]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/unpack_i8.c
Licensing changes to GPLv3 resp. GPLv3 with GCC Runtime Exception.
[thirdparty/gcc.git] / libgfortran / generated / unpack_i8.c
1 /* Specific implementation of the UNPACK intrinsic
2 Copyright 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
4 unpack_generic.c by Paul Brook <paul@nowt.org>.
5
6 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7
8 Libgfortran is free software; you can redistribute it and/or
9 modify it under the terms of the GNU General Public
10 License as published by the Free Software Foundation; either
11 version 3 of the License, or (at your option) any later version.
12
13 Ligbfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 #include "libgfortran.h"
28 #include <stdlib.h>
29 #include <assert.h>
30 #include <string.h>
31
32
33 #if defined (HAVE_GFC_INTEGER_8)
34
35 void
36 unpack0_i8 (gfc_array_i8 *ret, const gfc_array_i8 *vector,
37 const gfc_array_l1 *mask, const GFC_INTEGER_8 *fptr)
38 {
39 /* r.* indicates the return array. */
40 index_type rstride[GFC_MAX_DIMENSIONS];
41 index_type rstride0;
42 index_type rs;
43 GFC_INTEGER_8 * restrict rptr;
44 /* v.* indicates the vector array. */
45 index_type vstride0;
46 GFC_INTEGER_8 *vptr;
47 /* Value for field, this is constant. */
48 const GFC_INTEGER_8 fval = *fptr;
49 /* m.* indicates the mask array. */
50 index_type mstride[GFC_MAX_DIMENSIONS];
51 index_type mstride0;
52 const GFC_LOGICAL_1 *mptr;
53
54 index_type count[GFC_MAX_DIMENSIONS];
55 index_type extent[GFC_MAX_DIMENSIONS];
56 index_type n;
57 index_type dim;
58
59 int empty;
60 int mask_kind;
61
62 empty = 0;
63
64 mptr = mask->data;
65
66 /* Use the same loop for all logical types, by using GFC_LOGICAL_1
67 and using shifting to address size and endian issues. */
68
69 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
70
71 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
72 #ifdef HAVE_GFC_LOGICAL_16
73 || mask_kind == 16
74 #endif
75 )
76 {
77 /* Do not convert a NULL pointer as we use test for NULL below. */
78 if (mptr)
79 mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
80 }
81 else
82 runtime_error ("Funny sized logical array");
83
84 if (ret->data == NULL)
85 {
86 /* The front end has signalled that we need to populate the
87 return array descriptor. */
88 dim = GFC_DESCRIPTOR_RANK (mask);
89 rs = 1;
90 for (n = 0; n < dim; n++)
91 {
92 count[n] = 0;
93 ret->dim[n].stride = rs;
94 ret->dim[n].lbound = 0;
95 ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
96 extent[n] = ret->dim[n].ubound + 1;
97 empty = empty || extent[n] <= 0;
98 rstride[n] = ret->dim[n].stride;
99 mstride[n] = mask->dim[n].stride * mask_kind;
100 rs *= extent[n];
101 }
102 ret->offset = 0;
103 ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_8));
104 }
105 else
106 {
107 dim = GFC_DESCRIPTOR_RANK (ret);
108 for (n = 0; n < dim; n++)
109 {
110 count[n] = 0;
111 extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
112 empty = empty || extent[n] <= 0;
113 rstride[n] = ret->dim[n].stride;
114 mstride[n] = mask->dim[n].stride * mask_kind;
115 }
116 if (rstride[0] == 0)
117 rstride[0] = 1;
118 }
119
120 if (empty)
121 return;
122
123 if (mstride[0] == 0)
124 mstride[0] = 1;
125
126 vstride0 = vector->dim[0].stride;
127 if (vstride0 == 0)
128 vstride0 = 1;
129 rstride0 = rstride[0];
130 mstride0 = mstride[0];
131 rptr = ret->data;
132 vptr = vector->data;
133
134 while (rptr)
135 {
136 if (*mptr)
137 {
138 /* From vector. */
139 *rptr = *vptr;
140 vptr += vstride0;
141 }
142 else
143 {
144 /* From field. */
145 *rptr = fval;
146 }
147 /* Advance to the next element. */
148 rptr += rstride0;
149 mptr += mstride0;
150 count[0]++;
151 n = 0;
152 while (count[n] == extent[n])
153 {
154 /* When we get to the end of a dimension, reset it and increment
155 the next dimension. */
156 count[n] = 0;
157 /* We could precalculate these products, but this is a less
158 frequently used path so probably not worth it. */
159 rptr -= rstride[n] * extent[n];
160 mptr -= mstride[n] * extent[n];
161 n++;
162 if (n >= dim)
163 {
164 /* Break out of the loop. */
165 rptr = NULL;
166 break;
167 }
168 else
169 {
170 count[n]++;
171 rptr += rstride[n];
172 mptr += mstride[n];
173 }
174 }
175 }
176 }
177
178 void
179 unpack1_i8 (gfc_array_i8 *ret, const gfc_array_i8 *vector,
180 const gfc_array_l1 *mask, const gfc_array_i8 *field)
181 {
182 /* r.* indicates the return array. */
183 index_type rstride[GFC_MAX_DIMENSIONS];
184 index_type rstride0;
185 index_type rs;
186 GFC_INTEGER_8 * restrict rptr;
187 /* v.* indicates the vector array. */
188 index_type vstride0;
189 GFC_INTEGER_8 *vptr;
190 /* f.* indicates the field array. */
191 index_type fstride[GFC_MAX_DIMENSIONS];
192 index_type fstride0;
193 const GFC_INTEGER_8 *fptr;
194 /* m.* indicates the mask array. */
195 index_type mstride[GFC_MAX_DIMENSIONS];
196 index_type mstride0;
197 const GFC_LOGICAL_1 *mptr;
198
199 index_type count[GFC_MAX_DIMENSIONS];
200 index_type extent[GFC_MAX_DIMENSIONS];
201 index_type n;
202 index_type dim;
203
204 int empty;
205 int mask_kind;
206
207 empty = 0;
208
209 mptr = mask->data;
210
211 /* Use the same loop for all logical types, by using GFC_LOGICAL_1
212 and using shifting to address size and endian issues. */
213
214 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
215
216 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
217 #ifdef HAVE_GFC_LOGICAL_16
218 || mask_kind == 16
219 #endif
220 )
221 {
222 /* Do not convert a NULL pointer as we use test for NULL below. */
223 if (mptr)
224 mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
225 }
226 else
227 runtime_error ("Funny sized logical array");
228
229 if (ret->data == NULL)
230 {
231 /* The front end has signalled that we need to populate the
232 return array descriptor. */
233 dim = GFC_DESCRIPTOR_RANK (mask);
234 rs = 1;
235 for (n = 0; n < dim; n++)
236 {
237 count[n] = 0;
238 ret->dim[n].stride = rs;
239 ret->dim[n].lbound = 0;
240 ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
241 extent[n] = ret->dim[n].ubound + 1;
242 empty = empty || extent[n] <= 0;
243 rstride[n] = ret->dim[n].stride;
244 fstride[n] = field->dim[n].stride;
245 mstride[n] = mask->dim[n].stride * mask_kind;
246 rs *= extent[n];
247 }
248 ret->offset = 0;
249 ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_8));
250 }
251 else
252 {
253 dim = GFC_DESCRIPTOR_RANK (ret);
254 for (n = 0; n < dim; n++)
255 {
256 count[n] = 0;
257 extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
258 empty = empty || extent[n] <= 0;
259 rstride[n] = ret->dim[n].stride;
260 fstride[n] = field->dim[n].stride;
261 mstride[n] = mask->dim[n].stride * mask_kind;
262 }
263 if (rstride[0] == 0)
264 rstride[0] = 1;
265 }
266
267 if (empty)
268 return;
269
270 if (fstride[0] == 0)
271 fstride[0] = 1;
272 if (mstride[0] == 0)
273 mstride[0] = 1;
274
275 vstride0 = vector->dim[0].stride;
276 if (vstride0 == 0)
277 vstride0 = 1;
278 rstride0 = rstride[0];
279 fstride0 = fstride[0];
280 mstride0 = mstride[0];
281 rptr = ret->data;
282 fptr = field->data;
283 vptr = vector->data;
284
285 while (rptr)
286 {
287 if (*mptr)
288 {
289 /* From vector. */
290 *rptr = *vptr;
291 vptr += vstride0;
292 }
293 else
294 {
295 /* From field. */
296 *rptr = *fptr;
297 }
298 /* Advance to the next element. */
299 rptr += rstride0;
300 fptr += fstride0;
301 mptr += mstride0;
302 count[0]++;
303 n = 0;
304 while (count[n] == extent[n])
305 {
306 /* When we get to the end of a dimension, reset it and increment
307 the next dimension. */
308 count[n] = 0;
309 /* We could precalculate these products, but this is a less
310 frequently used path so probably not worth it. */
311 rptr -= rstride[n] * extent[n];
312 fptr -= fstride[n] * extent[n];
313 mptr -= mstride[n] * extent[n];
314 n++;
315 if (n >= dim)
316 {
317 /* Break out of the loop. */
318 rptr = NULL;
319 break;
320 }
321 else
322 {
323 count[n]++;
324 rptr += rstride[n];
325 fptr += fstride[n];
326 mptr += mstride[n];
327 }
328 }
329 }
330 }
331
332 #endif
333