]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/io/unit.c
re PR libfortran/31532 (INQUIRE(...,POSITION=...) not standard conforming)
[thirdparty/gcc.git] / libgfortran / io / unit.c
1 /* Copyright (C) 2002, 2003, 2005 Free Software Foundation, Inc.
2 Contributed by Andy Vaught
3
4 This file is part of the GNU Fortran 95 runtime library (libgfortran).
5
6 Libgfortran is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 In addition to the permissions in the GNU General Public License, the
12 Free Software Foundation gives you unlimited permission to link the
13 compiled version of this file into combinations with other programs,
14 and to distribute those combinations without any restriction coming
15 from the use of this file. (The General Public License restrictions
16 do apply in other respects; for example, they cover modification of
17 the file, and distribution when not linked into a combine
18 executable.)
19
20 Libgfortran is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with Libgfortran; see the file COPYING. If not, write to
27 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
28 Boston, MA 02110-1301, USA. */
29
30 #include "config.h"
31 #include <stdlib.h>
32 #include <string.h>
33 #include "libgfortran.h"
34 #include "io.h"
35
36
37 /* IO locking rules:
38 UNIT_LOCK is a master lock, protecting UNIT_ROOT tree and UNIT_CACHE.
39 Concurrent use of different units should be supported, so
40 each unit has its own lock, LOCK.
41 Open should be atomic with its reopening of units and list_read.c
42 in several places needs find_unit another unit while holding stdin
43 unit's lock, so it must be possible to acquire UNIT_LOCK while holding
44 some unit's lock. Therefore to avoid deadlocks, it is forbidden
45 to acquire unit's private locks while holding UNIT_LOCK, except
46 for freshly created units (where no other thread can get at their
47 address yet) or when using just trylock rather than lock operation.
48 In addition to unit's private lock each unit has a WAITERS counter
49 and CLOSED flag. WAITERS counter must be either only
50 atomically incremented/decremented in all places (if atomic builtins
51 are supported), or protected by UNIT_LOCK in all places (otherwise).
52 CLOSED flag must be always protected by unit's LOCK.
53 After finding a unit in UNIT_CACHE or UNIT_ROOT with UNIT_LOCK held,
54 WAITERS must be incremented to avoid concurrent close from freeing
55 the unit between unlocking UNIT_LOCK and acquiring unit's LOCK.
56 Unit freeing is always done under UNIT_LOCK. If close_unit sees any
57 WAITERS, it doesn't free the unit but instead sets the CLOSED flag
58 and the thread that decrements WAITERS to zero while CLOSED flag is
59 set is responsible for freeing it (while holding UNIT_LOCK).
60 flush_all_units operation is iterating over the unit tree with
61 increasing UNIT_NUMBER while holding UNIT_LOCK and attempting to
62 flush each unit (and therefore needs the unit's LOCK held as well).
63 To avoid deadlocks, it just trylocks the LOCK and if unsuccessful,
64 remembers the current unit's UNIT_NUMBER, unlocks UNIT_LOCK, acquires
65 unit's LOCK and after flushing reacquires UNIT_LOCK and restarts with
66 the smallest UNIT_NUMBER above the last one flushed.
67
68 If find_unit/find_or_create_unit/find_file/get_unit routines return
69 non-NULL, the returned unit has its private lock locked and when the
70 caller is done with it, it must call either unlock_unit or close_unit
71 on it. unlock_unit or close_unit must be always called only with the
72 private lock held. */
73
74 /* Subroutines related to units */
75
76
77 #define CACHE_SIZE 3
78 static gfc_unit *unit_cache[CACHE_SIZE];
79 gfc_offset max_offset;
80 gfc_unit *unit_root;
81 #ifdef __GTHREAD_MUTEX_INIT
82 __gthread_mutex_t unit_lock = __GTHREAD_MUTEX_INIT;
83 #else
84 __gthread_mutex_t unit_lock;
85 #endif
86
87 /* This implementation is based on Stefan Nilsson's article in the
88 * July 1997 Doctor Dobb's Journal, "Treaps in Java". */
89
90 /* pseudo_random()-- Simple linear congruential pseudorandom number
91 * generator. The period of this generator is 44071, which is plenty
92 * for our purposes. */
93
94 static int
95 pseudo_random (void)
96 {
97 static int x0 = 5341;
98
99 x0 = (22611 * x0 + 10) % 44071;
100 return x0;
101 }
102
103
104 /* rotate_left()-- Rotate the treap left */
105
106 static gfc_unit *
107 rotate_left (gfc_unit * t)
108 {
109 gfc_unit *temp;
110
111 temp = t->right;
112 t->right = t->right->left;
113 temp->left = t;
114
115 return temp;
116 }
117
118
119 /* rotate_right()-- Rotate the treap right */
120
121 static gfc_unit *
122 rotate_right (gfc_unit * t)
123 {
124 gfc_unit *temp;
125
126 temp = t->left;
127 t->left = t->left->right;
128 temp->right = t;
129
130 return temp;
131 }
132
133
134
135 static int
136 compare (int a, int b)
137 {
138 if (a < b)
139 return -1;
140 if (a > b)
141 return 1;
142
143 return 0;
144 }
145
146
147 /* insert()-- Recursive insertion function. Returns the updated treap. */
148
149 static gfc_unit *
150 insert (gfc_unit *new, gfc_unit *t)
151 {
152 int c;
153
154 if (t == NULL)
155 return new;
156
157 c = compare (new->unit_number, t->unit_number);
158
159 if (c < 0)
160 {
161 t->left = insert (new, t->left);
162 if (t->priority < t->left->priority)
163 t = rotate_right (t);
164 }
165
166 if (c > 0)
167 {
168 t->right = insert (new, t->right);
169 if (t->priority < t->right->priority)
170 t = rotate_left (t);
171 }
172
173 if (c == 0)
174 internal_error (NULL, "insert(): Duplicate key found!");
175
176 return t;
177 }
178
179
180 /* insert_unit()-- Create a new node, insert it into the treap. */
181
182 static gfc_unit *
183 insert_unit (int n)
184 {
185 gfc_unit *u = get_mem (sizeof (gfc_unit));
186 memset (u, '\0', sizeof (gfc_unit));
187 u->unit_number = n;
188 #ifdef __GTHREAD_MUTEX_INIT
189 {
190 __gthread_mutex_t tmp = __GTHREAD_MUTEX_INIT;
191 u->lock = tmp;
192 }
193 #else
194 __GTHREAD_MUTEX_INIT_FUNCTION (&u->lock);
195 #endif
196 __gthread_mutex_lock (&u->lock);
197 u->priority = pseudo_random ();
198 unit_root = insert (u, unit_root);
199 return u;
200 }
201
202
203 static gfc_unit *
204 delete_root (gfc_unit * t)
205 {
206 gfc_unit *temp;
207
208 if (t->left == NULL)
209 return t->right;
210 if (t->right == NULL)
211 return t->left;
212
213 if (t->left->priority > t->right->priority)
214 {
215 temp = rotate_right (t);
216 temp->right = delete_root (t);
217 }
218 else
219 {
220 temp = rotate_left (t);
221 temp->left = delete_root (t);
222 }
223
224 return temp;
225 }
226
227
228 /* delete_treap()-- Delete an element from a tree. The 'old' value
229 * does not necessarily have to point to the element to be deleted, it
230 * must just point to a treap structure with the key to be deleted.
231 * Returns the new root node of the tree. */
232
233 static gfc_unit *
234 delete_treap (gfc_unit * old, gfc_unit * t)
235 {
236 int c;
237
238 if (t == NULL)
239 return NULL;
240
241 c = compare (old->unit_number, t->unit_number);
242
243 if (c < 0)
244 t->left = delete_treap (old, t->left);
245 if (c > 0)
246 t->right = delete_treap (old, t->right);
247 if (c == 0)
248 t = delete_root (t);
249
250 return t;
251 }
252
253
254 /* delete_unit()-- Delete a unit from a tree */
255
256 static void
257 delete_unit (gfc_unit * old)
258 {
259 unit_root = delete_treap (old, unit_root);
260 }
261
262
263 /* get_external_unit()-- Given an integer, return a pointer to the unit
264 * structure. Returns NULL if the unit does not exist,
265 * otherwise returns a locked unit. */
266
267 static gfc_unit *
268 get_external_unit (int n, int do_create)
269 {
270 gfc_unit *p;
271 int c, created = 0;
272
273 __gthread_mutex_lock (&unit_lock);
274 retry:
275 for (c = 0; c < CACHE_SIZE; c++)
276 if (unit_cache[c] != NULL && unit_cache[c]->unit_number == n)
277 {
278 p = unit_cache[c];
279 goto found;
280 }
281
282 p = unit_root;
283 while (p != NULL)
284 {
285 c = compare (n, p->unit_number);
286 if (c < 0)
287 p = p->left;
288 if (c > 0)
289 p = p->right;
290 if (c == 0)
291 break;
292 }
293
294 if (p == NULL && do_create)
295 {
296 p = insert_unit (n);
297 created = 1;
298 }
299
300 if (p != NULL)
301 {
302 for (c = 0; c < CACHE_SIZE - 1; c++)
303 unit_cache[c] = unit_cache[c + 1];
304
305 unit_cache[CACHE_SIZE - 1] = p;
306 }
307
308 if (created)
309 {
310 /* Newly created units have their lock held already
311 from insert_unit. Just unlock UNIT_LOCK and return. */
312 __gthread_mutex_unlock (&unit_lock);
313 return p;
314 }
315
316 found:
317 if (p != NULL)
318 {
319 /* Fast path. */
320 if (! __gthread_mutex_trylock (&p->lock))
321 {
322 /* assert (p->closed == 0); */
323 __gthread_mutex_unlock (&unit_lock);
324 return p;
325 }
326
327 inc_waiting_locked (p);
328 }
329
330 __gthread_mutex_unlock (&unit_lock);
331
332 if (p != NULL)
333 {
334 __gthread_mutex_lock (&p->lock);
335 if (p->closed)
336 {
337 __gthread_mutex_lock (&unit_lock);
338 __gthread_mutex_unlock (&p->lock);
339 if (predec_waiting_locked (p) == 0)
340 free_mem (p);
341 goto retry;
342 }
343
344 dec_waiting_unlocked (p);
345 }
346 return p;
347 }
348
349
350 gfc_unit *
351 find_unit (int n)
352 {
353 return get_external_unit (n, 0);
354 }
355
356
357 gfc_unit *
358 find_or_create_unit (int n)
359 {
360 return get_external_unit (n, 1);
361 }
362
363
364 gfc_unit *
365 get_internal_unit (st_parameter_dt *dtp)
366 {
367 gfc_unit * iunit;
368
369 /* Allocate memory for a unit structure. */
370
371 iunit = get_mem (sizeof (gfc_unit));
372 if (iunit == NULL)
373 {
374 generate_error (&dtp->common, ERROR_INTERNAL_UNIT, NULL);
375 return NULL;
376 }
377
378 memset (iunit, '\0', sizeof (gfc_unit));
379 #ifdef __GTHREAD_MUTEX_INIT
380 {
381 __gthread_mutex_t tmp = __GTHREAD_MUTEX_INIT;
382 iunit->lock = tmp;
383 }
384 #else
385 __GTHREAD_MUTEX_INIT_FUNCTION (&iunit->lock);
386 #endif
387 __gthread_mutex_lock (&iunit->lock);
388
389 iunit->recl = dtp->internal_unit_len;
390
391 /* For internal units we set the unit number to -1.
392 Otherwise internal units can be mistaken for a pre-connected unit or
393 some other file I/O unit. */
394 iunit->unit_number = -1;
395
396 /* Set up the looping specification from the array descriptor, if any. */
397
398 if (is_array_io (dtp))
399 {
400 iunit->rank = GFC_DESCRIPTOR_RANK (dtp->internal_unit_desc);
401 iunit->ls = (array_loop_spec *)
402 get_mem (iunit->rank * sizeof (array_loop_spec));
403 dtp->internal_unit_len *=
404 init_loop_spec (dtp->internal_unit_desc, iunit->ls);
405 }
406
407 /* Set initial values for unit parameters. */
408
409 iunit->s = open_internal (dtp->internal_unit, dtp->internal_unit_len);
410 iunit->bytes_left = iunit->recl;
411 iunit->last_record=0;
412 iunit->maxrec=0;
413 iunit->current_record=0;
414 iunit->read_bad = 0;
415
416 /* Set flags for the internal unit. */
417
418 iunit->flags.access = ACCESS_SEQUENTIAL;
419 iunit->flags.action = ACTION_READWRITE;
420 iunit->flags.form = FORM_FORMATTED;
421 iunit->flags.pad = PAD_YES;
422 iunit->flags.status = STATUS_UNSPECIFIED;
423 iunit->endfile = NO_ENDFILE;
424
425 /* Initialize the data transfer parameters. */
426
427 dtp->u.p.advance_status = ADVANCE_YES;
428 dtp->u.p.blank_status = BLANK_UNSPECIFIED;
429 dtp->u.p.seen_dollar = 0;
430 dtp->u.p.skips = 0;
431 dtp->u.p.pending_spaces = 0;
432 dtp->u.p.max_pos = 0;
433 dtp->u.p.at_eof = 0;
434
435 /* This flag tells us the unit is assigned to internal I/O. */
436
437 dtp->u.p.unit_is_internal = 1;
438
439 return iunit;
440 }
441
442
443 /* free_internal_unit()-- Free memory allocated for internal units if any. */
444 void
445 free_internal_unit (st_parameter_dt *dtp)
446 {
447 if (!is_internal_unit (dtp))
448 return;
449
450 if (dtp->u.p.current_unit->ls != NULL)
451 free_mem (dtp->u.p.current_unit->ls);
452
453 sclose (dtp->u.p.current_unit->s);
454
455 if (dtp->u.p.current_unit != NULL)
456 free_mem (dtp->u.p.current_unit);
457 }
458
459
460 /* get_unit()-- Returns the unit structure associated with the integer
461 * unit or the internal file. */
462
463 gfc_unit *
464 get_unit (st_parameter_dt *dtp, int do_create)
465 {
466
467 if ((dtp->common.flags & IOPARM_DT_HAS_INTERNAL_UNIT) != 0)
468 return get_internal_unit(dtp);
469
470 /* Has to be an external unit */
471
472 dtp->u.p.unit_is_internal = 0;
473 dtp->internal_unit_desc = NULL;
474
475 return get_external_unit (dtp->common.unit, do_create);
476 }
477
478
479 /* is_internal_unit()-- Determine if the current unit is internal or not */
480
481 int
482 is_internal_unit (st_parameter_dt *dtp)
483 {
484 return dtp->u.p.unit_is_internal;
485 }
486
487
488 /* is_array_io ()-- Determine if the I/O is to/from an array */
489
490 int
491 is_array_io (st_parameter_dt *dtp)
492 {
493 return dtp->internal_unit_desc != NULL;
494 }
495
496
497 /* is_stream_io () -- Determine if I/O is access="stream" mode */
498
499 int
500 is_stream_io (st_parameter_dt *dtp)
501 {
502 return dtp->u.p.current_unit->flags.access == ACCESS_STREAM;
503 }
504
505
506 /*************************/
507 /* Initialize everything */
508
509 void
510 init_units (void)
511 {
512 gfc_unit *u;
513 unsigned int i;
514
515 #ifndef __GTHREAD_MUTEX_INIT
516 __GTHREAD_MUTEX_INIT_FUNCTION (&unit_lock);
517 #endif
518
519 if (options.stdin_unit >= 0)
520 { /* STDIN */
521 u = insert_unit (options.stdin_unit);
522 u->s = input_stream ();
523
524 u->flags.action = ACTION_READ;
525
526 u->flags.access = ACCESS_SEQUENTIAL;
527 u->flags.form = FORM_FORMATTED;
528 u->flags.status = STATUS_OLD;
529 u->flags.blank = BLANK_NULL;
530 u->flags.pad = PAD_YES;
531 u->flags.position = POSITION_ASIS;
532
533 u->recl = options.default_recl;
534 u->endfile = NO_ENDFILE;
535
536 __gthread_mutex_unlock (&u->lock);
537 }
538
539 if (options.stdout_unit >= 0)
540 { /* STDOUT */
541 u = insert_unit (options.stdout_unit);
542 u->s = output_stream ();
543
544 u->flags.action = ACTION_WRITE;
545
546 u->flags.access = ACCESS_SEQUENTIAL;
547 u->flags.form = FORM_FORMATTED;
548 u->flags.status = STATUS_OLD;
549 u->flags.blank = BLANK_NULL;
550 u->flags.position = POSITION_ASIS;
551
552 u->recl = options.default_recl;
553 u->endfile = AT_ENDFILE;
554
555 __gthread_mutex_unlock (&u->lock);
556 }
557
558 if (options.stderr_unit >= 0)
559 { /* STDERR */
560 u = insert_unit (options.stderr_unit);
561 u->s = error_stream ();
562
563 u->flags.action = ACTION_WRITE;
564
565 u->flags.access = ACCESS_SEQUENTIAL;
566 u->flags.form = FORM_FORMATTED;
567 u->flags.status = STATUS_OLD;
568 u->flags.blank = BLANK_NULL;
569 u->flags.position = POSITION_ASIS;
570
571 u->recl = options.default_recl;
572 u->endfile = AT_ENDFILE;
573
574 __gthread_mutex_unlock (&u->lock);
575 }
576
577 /* Calculate the maximum file offset in a portable manner.
578 * max will be the largest signed number for the type gfc_offset.
579 *
580 * set a 1 in the LSB and keep a running sum, stopping at MSB-1 bit. */
581
582 max_offset = 0;
583 for (i = 0; i < sizeof (max_offset) * 8 - 1; i++)
584 max_offset = max_offset + ((gfc_offset) 1 << i);
585 }
586
587
588 static int
589 close_unit_1 (gfc_unit *u, int locked)
590 {
591 int i, rc;
592
593 /* If there are previously written bytes from a write with ADVANCE="no"
594 Reposition the buffer before closing. */
595 if (u->saved_pos > 0)
596 {
597 char *p;
598
599 p = salloc_w (u->s, &u->saved_pos);
600
601 if (!(u->unit_number == options.stdout_unit
602 || u->unit_number == options.stderr_unit))
603 {
604 size_t len;
605
606 const char crlf[] = "\r\n";
607 #ifdef HAVE_CRLF
608 len = 2;
609 #else
610 len = 1;
611 #endif
612 if (swrite (u->s, &crlf[2-len], &len) != 0)
613 os_error ("Close after ADVANCE_NO failed");
614 }
615 }
616
617 rc = (u->s == NULL) ? 0 : sclose (u->s) == FAILURE;
618
619 u->closed = 1;
620 if (!locked)
621 __gthread_mutex_lock (&unit_lock);
622
623 for (i = 0; i < CACHE_SIZE; i++)
624 if (unit_cache[i] == u)
625 unit_cache[i] = NULL;
626
627 delete_unit (u);
628
629 if (u->file)
630 free_mem (u->file);
631 u->file = NULL;
632 u->file_len = 0;
633
634 if (!locked)
635 __gthread_mutex_unlock (&u->lock);
636
637 /* If there are any threads waiting in find_unit for this unit,
638 avoid freeing the memory, the last such thread will free it
639 instead. */
640 if (u->waiting == 0)
641 free_mem (u);
642
643 if (!locked)
644 __gthread_mutex_unlock (&unit_lock);
645
646 return rc;
647 }
648
649 void
650 unlock_unit (gfc_unit *u)
651 {
652 __gthread_mutex_unlock (&u->lock);
653 }
654
655 /* close_unit()-- Close a unit. The stream is closed, and any memory
656 * associated with the stream is freed. Returns nonzero on I/O error.
657 * Should be called with the u->lock locked. */
658
659 int
660 close_unit (gfc_unit *u)
661 {
662 return close_unit_1 (u, 0);
663 }
664
665
666 /* close_units()-- Delete units on completion. We just keep deleting
667 * the root of the treap until there is nothing left.
668 * Not sure what to do with locking here. Some other thread might be
669 * holding some unit's lock and perhaps hold it indefinitely
670 * (e.g. waiting for input from some pipe) and close_units shouldn't
671 * delay the program too much. */
672
673 void
674 close_units (void)
675 {
676 __gthread_mutex_lock (&unit_lock);
677 while (unit_root != NULL)
678 close_unit_1 (unit_root, 1);
679 __gthread_mutex_unlock (&unit_lock);
680 }
681
682
683 /* update_position()-- Update the flags position for later use by inquire. */
684
685 void
686 update_position (gfc_unit *u)
687 {
688 if (file_position (u->s) == 0)
689 u->flags.position = POSITION_REWIND;
690 else if (file_length (u->s) == file_position (u->s))
691 u->flags.position = POSITION_APPEND;
692 else
693 u->flags.position = POSITION_ASIS;
694 }