];
44 index_type dstride[GFC_MAX_DIMENSIONS];
45 const GFC_INTEGER_8 * restrict base;
46 GFC_INTEGER_8 * restrict dest;
47 index_type rank;
48 index_type n;
49 index_type len;
50 index_type delta;
51 index_type dim;
52 int continue_loop;
53
54 #ifdef HAVE_BACK_ARG
55 assert(back == 0);
56 #endif
57
58 /* Make dim zero based to avoid confusion. */
59 rank = GFC_DESCRIPTOR_RANK (array) - 1;
60 dim = (*pdim) - 1;
61
62 if (unlikely (dim < 0 || dim > rank))
63 {
64 runtime_error ("Dim argument incorrect in SUM intrinsic: "
65 "is %ld, should be between 1 and %ld",
66 (long int) dim + 1, (long int) rank + 1);
67 }
68
69 len = GFC_DESCRIPTOR_EXTENT(array,dim);
70 if (len < 0)
71 len = 0;
72 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
73
74 for (n = 0; n < dim; n++)
75 {
76 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
77 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
78
79 if (extent[n] < 0)
80 extent[n] = 0;
81 }
82 for (n = dim; n < rank; n++)
83 {
84 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
85 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
86
87 if (extent[n] < 0)
88 extent[n] = 0;
89 }
90
91 if (retarray->base_addr == NULL)
92 {
93 size_t alloc_size, str;
94
95 for (n = 0; n < rank; n++)
96 {
97 if (n == 0)
98 str = 1;
99 else
100 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
101
102 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
103
104 }
105
106 retarray->offset = 0;
107 GFC_DTYPE_COPY_SETRANK(retarray,array,rank);
108
109 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
110
111 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8));
112 if (alloc_size == 0)
113 {
114 /* Make sure we have a zero-sized array. */
115 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
116 return;
117
118 }
119 }
120 else
121 {
122 if (rank != GFC_DESCRIPTOR_RANK (retarray))
123 runtime_error ("rank of return array incorrect in"
124 " SUM intrinsic: is %ld, should be %ld",
125 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
126 (long int) rank);
127
128 if (unlikely (compile_options.bounds_check))
129 bounds_ifunction_return ((array_t *) retarray, extent,
130 "return value", "SUM");
131 }
132
133 for (n = 0; n < rank; n++)
134 {
135 count[n] = 0;
136 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
137 if (extent[n] <= 0)
138 return;
139 }
140
141 base = array->base_addr;
142 dest = retarray->base_addr;
143
144 continue_loop = 1;
145 while (continue_loop)
146 {
147 const GFC_INTEGER_8 * restrict src;
148 GFC_INTEGER_8 result;
149 src = base;
150 {
151
152 result = 0;
153 if (len <= 0)
154 *dest = 0;
155 else
156 {
157 for (n = 0; n < len; n++, src += delta)
158 {
159
160 result += *src;
161 }
162
163 *dest = result;
164 }
165 }
166 /* Advance to the next element. */
167 count[0]++;
168 base += sstride[0];
169 dest += dstride[0];
170 n = 0;
171 while (count[n] == extent[n])
172 {
173 /* When we get to the end of a dimension, reset it and increment
174 the next dimension. */
175 count[n] = 0;
176 /* We could precalculate these products, but this is a less
177 frequently used path so probably not worth it. */
178 base -= sstride[n] * extent[n];
179 dest -= dstride[n] * extent[n];
180 n++;
181 if (n >= rank)
182 {
183 /* Break out of the loop. */
184 continue_loop = 0;
185 break;
186 }
187 else
188 {
189 count[n]++;
190 base += sstride[n];
191 dest += dstride[n];
192 }
193 }
194 }
195 }
196
197
198 extern void msum_i8 (gfc_array_i8 * const restrict,
199 gfc_array_i8 * const restrict, const index_type * const restrict,
200 gfc_array_l1 * const restrict);
201 export_proto(msum_i8);
202
203 void
204 msum_i8 (gfc_array_i8 * const restrict retarray,
205 gfc_array_i8 * const restrict array,
206 const index_type * const restrict pdim,
207 gfc_array_l1 * const restrict mask)
208 {
209 index_type count[GFC_MAX_DIMENSIONS];
210 index_type extent[GFC_MAX_DIMENSIONS];
211 index_type sstride[GFC_MAX_DIMENSIONS];
212 index_type dstride[GFC_MAX_DIMENSIONS];
213 index_type mstride[GFC_MAX_DIMENSIONS];
214 GFC_INTEGER_8 * restrict dest;
215 const GFC_INTEGER_8 * restrict base;
216 const GFC_LOGICAL_1 * restrict mbase;
217 index_type rank;
218 index_type dim;
219 index_type n;
220 index_type len;
221 index_type delta;
222 index_type mdelta;
223 int mask_kind;
224
225 #ifdef HAVE_BACK_ARG
226 assert (back == 0);
227 #endif
228 dim = (*pdim) - 1;
229 rank = GFC_DESCRIPTOR_RANK (array) - 1;
230
231
232 if (unlikely (dim < 0 || dim > rank))
233 {
234 runtime_error ("Dim argument incorrect in SUM intrinsic: "
235 "is %ld, should be between 1 and %ld",
236 (long int) dim + 1, (long int) rank + 1);
237 }
238
239 len = GFC_DESCRIPTOR_EXTENT(array,dim);
240 if (len <= 0)
241 return;
242
243 mbase = mask->base_addr;
244
245 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
246
247 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
248 #ifdef HAVE_GFC_LOGICAL_16
249 || mask_kind == 16
250 #endif
251 )
252 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
253 else
254 runtime_error ("Funny sized logical array");
255
256 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
257 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
258
259 for (n = 0; n < dim; n++)
260 {
261 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
262 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
263 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
264
265 if (extent[n] < 0)
266 extent[n] = 0;
267
268 }
269 for (n = dim; n < rank; n++)
270 {
271 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
272 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
273 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
274
275 if (extent[n] < 0)
276 extent[n] = 0;
277 }
278
279 if (retarray->base_addr == NULL)
280 {
281 size_t alloc_size, str;
282
283 for (n = 0; n < rank; n++)
284 {
285 if (n == 0)
286 str = 1;
287 else
288 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
289
290 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
291
292 }
293
294 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
295
296 retarray->offset = 0;
297 GFC_DTYPE_COPY_SETRANK(retarray,array,rank);
298
299 if (alloc_size == 0)
300 {
301 /* Make sure we have a zero-sized array. */
302 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
303 return;
304 }
305 else
306 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8));
307
308 }
309 else
310 {
311 if (rank != GFC_DESCRIPTOR_RANK (retarray))
312 runtime_error ("rank of return array incorrect in SUM intrinsic");
313
314 if (unlikely (compile_options.bounds_check))
315 {
316 bounds_ifunction_return ((array_t *) retarray, extent,
317 "return value", "SUM");
318 bounds_equal_extents ((array_t *) mask, (array_t *) array,
319 "MASK argument", "SUM");
320 }
321 }
322
323 for (n = 0; n < rank; n++)
324 {
325 count[n] = 0;
326 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
327 if (extent[n] <= 0)
328 return;
329 }
330
331 dest = retarray->base_addr;
332 base = array->base_addr;
333
334 while (base)
335 {
336 const GFC_INTEGER_8 * restrict src;
337 const GFC_LOGICAL_1 * restrict msrc;
338 GFC_INTEGER_8 result;
339 src = base;
340 msrc = mbase;
341 {
342
343 result = 0;
344 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
345 {
346
347 if (*msrc)
348 result += *src;
349 }
350 *dest = result;
351 }
352 /* Advance to the next element. */
353 count[0]++;
354 base += sstride[0];
355 mbase += mstride[0];
356 dest += dstride[0];
357 n = 0;
358 while (count[n] == extent[n])
359 {
360 /* When we get to the end of a dimension, reset it and increment
361 the next dimension. */
362 count[n] = 0;
363 /* We could precalculate these products, but this is a less
364 frequently used path so probably not worth it. */
365 base -= sstride[n] * extent[n];
366 mbase -= mstride[n] * extent[n];
367 dest -= dstride[n] * extent[n];
368 n++;
369 if (n >= rank)
370 {
371 /* Break out of the loop. */
372 base = NULL;
373 break;
374 }
375 else
376 {
377 count[n]++;
378 base += sstride[n];
379 mbase += mstride[n];
380 dest += dstride[n];
381 }
382 }
383 }
384 }
385
386
387 extern void ssum_i8 (gfc_array_i8 * const restrict,
388 gfc_array_i8 * const restrict, const index_type * const restrict,
389 GFC_LOGICAL_4 *);
390 export_proto(ssum_i8);
391
392 void
393 ssum_i8 (gfc_array_i8 * const restrict retarray,
394 gfc_array_i8 * const restrict array,
395 const index_type * const restrict pdim,
396 GFC_LOGICAL_4 * mask)
397 {
398 index_type count[GFC_MAX_DIMENSIONS];
399 index_type extent[GFC_MAX_DIMENSIONS];
400 index_type dstride[GFC_MAX_DIMENSIONS];
401 GFC_INTEGER_8 * restrict dest;
402 index_type rank;
403 index_type n;
404 index_type dim;
405
406
407 if (*mask)
408 {
409 #ifdef HAVE_BACK_ARG
410 sum_i8 (retarray, array, pdim, back);
411 #else
412 sum_i8 (retarray, array, pdim);
413 #endif
414 return;
415 }
416 /* Make dim zero based to avoid confusion. */
417 dim = (*pdim) - 1;
418 rank = GFC_DESCRIPTOR_RANK (array) - 1;
419
420 if (unlikely (dim < 0 || dim > rank))
421 {
422 runtime_error ("Dim argument incorrect in SUM intrinsic: "
423 "is %ld, should be between 1 and %ld",
424 (long int) dim + 1, (long int) rank + 1);
425 }
426
427 for (n = 0; n < dim; n++)
428 {
429 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
430
431 if (extent[n] <= 0)
432 extent[n] = 0;
433 }
434
435 for (n = dim; n < rank; n++)
436 {
437 extent[n] =
438 GFC_DESCRIPTOR_EXTENT(array,n + 1);
439
440 if (extent[n] <= 0)
441 extent[n] = 0;
442 }
443
444 if (retarray->base_addr == NULL)
445 {
446 size_t alloc_size, str;
447
448 for (n = 0; n < rank; n++)
449 {
450 if (n == 0)
451 str = 1;
452 else
453 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
454
455 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
456
457 }
458
459 retarray->offset = 0;
460 GFC_DTYPE_COPY_SETRANK(retarray,array,rank);
461
462 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
463
464 if (alloc_size == 0)
465 {
466 /* Make sure we have a zero-sized array. */
467 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
468 return;
469 }
470 else
471 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8));
472 }
473 else
474 {
475 if (rank != GFC_DESCRIPTOR_RANK (retarray))
476 runtime_error ("rank of return array incorrect in"
477 " SUM intrinsic: is %ld, should be %ld",
478 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
479 (long int) rank);
480
481 if (unlikely (compile_options.bounds_check))
482 {
483 for (n=0; n < rank; n++)
484 {
485 index_type ret_extent;
486
487 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
488 if (extent[n] != ret_extent)
489 runtime_error ("Incorrect extent in return value of"
490 " SUM intrinsic in dimension %ld:"
491 " is %ld, should be %ld", (long int) n + 1,
492 (long int) ret_extent, (long int) extent[n]);
493 }
494 }
495 }
496
497 for (n = 0; n < rank; n++)
498 {
499 count[n] = 0;
500 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
501 }
502
503 dest = retarray->base_addr;
504
505 while(1)
506 {
507 *dest = 0;
508 count[0]++;
509 dest += dstride[0];
510 n = 0;
511 while (count[n] == extent[n])
512 {
513 /* When we get to the end of a dimension, reset it and increment
514 the next dimension. */
515 count[n] = 0;
516 /* We could precalculate these products, but this is a less
517 frequently used path so probably not worth it. */
518 dest -= dstride[n] * extent[n];
519 n++;
520 if (n >= rank)
521 return;
522 else
523 {
524 count[n]++;
525 dest += dstride[n];
526 }
527 }
528 }
529 }
530
531 #endif