]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/intrinsics/reshape_generic.c
05-04-22 Thomas Koenig <Thomas.Koenig@online.de>
[thirdparty/gcc.git] / libgfortran / intrinsics / reshape_generic.c
1 /* Generic implementation of the RESHAPE intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Ligbfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <string.h>
34 #include <assert.h>
35 #include "libgfortran.h"
36
37 typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
38 typedef GFC_ARRAY_DESCRIPTOR(GFC_MAX_DIMENSIONS, char) parray;
39
40 extern void reshape (parray *, parray *, shape_type *, parray *, shape_type *);
41 export_proto(reshape);
42
43 /* The shape parameter is ignored. We can currently deduce the shape from the
44 return array. */
45
46 void
47 reshape (parray *ret, parray *source, shape_type *shape,
48 parray *pad, shape_type *order)
49 {
50 /* r.* indicates the return array. */
51 index_type rcount[GFC_MAX_DIMENSIONS];
52 index_type rextent[GFC_MAX_DIMENSIONS];
53 index_type rstride[GFC_MAX_DIMENSIONS];
54 index_type rstride0;
55 index_type rdim;
56 index_type rsize;
57 index_type rs;
58 index_type rex;
59 char *rptr;
60 /* s.* indicates the source array. */
61 index_type scount[GFC_MAX_DIMENSIONS];
62 index_type sextent[GFC_MAX_DIMENSIONS];
63 index_type sstride[GFC_MAX_DIMENSIONS];
64 index_type sstride0;
65 index_type sdim;
66 index_type ssize;
67 const char *sptr;
68 /* p.* indicates the pad array. */
69 index_type pcount[GFC_MAX_DIMENSIONS];
70 index_type pextent[GFC_MAX_DIMENSIONS];
71 index_type pstride[GFC_MAX_DIMENSIONS];
72 index_type pdim;
73 index_type psize;
74 const char *pptr;
75
76 const char *src;
77 int n;
78 int dim;
79 int size;
80
81 if (source->dim[0].stride == 0)
82 source->dim[0].stride = 1;
83 if (shape->dim[0].stride == 0)
84 shape->dim[0].stride = 1;
85 if (pad && pad->dim[0].stride == 0)
86 pad->dim[0].stride = 1;
87 if (order && order->dim[0].stride == 0)
88 order->dim[0].stride = 1;
89
90 if (ret->data == NULL)
91 {
92 size = GFC_DESCRIPTOR_SIZE (ret);
93 rdim = shape->dim[0].ubound - shape->dim[0].lbound + 1;
94 rs = 1;
95 for (n=0; n < rdim; n++)
96 {
97 ret->dim[n].lbound = 0;
98 rex = shape->data[n * shape->dim[0].stride];
99 ret->dim[n].ubound = rex - 1;
100 ret->dim[n].stride = rs;
101 rs *= rex;
102 }
103 ret->base = 0;
104 ret->data = internal_malloc_size ( rs * size );
105 ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
106 }
107 else
108 {
109 size = GFC_DESCRIPTOR_SIZE (ret);
110 rdim = GFC_DESCRIPTOR_RANK (ret);
111 if (ret->dim[0].stride == 0)
112 ret->dim[0].stride = 1;
113 }
114
115 rsize = 1;
116 for (n = 0; n < rdim; n++)
117 {
118 if (order)
119 dim = order->data[n * order->dim[0].stride] - 1;
120 else
121 dim = n;
122
123 rcount[n] = 0;
124 rstride[n] = ret->dim[dim].stride;
125 rextent[n] = ret->dim[dim].ubound + 1 - ret->dim[dim].lbound;
126
127 if (rextent[n] != shape->data[dim * shape->dim[0].stride])
128 runtime_error ("shape and target do not conform");
129
130 if (rsize == rstride[n])
131 rsize *= rextent[n];
132 else
133 rsize = 0;
134 if (rextent[n] <= 0)
135 return;
136 }
137
138 sdim = GFC_DESCRIPTOR_RANK (source);
139 ssize = 1;
140 for (n = 0; n < sdim; n++)
141 {
142 scount[n] = 0;
143 sstride[n] = source->dim[n].stride;
144 sextent[n] = source->dim[n].ubound + 1 - source->dim[n].lbound;
145 if (sextent[n] <= 0)
146 abort ();
147
148 if (ssize == sstride[n])
149 ssize *= sextent[n];
150 else
151 ssize = 0;
152 }
153
154 if (pad)
155 {
156 pdim = GFC_DESCRIPTOR_RANK (pad);
157 psize = 1;
158 for (n = 0; n < pdim; n++)
159 {
160 pcount[n] = 0;
161 pstride[n] = pad->dim[n].stride;
162 pextent[n] = pad->dim[n].ubound + 1 - pad->dim[n].lbound;
163 if (pextent[n] <= 0)
164 abort ();
165 if (psize == pstride[n])
166 psize *= pextent[n];
167 else
168 psize = 0;
169 }
170 pptr = pad->data;
171 }
172 else
173 {
174 pdim = 0;
175 psize = 1;
176 pptr = NULL;
177 }
178
179 if (rsize != 0 && ssize != 0 && psize != 0)
180 {
181 rsize *= size;
182 ssize *= size;
183 psize *= size;
184 reshape_packed (ret->data, rsize, source->data, ssize,
185 pad ? pad->data : NULL, psize);
186 return;
187 }
188 rptr = ret->data;
189 src = sptr = source->data;
190 rstride0 = rstride[0] * size;
191 sstride0 = sstride[0] * size;
192
193 while (rptr)
194 {
195 /* Select between the source and pad arrays. */
196 memcpy(rptr, src, size);
197 /* Advance to the next element. */
198 rptr += rstride0;
199 src += sstride0;
200 rcount[0]++;
201 scount[0]++;
202 /* Advance to the next destination element. */
203 n = 0;
204 while (rcount[n] == rextent[n])
205 {
206 /* When we get to the end of a dimension, reset it and increment
207 the next dimension. */
208 rcount[n] = 0;
209 /* We could precalculate these products, but this is a less
210 frequently used path so proabably not worth it. */
211 rptr -= rstride[n] * rextent[n] * size;
212 n++;
213 if (n == rdim)
214 {
215 /* Break out of the loop. */
216 rptr = NULL;
217 break;
218 }
219 else
220 {
221 rcount[n]++;
222 rptr += rstride[n] * size;
223 }
224 }
225 /* Advance to the next source element. */
226 n = 0;
227 while (scount[n] == sextent[n])
228 {
229 /* When we get to the end of a dimension, reset it and increment
230 the next dimension. */
231 scount[n] = 0;
232 /* We could precalculate these products, but this is a less
233 frequently used path so proabably not worth it. */
234 src -= sstride[n] * sextent[n] * size;
235 n++;
236 if (n == sdim)
237 {
238 if (sptr && pad)
239 {
240 /* Switch to the pad array. */
241 sptr = NULL;
242 sdim = pdim;
243 for (dim = 0; dim < pdim; dim++)
244 {
245 scount[dim] = pcount[dim];
246 sextent[dim] = pextent[dim];
247 sstride[dim] = pstride[dim];
248 sstride0 = sstride[0] * size;
249 }
250 }
251 /* We now start again from the beginning of the pad array. */
252 src = pptr;
253 break;
254 }
255 else
256 {
257 scount[n]++;
258 sptr += sstride[n] * size;
259 }
260 }
261 }
262 }