]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/sum_i8.c
re PR libfortran/19106 ([4.0 only] segfault in executable for print *,sum(a,dim=2...
[thirdparty/gcc.git] / libgfortran / generated / sum_i8.c
1 /* Implementation of the SUM intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
35
36
37 extern void sum_i8 (gfc_array_i8 *, gfc_array_i8 *, index_type *);
38 export_proto(sum_i8);
39
40 void
41 sum_i8 (gfc_array_i8 *retarray, gfc_array_i8 *array, index_type *pdim)
42 {
43 index_type count[GFC_MAX_DIMENSIONS - 1];
44 index_type extent[GFC_MAX_DIMENSIONS - 1];
45 index_type sstride[GFC_MAX_DIMENSIONS - 1];
46 index_type dstride[GFC_MAX_DIMENSIONS - 1];
47 GFC_INTEGER_8 *base;
48 GFC_INTEGER_8 *dest;
49 index_type rank;
50 index_type n;
51 index_type len;
52 index_type delta;
53 index_type dim;
54
55 /* Make dim zero based to avoid confusion. */
56 dim = (*pdim) - 1;
57 rank = GFC_DESCRIPTOR_RANK (array) - 1;
58 if (array->dim[0].stride == 0)
59 array->dim[0].stride = 1;
60
61 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
62 delta = array->dim[dim].stride;
63
64 for (n = 0; n < dim; n++)
65 {
66 sstride[n] = array->dim[n].stride;
67 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
68 }
69 for (n = dim; n < rank; n++)
70 {
71 sstride[n] = array->dim[n + 1].stride;
72 extent[n] =
73 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
74 }
75
76 if (retarray->data == NULL)
77 {
78 for (n = 0; n < rank; n++)
79 {
80 retarray->dim[n].lbound = 0;
81 retarray->dim[n].ubound = extent[n]-1;
82 if (n == 0)
83 retarray->dim[n].stride = 1;
84 else
85 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
86 }
87
88 retarray->data
89 = internal_malloc_size (sizeof (GFC_INTEGER_8)
90 * retarray->dim[rank-1].stride
91 * extent[rank-1]);
92 retarray->base = 0;
93 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
94 }
95 else
96 {
97 if (retarray->dim[0].stride == 0)
98 retarray->dim[0].stride = 1;
99
100 if (rank != GFC_DESCRIPTOR_RANK (retarray))
101 runtime_error ("rank of return array incorrect");
102 }
103
104 for (n = 0; n < rank; n++)
105 {
106 count[n] = 0;
107 dstride[n] = retarray->dim[n].stride;
108 if (extent[n] <= 0)
109 len = 0;
110 }
111
112 base = array->data;
113 dest = retarray->data;
114
115 while (base)
116 {
117 GFC_INTEGER_8 *src;
118 GFC_INTEGER_8 result;
119 src = base;
120 {
121
122 result = 0;
123 if (len <= 0)
124 *dest = 0;
125 else
126 {
127 for (n = 0; n < len; n++, src += delta)
128 {
129
130 result += *src;
131 }
132 *dest = result;
133 }
134 }
135 /* Advance to the next element. */
136 count[0]++;
137 base += sstride[0];
138 dest += dstride[0];
139 n = 0;
140 while (count[n] == extent[n])
141 {
142 /* When we get to the end of a dimension, reset it and increment
143 the next dimension. */
144 count[n] = 0;
145 /* We could precalculate these products, but this is a less
146 frequently used path so proabably not worth it. */
147 base -= sstride[n] * extent[n];
148 dest -= dstride[n] * extent[n];
149 n++;
150 if (n == rank)
151 {
152 /* Break out of the look. */
153 base = NULL;
154 break;
155 }
156 else
157 {
158 count[n]++;
159 base += sstride[n];
160 dest += dstride[n];
161 }
162 }
163 }
164 }
165
166
167 extern void msum_i8 (gfc_array_i8 *, gfc_array_i8 *, index_type *,
168 gfc_array_l4 *);
169 export_proto(msum_i8);
170
171 void
172 msum_i8 (gfc_array_i8 * retarray, gfc_array_i8 * array,
173 index_type *pdim, gfc_array_l4 * mask)
174 {
175 index_type count[GFC_MAX_DIMENSIONS - 1];
176 index_type extent[GFC_MAX_DIMENSIONS - 1];
177 index_type sstride[GFC_MAX_DIMENSIONS - 1];
178 index_type dstride[GFC_MAX_DIMENSIONS - 1];
179 index_type mstride[GFC_MAX_DIMENSIONS - 1];
180 GFC_INTEGER_8 *dest;
181 GFC_INTEGER_8 *base;
182 GFC_LOGICAL_4 *mbase;
183 int rank;
184 int dim;
185 index_type n;
186 index_type len;
187 index_type delta;
188 index_type mdelta;
189
190 dim = (*pdim) - 1;
191 rank = GFC_DESCRIPTOR_RANK (array) - 1;
192 if (array->dim[0].stride == 0)
193 array->dim[0].stride = 1;
194
195 if (mask->dim[0].stride == 0)
196 mask->dim[0].stride = 1;
197
198 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
199 if (len <= 0)
200 return;
201 delta = array->dim[dim].stride;
202 mdelta = mask->dim[dim].stride;
203
204 for (n = 0; n < dim; n++)
205 {
206 sstride[n] = array->dim[n].stride;
207 mstride[n] = mask->dim[n].stride;
208 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
209 }
210 for (n = dim; n < rank; n++)
211 {
212 sstride[n] = array->dim[n + 1].stride;
213 mstride[n] = mask->dim[n + 1].stride;
214 extent[n] =
215 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
216 }
217
218 if (retarray->data == NULL)
219 {
220 for (n = 0; n < rank; n++)
221 {
222 retarray->dim[n].lbound = 0;
223 retarray->dim[n].ubound = extent[n]-1;
224 if (n == 0)
225 retarray->dim[n].stride = 1;
226 else
227 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
228 }
229
230 retarray->data
231 = internal_malloc_size (sizeof (GFC_INTEGER_8)
232 * retarray->dim[rank-1].stride
233 * extent[rank-1]);
234 retarray->base = 0;
235 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
236 }
237 else
238 {
239 if (retarray->dim[0].stride == 0)
240 retarray->dim[0].stride = 1;
241
242 if (rank != GFC_DESCRIPTOR_RANK (retarray))
243 runtime_error ("rank of return array incorrect");
244 }
245
246 for (n = 0; n < rank; n++)
247 {
248 count[n] = 0;
249 dstride[n] = retarray->dim[n].stride;
250 if (extent[n] <= 0)
251 return;
252 }
253
254 dest = retarray->data;
255 base = array->data;
256 mbase = mask->data;
257
258 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
259 {
260 /* This allows the same loop to be used for all logical types. */
261 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
262 for (n = 0; n < rank; n++)
263 mstride[n] <<= 1;
264 mdelta <<= 1;
265 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
266 }
267
268 while (base)
269 {
270 GFC_INTEGER_8 *src;
271 GFC_LOGICAL_4 *msrc;
272 GFC_INTEGER_8 result;
273 src = base;
274 msrc = mbase;
275 {
276
277 result = 0;
278 if (len <= 0)
279 *dest = 0;
280 else
281 {
282 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
283 {
284
285 if (*msrc)
286 result += *src;
287 }
288 *dest = result;
289 }
290 }
291 /* Advance to the next element. */
292 count[0]++;
293 base += sstride[0];
294 mbase += mstride[0];
295 dest += dstride[0];
296 n = 0;
297 while (count[n] == extent[n])
298 {
299 /* When we get to the end of a dimension, reset it and increment
300 the next dimension. */
301 count[n] = 0;
302 /* We could precalculate these products, but this is a less
303 frequently used path so proabably not worth it. */
304 base -= sstride[n] * extent[n];
305 mbase -= mstride[n] * extent[n];
306 dest -= dstride[n] * extent[n];
307 n++;
308 if (n == rank)
309 {
310 /* Break out of the look. */
311 base = NULL;
312 break;
313 }
314 else
315 {
316 count[n]++;
317 base += sstride[n];
318 mbase += mstride[n];
319 dest += dstride[n];
320 }
321 }
322 }
323 }