]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/sum_i8.c
re PR fortran/37577 ([meta-bug] change internal array descriptor format for better...
[thirdparty/gcc.git] / libgfortran / generated / sum_i8.c
1 /* Implementation of the SUM intrinsic
2 Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
29
30
31 #if defined (HAVE_GFC_INTEGER_8) && defined (HAVE_GFC_INTEGER_8)
32
33
34 extern void sum_i8 (gfc_array_i8 * const restrict,
35 gfc_array_i8 * const restrict, const index_type * const restrict);
36 export_proto(sum_i8);
37
38 void
39 sum_i8 (gfc_array_i8 * const restrict retarray,
40 gfc_array_i8 * const restrict array,
41 const index_type * const restrict pdim)
42 {
43 index_type count[GFC_MAX_DIMENSIONS];
44 index_type extent[GFC_MAX_DIMENSIONS];
45 index_type sstride[GFC_MAX_DIMENSIONS];
46 index_type dstride[GFC_MAX_DIMENSIONS];
47 const GFC_INTEGER_8 * restrict base;
48 GFC_INTEGER_8 * restrict dest;
49 index_type rank;
50 index_type n;
51 index_type len;
52 index_type delta;
53 index_type dim;
54 int continue_loop;
55
56 /* Make dim zero based to avoid confusion. */
57 dim = (*pdim) - 1;
58 rank = GFC_DESCRIPTOR_RANK (array) - 1;
59
60 len = GFC_DESCRIPTOR_EXTENT(array,dim);
61 if (len < 0)
62 len = 0;
63 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
64
65 for (n = 0; n < dim; n++)
66 {
67 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
68 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
69
70 if (extent[n] < 0)
71 extent[n] = 0;
72 }
73 for (n = dim; n < rank; n++)
74 {
75 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
76 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
77
78 if (extent[n] < 0)
79 extent[n] = 0;
80 }
81
82 if (retarray->data == NULL)
83 {
84 size_t alloc_size, str;
85
86 for (n = 0; n < rank; n++)
87 {
88 if (n == 0)
89 str = 1;
90 else
91 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
92
93 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
94
95 }
96
97 retarray->offset = 0;
98 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
99
100 alloc_size = sizeof (GFC_INTEGER_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
101 * extent[rank-1];
102
103 if (alloc_size == 0)
104 {
105 /* Make sure we have a zero-sized array. */
106 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
107 return;
108
109 }
110 else
111 retarray->data = internal_malloc_size (alloc_size);
112 }
113 else
114 {
115 if (rank != GFC_DESCRIPTOR_RANK (retarray))
116 runtime_error ("rank of return array incorrect in"
117 " SUM intrinsic: is %ld, should be %ld",
118 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
119 (long int) rank);
120
121 if (unlikely (compile_options.bounds_check))
122 {
123 for (n=0; n < rank; n++)
124 {
125 index_type ret_extent;
126
127 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
128 if (extent[n] != ret_extent)
129 runtime_error ("Incorrect extent in return value of"
130 " SUM intrinsic in dimension %ld:"
131 " is %ld, should be %ld", (long int) n + 1,
132 (long int) ret_extent, (long int) extent[n]);
133 }
134 }
135 }
136
137 for (n = 0; n < rank; n++)
138 {
139 count[n] = 0;
140 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
141 if (extent[n] <= 0)
142 len = 0;
143 }
144
145 base = array->data;
146 dest = retarray->data;
147
148 continue_loop = 1;
149 while (continue_loop)
150 {
151 const GFC_INTEGER_8 * restrict src;
152 GFC_INTEGER_8 result;
153 src = base;
154 {
155
156 result = 0;
157 if (len <= 0)
158 *dest = 0;
159 else
160 {
161 for (n = 0; n < len; n++, src += delta)
162 {
163
164 result += *src;
165 }
166 *dest = result;
167 }
168 }
169 /* Advance to the next element. */
170 count[0]++;
171 base += sstride[0];
172 dest += dstride[0];
173 n = 0;
174 while (count[n] == extent[n])
175 {
176 /* When we get to the end of a dimension, reset it and increment
177 the next dimension. */
178 count[n] = 0;
179 /* We could precalculate these products, but this is a less
180 frequently used path so probably not worth it. */
181 base -= sstride[n] * extent[n];
182 dest -= dstride[n] * extent[n];
183 n++;
184 if (n == rank)
185 {
186 /* Break out of the look. */
187 continue_loop = 0;
188 break;
189 }
190 else
191 {
192 count[n]++;
193 base += sstride[n];
194 dest += dstride[n];
195 }
196 }
197 }
198 }
199
200
201 extern void msum_i8 (gfc_array_i8 * const restrict,
202 gfc_array_i8 * const restrict, const index_type * const restrict,
203 gfc_array_l1 * const restrict);
204 export_proto(msum_i8);
205
206 void
207 msum_i8 (gfc_array_i8 * const restrict retarray,
208 gfc_array_i8 * const restrict array,
209 const index_type * const restrict pdim,
210 gfc_array_l1 * const restrict mask)
211 {
212 index_type count[GFC_MAX_DIMENSIONS];
213 index_type extent[GFC_MAX_DIMENSIONS];
214 index_type sstride[GFC_MAX_DIMENSIONS];
215 index_type dstride[GFC_MAX_DIMENSIONS];
216 index_type mstride[GFC_MAX_DIMENSIONS];
217 GFC_INTEGER_8 * restrict dest;
218 const GFC_INTEGER_8 * restrict base;
219 const GFC_LOGICAL_1 * restrict mbase;
220 int rank;
221 int dim;
222 index_type n;
223 index_type len;
224 index_type delta;
225 index_type mdelta;
226 int mask_kind;
227
228 dim = (*pdim) - 1;
229 rank = GFC_DESCRIPTOR_RANK (array) - 1;
230
231 len = GFC_DESCRIPTOR_EXTENT(array,dim);
232 if (len <= 0)
233 return;
234
235 mbase = mask->data;
236
237 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
238
239 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
240 #ifdef HAVE_GFC_LOGICAL_16
241 || mask_kind == 16
242 #endif
243 )
244 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
245 else
246 runtime_error ("Funny sized logical array");
247
248 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
249 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
250
251 for (n = 0; n < dim; n++)
252 {
253 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
254 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
255 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
256
257 if (extent[n] < 0)
258 extent[n] = 0;
259
260 }
261 for (n = dim; n < rank; n++)
262 {
263 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
264 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
265 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
266
267 if (extent[n] < 0)
268 extent[n] = 0;
269 }
270
271 if (retarray->data == NULL)
272 {
273 size_t alloc_size, str;
274
275 for (n = 0; n < rank; n++)
276 {
277 if (n == 0)
278 str = 1;
279 else
280 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
281
282 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
283
284 }
285
286 alloc_size = sizeof (GFC_INTEGER_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
287 * extent[rank-1];
288
289 retarray->offset = 0;
290 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
291
292 if (alloc_size == 0)
293 {
294 /* Make sure we have a zero-sized array. */
295 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
296 return;
297 }
298 else
299 retarray->data = internal_malloc_size (alloc_size);
300
301 }
302 else
303 {
304 if (rank != GFC_DESCRIPTOR_RANK (retarray))
305 runtime_error ("rank of return array incorrect in SUM intrinsic");
306
307 if (unlikely (compile_options.bounds_check))
308 {
309 for (n=0; n < rank; n++)
310 {
311 index_type ret_extent;
312
313 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
314 if (extent[n] != ret_extent)
315 runtime_error ("Incorrect extent in return value of"
316 " SUM intrinsic in dimension %ld:"
317 " is %ld, should be %ld", (long int) n + 1,
318 (long int) ret_extent, (long int) extent[n]);
319 }
320 for (n=0; n<= rank; n++)
321 {
322 index_type mask_extent, array_extent;
323
324 array_extent = GFC_DESCRIPTOR_EXTENT(array,n);
325 mask_extent = GFC_DESCRIPTOR_EXTENT(mask,n);
326 if (array_extent != mask_extent)
327 runtime_error ("Incorrect extent in MASK argument of"
328 " SUM intrinsic in dimension %ld:"
329 " is %ld, should be %ld", (long int) n + 1,
330 (long int) mask_extent, (long int) array_extent);
331 }
332 }
333 }
334
335 for (n = 0; n < rank; n++)
336 {
337 count[n] = 0;
338 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
339 if (extent[n] <= 0)
340 return;
341 }
342
343 dest = retarray->data;
344 base = array->data;
345
346 while (base)
347 {
348 const GFC_INTEGER_8 * restrict src;
349 const GFC_LOGICAL_1 * restrict msrc;
350 GFC_INTEGER_8 result;
351 src = base;
352 msrc = mbase;
353 {
354
355 result = 0;
356 if (len <= 0)
357 *dest = 0;
358 else
359 {
360 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
361 {
362
363 if (*msrc)
364 result += *src;
365 }
366 *dest = result;
367 }
368 }
369 /* Advance to the next element. */
370 count[0]++;
371 base += sstride[0];
372 mbase += mstride[0];
373 dest += dstride[0];
374 n = 0;
375 while (count[n] == extent[n])
376 {
377 /* When we get to the end of a dimension, reset it and increment
378 the next dimension. */
379 count[n] = 0;
380 /* We could precalculate these products, but this is a less
381 frequently used path so probably not worth it. */
382 base -= sstride[n] * extent[n];
383 mbase -= mstride[n] * extent[n];
384 dest -= dstride[n] * extent[n];
385 n++;
386 if (n == rank)
387 {
388 /* Break out of the look. */
389 base = NULL;
390 break;
391 }
392 else
393 {
394 count[n]++;
395 base += sstride[n];
396 mbase += mstride[n];
397 dest += dstride[n];
398 }
399 }
400 }
401 }
402
403
404 extern void ssum_i8 (gfc_array_i8 * const restrict,
405 gfc_array_i8 * const restrict, const index_type * const restrict,
406 GFC_LOGICAL_4 *);
407 export_proto(ssum_i8);
408
409 void
410 ssum_i8 (gfc_array_i8 * const restrict retarray,
411 gfc_array_i8 * const restrict array,
412 const index_type * const restrict pdim,
413 GFC_LOGICAL_4 * mask)
414 {
415 index_type count[GFC_MAX_DIMENSIONS];
416 index_type extent[GFC_MAX_DIMENSIONS];
417 index_type sstride[GFC_MAX_DIMENSIONS];
418 index_type dstride[GFC_MAX_DIMENSIONS];
419 GFC_INTEGER_8 * restrict dest;
420 index_type rank;
421 index_type n;
422 index_type dim;
423
424
425 if (*mask)
426 {
427 sum_i8 (retarray, array, pdim);
428 return;
429 }
430 /* Make dim zero based to avoid confusion. */
431 dim = (*pdim) - 1;
432 rank = GFC_DESCRIPTOR_RANK (array) - 1;
433
434 for (n = 0; n < dim; n++)
435 {
436 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
437 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
438
439 if (extent[n] <= 0)
440 extent[n] = 0;
441 }
442
443 for (n = dim; n < rank; n++)
444 {
445 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
446 extent[n] =
447 GFC_DESCRIPTOR_EXTENT(array,n + 1);
448
449 if (extent[n] <= 0)
450 extent[n] = 0;
451 }
452
453 if (retarray->data == NULL)
454 {
455 size_t alloc_size, str;
456
457 for (n = 0; n < rank; n++)
458 {
459 if (n == 0)
460 str = 1;
461 else
462 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
463
464 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
465
466 }
467
468 retarray->offset = 0;
469 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
470
471 alloc_size = sizeof (GFC_INTEGER_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
472 * extent[rank-1];
473
474 if (alloc_size == 0)
475 {
476 /* Make sure we have a zero-sized array. */
477 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
478 return;
479 }
480 else
481 retarray->data = internal_malloc_size (alloc_size);
482 }
483 else
484 {
485 if (rank != GFC_DESCRIPTOR_RANK (retarray))
486 runtime_error ("rank of return array incorrect in"
487 " SUM intrinsic: is %ld, should be %ld",
488 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
489 (long int) rank);
490
491 if (unlikely (compile_options.bounds_check))
492 {
493 for (n=0; n < rank; n++)
494 {
495 index_type ret_extent;
496
497 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
498 if (extent[n] != ret_extent)
499 runtime_error ("Incorrect extent in return value of"
500 " SUM intrinsic in dimension %ld:"
501 " is %ld, should be %ld", (long int) n + 1,
502 (long int) ret_extent, (long int) extent[n]);
503 }
504 }
505 }
506
507 for (n = 0; n < rank; n++)
508 {
509 count[n] = 0;
510 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
511 }
512
513 dest = retarray->data;
514
515 while(1)
516 {
517 *dest = 0;
518 count[0]++;
519 dest += dstride[0];
520 n = 0;
521 while (count[n] == extent[n])
522 {
523 /* When we get to the end of a dimension, reset it and increment
524 the next dimension. */
525 count[n] = 0;
526 /* We could precalculate these products, but this is a less
527 frequently used path so probably not worth it. */
528 dest -= dstride[n] * extent[n];
529 n++;
530 if (n == rank)
531 return;
532 else
533 {
534 count[n]++;
535 dest += dstride[n];
536 }
537 }
538 }
539 }
540
541 #endif