]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/io/unix.c
unix.c (tempfile_open): Only use the needed flag O_CLOEXEC.
[thirdparty/gcc.git] / libgfortran / io / unix.c
1 /* Copyright (C) 2002-2013 Free Software Foundation, Inc.
2 Contributed by Andy Vaught
3 F2003 I/O support contributed by Jerry DeLisle
4
5 This file is part of the GNU Fortran runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* Unix stream I/O module */
27
28 #include "io.h"
29 #include "unix.h"
30 #include <stdlib.h>
31 #include <limits.h>
32
33 #ifdef HAVE_UNISTD_H
34 #include <unistd.h>
35 #endif
36
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include <assert.h>
40
41 #include <string.h>
42 #include <errno.h>
43
44
45 /* For mingw, we don't identify files by their inode number, but by a
46 64-bit identifier created from a BY_HANDLE_FILE_INFORMATION. */
47 #ifdef __MINGW32__
48
49 #define WIN32_LEAN_AND_MEAN
50 #include <windows.h>
51
52 #if !defined(_FILE_OFFSET_BITS) || _FILE_OFFSET_BITS != 64
53 #undef lseek
54 #define lseek _lseeki64
55 #undef fstat
56 #define fstat _fstati64
57 #undef stat
58 #define stat _stati64
59 #endif
60
61 #ifndef HAVE_WORKING_STAT
62 static uint64_t
63 id_from_handle (HANDLE hFile)
64 {
65 BY_HANDLE_FILE_INFORMATION FileInformation;
66
67 if (hFile == INVALID_HANDLE_VALUE)
68 return 0;
69
70 memset (&FileInformation, 0, sizeof(FileInformation));
71 if (!GetFileInformationByHandle (hFile, &FileInformation))
72 return 0;
73
74 return ((uint64_t) FileInformation.nFileIndexLow)
75 | (((uint64_t) FileInformation.nFileIndexHigh) << 32);
76 }
77
78
79 static uint64_t
80 id_from_path (const char *path)
81 {
82 HANDLE hFile;
83 uint64_t res;
84
85 if (!path || !*path || access (path, F_OK))
86 return (uint64_t) -1;
87
88 hFile = CreateFile (path, 0, 0, NULL, OPEN_EXISTING,
89 FILE_FLAG_BACKUP_SEMANTICS | FILE_ATTRIBUTE_READONLY,
90 NULL);
91 res = id_from_handle (hFile);
92 CloseHandle (hFile);
93 return res;
94 }
95
96
97 static uint64_t
98 id_from_fd (const int fd)
99 {
100 return id_from_handle ((HANDLE) _get_osfhandle (fd));
101 }
102
103 #endif /* HAVE_WORKING_STAT */
104 #endif /* __MINGW32__ */
105
106
107 /* min macro that evaluates its arguments only once. */
108 #ifdef min
109 #undef min
110 #endif
111
112 #define min(a,b) \
113 ({ typeof (a) _a = (a); \
114 typeof (b) _b = (b); \
115 _a < _b ? _a : _b; })
116
117 #ifndef PATH_MAX
118 #define PATH_MAX 1024
119 #endif
120
121 /* These flags aren't defined on all targets (mingw32), so provide them
122 here. */
123 #ifndef S_IRGRP
124 #define S_IRGRP 0
125 #endif
126
127 #ifndef S_IWGRP
128 #define S_IWGRP 0
129 #endif
130
131 #ifndef S_IROTH
132 #define S_IROTH 0
133 #endif
134
135 #ifndef S_IWOTH
136 #define S_IWOTH 0
137 #endif
138
139
140 #ifndef HAVE_ACCESS
141
142 #ifndef W_OK
143 #define W_OK 2
144 #endif
145
146 #ifndef R_OK
147 #define R_OK 4
148 #endif
149
150 #ifndef F_OK
151 #define F_OK 0
152 #endif
153
154 /* Fallback implementation of access() on systems that don't have it.
155 Only modes R_OK, W_OK and F_OK are used in this file. */
156
157 static int
158 fallback_access (const char *path, int mode)
159 {
160 int fd;
161
162 if ((mode & R_OK) && (fd = open (path, O_RDONLY)) < 0)
163 return -1;
164 close (fd);
165
166 if ((mode & W_OK) && (fd = open (path, O_WRONLY)) < 0)
167 return -1;
168 close (fd);
169
170 if (mode == F_OK)
171 {
172 struct stat st;
173 return stat (path, &st);
174 }
175
176 return 0;
177 }
178
179 #undef access
180 #define access fallback_access
181 #endif
182
183
184 /* Fallback directory for creating temporary files. P_tmpdir is
185 defined on many POSIX platforms. */
186 #ifndef P_tmpdir
187 #ifdef _P_tmpdir
188 #define P_tmpdir _P_tmpdir /* MinGW */
189 #else
190 #define P_tmpdir "/tmp"
191 #endif
192 #endif
193
194
195 /* Unix and internal stream I/O module */
196
197 static const int BUFFER_SIZE = 8192;
198
199 typedef struct
200 {
201 stream st;
202
203 gfc_offset buffer_offset; /* File offset of the start of the buffer */
204 gfc_offset physical_offset; /* Current physical file offset */
205 gfc_offset logical_offset; /* Current logical file offset */
206 gfc_offset file_length; /* Length of the file. */
207
208 char *buffer; /* Pointer to the buffer. */
209 int fd; /* The POSIX file descriptor. */
210
211 int active; /* Length of valid bytes in the buffer */
212
213 int ndirty; /* Dirty bytes starting at buffer_offset */
214
215 /* Cached stat(2) values. */
216 dev_t st_dev;
217 ino_t st_ino;
218
219 bool unbuffered; /* Buffer should be flushed after each I/O statement. */
220 }
221 unix_stream;
222
223
224 /* fix_fd()-- Given a file descriptor, make sure it is not one of the
225 * standard descriptors, returning a non-standard descriptor. If the
226 * user specifies that system errors should go to standard output,
227 * then closes standard output, we don't want the system errors to a
228 * file that has been given file descriptor 1 or 0. We want to send
229 * the error to the invalid descriptor. */
230
231 static int
232 fix_fd (int fd)
233 {
234 #ifdef HAVE_DUP
235 int input, output, error;
236
237 input = output = error = 0;
238
239 /* Unix allocates the lowest descriptors first, so a loop is not
240 required, but this order is. */
241 if (fd == STDIN_FILENO)
242 {
243 fd = dup (fd);
244 input = 1;
245 }
246 if (fd == STDOUT_FILENO)
247 {
248 fd = dup (fd);
249 output = 1;
250 }
251 if (fd == STDERR_FILENO)
252 {
253 fd = dup (fd);
254 error = 1;
255 }
256
257 if (input)
258 close (STDIN_FILENO);
259 if (output)
260 close (STDOUT_FILENO);
261 if (error)
262 close (STDERR_FILENO);
263 #endif
264
265 return fd;
266 }
267
268
269 /* If the stream corresponds to a preconnected unit, we flush the
270 corresponding C stream. This is bugware for mixed C-Fortran codes
271 where the C code doesn't flush I/O before returning. */
272 void
273 flush_if_preconnected (stream * s)
274 {
275 int fd;
276
277 fd = ((unix_stream *) s)->fd;
278 if (fd == STDIN_FILENO)
279 fflush (stdin);
280 else if (fd == STDOUT_FILENO)
281 fflush (stdout);
282 else if (fd == STDERR_FILENO)
283 fflush (stderr);
284 }
285
286
287 /********************************************************************
288 Raw I/O functions (read, write, seek, tell, truncate, close).
289
290 These functions wrap the basic POSIX I/O syscalls. Any deviation in
291 semantics is a bug, except the following: write restarts in case
292 of being interrupted by a signal, and as the first argument the
293 functions take the unix_stream struct rather than an integer file
294 descriptor. Also, for POSIX read() and write() a nbyte argument larger
295 than SSIZE_MAX is undefined; here the type of nbyte is ssize_t rather
296 than size_t as for POSIX read/write.
297 *********************************************************************/
298
299 static int
300 raw_flush (unix_stream * s __attribute__ ((unused)))
301 {
302 return 0;
303 }
304
305 static ssize_t
306 raw_read (unix_stream * s, void * buf, ssize_t nbyte)
307 {
308 /* For read we can't do I/O in a loop like raw_write does, because
309 that will break applications that wait for interactive I/O. */
310 return read (s->fd, buf, nbyte);
311 }
312
313 static ssize_t
314 raw_write (unix_stream * s, const void * buf, ssize_t nbyte)
315 {
316 ssize_t trans, bytes_left;
317 char *buf_st;
318
319 bytes_left = nbyte;
320 buf_st = (char *) buf;
321
322 /* We must write in a loop since some systems don't restart system
323 calls in case of a signal. */
324 while (bytes_left > 0)
325 {
326 trans = write (s->fd, buf_st, bytes_left);
327 if (trans < 0)
328 {
329 if (errno == EINTR)
330 continue;
331 else
332 return trans;
333 }
334 buf_st += trans;
335 bytes_left -= trans;
336 }
337
338 return nbyte - bytes_left;
339 }
340
341 static gfc_offset
342 raw_seek (unix_stream * s, gfc_offset offset, int whence)
343 {
344 return lseek (s->fd, offset, whence);
345 }
346
347 static gfc_offset
348 raw_tell (unix_stream * s)
349 {
350 return lseek (s->fd, 0, SEEK_CUR);
351 }
352
353 static gfc_offset
354 raw_size (unix_stream * s)
355 {
356 struct stat statbuf;
357 int ret = fstat (s->fd, &statbuf);
358 if (ret == -1)
359 return ret;
360 if (S_ISREG (statbuf.st_mode))
361 return statbuf.st_size;
362 else
363 return 0;
364 }
365
366 static int
367 raw_truncate (unix_stream * s, gfc_offset length)
368 {
369 #ifdef __MINGW32__
370 HANDLE h;
371 gfc_offset cur;
372
373 if (isatty (s->fd))
374 {
375 errno = EBADF;
376 return -1;
377 }
378 h = (HANDLE) _get_osfhandle (s->fd);
379 if (h == INVALID_HANDLE_VALUE)
380 {
381 errno = EBADF;
382 return -1;
383 }
384 cur = lseek (s->fd, 0, SEEK_CUR);
385 if (cur == -1)
386 return -1;
387 if (lseek (s->fd, length, SEEK_SET) == -1)
388 goto error;
389 if (!SetEndOfFile (h))
390 {
391 errno = EBADF;
392 goto error;
393 }
394 if (lseek (s->fd, cur, SEEK_SET) == -1)
395 return -1;
396 return 0;
397 error:
398 lseek (s->fd, cur, SEEK_SET);
399 return -1;
400 #elif defined HAVE_FTRUNCATE
401 return ftruncate (s->fd, length);
402 #elif defined HAVE_CHSIZE
403 return chsize (s->fd, length);
404 #else
405 runtime_error ("required ftruncate or chsize support not present");
406 return -1;
407 #endif
408 }
409
410 static int
411 raw_close (unix_stream * s)
412 {
413 int retval;
414
415 if (s->fd != STDOUT_FILENO
416 && s->fd != STDERR_FILENO
417 && s->fd != STDIN_FILENO)
418 retval = close (s->fd);
419 else
420 retval = 0;
421 free (s);
422 return retval;
423 }
424
425 static const struct stream_vtable raw_vtable = {
426 .read = (void *) raw_read,
427 .write = (void *) raw_write,
428 .seek = (void *) raw_seek,
429 .tell = (void *) raw_tell,
430 .size = (void *) raw_size,
431 .trunc = (void *) raw_truncate,
432 .close = (void *) raw_close,
433 .flush = (void *) raw_flush
434 };
435
436 static int
437 raw_init (unix_stream * s)
438 {
439 s->st.vptr = &raw_vtable;
440
441 s->buffer = NULL;
442 return 0;
443 }
444
445
446 /*********************************************************************
447 Buffered I/O functions. These functions have the same semantics as the
448 raw I/O functions above, except that they are buffered in order to
449 improve performance. The buffer must be flushed when switching from
450 reading to writing and vice versa.
451 *********************************************************************/
452
453 static int
454 buf_flush (unix_stream * s)
455 {
456 int writelen;
457
458 /* Flushing in read mode means discarding read bytes. */
459 s->active = 0;
460
461 if (s->ndirty == 0)
462 return 0;
463
464 if (s->physical_offset != s->buffer_offset
465 && lseek (s->fd, s->buffer_offset, SEEK_SET) < 0)
466 return -1;
467
468 writelen = raw_write (s, s->buffer, s->ndirty);
469
470 s->physical_offset = s->buffer_offset + writelen;
471
472 if (s->physical_offset > s->file_length)
473 s->file_length = s->physical_offset;
474
475 s->ndirty -= writelen;
476 if (s->ndirty != 0)
477 return -1;
478
479 return 0;
480 }
481
482 static ssize_t
483 buf_read (unix_stream * s, void * buf, ssize_t nbyte)
484 {
485 if (s->active == 0)
486 s->buffer_offset = s->logical_offset;
487
488 /* Is the data we want in the buffer? */
489 if (s->logical_offset + nbyte <= s->buffer_offset + s->active
490 && s->buffer_offset <= s->logical_offset)
491 memcpy (buf, s->buffer + (s->logical_offset - s->buffer_offset), nbyte);
492 else
493 {
494 /* First copy the active bytes if applicable, then read the rest
495 either directly or filling the buffer. */
496 char *p;
497 int nread = 0;
498 ssize_t to_read, did_read;
499 gfc_offset new_logical;
500
501 p = (char *) buf;
502 if (s->logical_offset >= s->buffer_offset
503 && s->buffer_offset + s->active >= s->logical_offset)
504 {
505 nread = s->active - (s->logical_offset - s->buffer_offset);
506 memcpy (buf, s->buffer + (s->logical_offset - s->buffer_offset),
507 nread);
508 p += nread;
509 }
510 /* At this point we consider all bytes in the buffer discarded. */
511 to_read = nbyte - nread;
512 new_logical = s->logical_offset + nread;
513 if (s->physical_offset != new_logical
514 && lseek (s->fd, new_logical, SEEK_SET) < 0)
515 return -1;
516 s->buffer_offset = s->physical_offset = new_logical;
517 if (to_read <= BUFFER_SIZE/2)
518 {
519 did_read = raw_read (s, s->buffer, BUFFER_SIZE);
520 s->physical_offset += did_read;
521 s->active = did_read;
522 did_read = (did_read > to_read) ? to_read : did_read;
523 memcpy (p, s->buffer, did_read);
524 }
525 else
526 {
527 did_read = raw_read (s, p, to_read);
528 s->physical_offset += did_read;
529 s->active = 0;
530 }
531 nbyte = did_read + nread;
532 }
533 s->logical_offset += nbyte;
534 return nbyte;
535 }
536
537 static ssize_t
538 buf_write (unix_stream * s, const void * buf, ssize_t nbyte)
539 {
540 if (s->ndirty == 0)
541 s->buffer_offset = s->logical_offset;
542
543 /* Does the data fit into the buffer? As a special case, if the
544 buffer is empty and the request is bigger than BUFFER_SIZE/2,
545 write directly. This avoids the case where the buffer would have
546 to be flushed at every write. */
547 if (!(s->ndirty == 0 && nbyte > BUFFER_SIZE/2)
548 && s->logical_offset + nbyte <= s->buffer_offset + BUFFER_SIZE
549 && s->buffer_offset <= s->logical_offset
550 && s->buffer_offset + s->ndirty >= s->logical_offset)
551 {
552 memcpy (s->buffer + (s->logical_offset - s->buffer_offset), buf, nbyte);
553 int nd = (s->logical_offset - s->buffer_offset) + nbyte;
554 if (nd > s->ndirty)
555 s->ndirty = nd;
556 }
557 else
558 {
559 /* Flush, and either fill the buffer with the new data, or if
560 the request is bigger than the buffer size, write directly
561 bypassing the buffer. */
562 buf_flush (s);
563 if (nbyte <= BUFFER_SIZE/2)
564 {
565 memcpy (s->buffer, buf, nbyte);
566 s->buffer_offset = s->logical_offset;
567 s->ndirty += nbyte;
568 }
569 else
570 {
571 if (s->physical_offset != s->logical_offset)
572 {
573 if (lseek (s->fd, s->logical_offset, SEEK_SET) < 0)
574 return -1;
575 s->physical_offset = s->logical_offset;
576 }
577
578 nbyte = raw_write (s, buf, nbyte);
579 s->physical_offset += nbyte;
580 }
581 }
582 s->logical_offset += nbyte;
583 if (s->logical_offset > s->file_length)
584 s->file_length = s->logical_offset;
585 return nbyte;
586 }
587
588 static gfc_offset
589 buf_seek (unix_stream * s, gfc_offset offset, int whence)
590 {
591 switch (whence)
592 {
593 case SEEK_SET:
594 break;
595 case SEEK_CUR:
596 offset += s->logical_offset;
597 break;
598 case SEEK_END:
599 offset += s->file_length;
600 break;
601 default:
602 return -1;
603 }
604 if (offset < 0)
605 {
606 errno = EINVAL;
607 return -1;
608 }
609 s->logical_offset = offset;
610 return offset;
611 }
612
613 static gfc_offset
614 buf_tell (unix_stream * s)
615 {
616 return buf_seek (s, 0, SEEK_CUR);
617 }
618
619 static gfc_offset
620 buf_size (unix_stream * s)
621 {
622 return s->file_length;
623 }
624
625 static int
626 buf_truncate (unix_stream * s, gfc_offset length)
627 {
628 int r;
629
630 if (buf_flush (s) != 0)
631 return -1;
632 r = raw_truncate (s, length);
633 if (r == 0)
634 s->file_length = length;
635 return r;
636 }
637
638 static int
639 buf_close (unix_stream * s)
640 {
641 if (buf_flush (s) != 0)
642 return -1;
643 free (s->buffer);
644 return raw_close (s);
645 }
646
647 static const struct stream_vtable buf_vtable = {
648 .read = (void *) buf_read,
649 .write = (void *) buf_write,
650 .seek = (void *) buf_seek,
651 .tell = (void *) buf_tell,
652 .size = (void *) buf_size,
653 .trunc = (void *) buf_truncate,
654 .close = (void *) buf_close,
655 .flush = (void *) buf_flush
656 };
657
658 static int
659 buf_init (unix_stream * s)
660 {
661 s->st.vptr = &buf_vtable;
662
663 s->buffer = xmalloc (BUFFER_SIZE);
664 return 0;
665 }
666
667
668 /*********************************************************************
669 memory stream functions - These are used for internal files
670
671 The idea here is that a single stream structure is created and all
672 requests must be satisfied from it. The location and size of the
673 buffer is the character variable supplied to the READ or WRITE
674 statement.
675
676 *********************************************************************/
677
678 char *
679 mem_alloc_r (stream * strm, int * len)
680 {
681 unix_stream * s = (unix_stream *) strm;
682 gfc_offset n;
683 gfc_offset where = s->logical_offset;
684
685 if (where < s->buffer_offset || where > s->buffer_offset + s->active)
686 return NULL;
687
688 n = s->buffer_offset + s->active - where;
689 if (*len > n)
690 *len = n;
691
692 s->logical_offset = where + *len;
693
694 return s->buffer + (where - s->buffer_offset);
695 }
696
697
698 char *
699 mem_alloc_r4 (stream * strm, int * len)
700 {
701 unix_stream * s = (unix_stream *) strm;
702 gfc_offset n;
703 gfc_offset where = s->logical_offset;
704
705 if (where < s->buffer_offset || where > s->buffer_offset + s->active)
706 return NULL;
707
708 n = s->buffer_offset + s->active - where;
709 if (*len > n)
710 *len = n;
711
712 s->logical_offset = where + *len;
713
714 return s->buffer + (where - s->buffer_offset) * 4;
715 }
716
717
718 char *
719 mem_alloc_w (stream * strm, int * len)
720 {
721 unix_stream * s = (unix_stream *) strm;
722 gfc_offset m;
723 gfc_offset where = s->logical_offset;
724
725 m = where + *len;
726
727 if (where < s->buffer_offset)
728 return NULL;
729
730 if (m > s->file_length)
731 return NULL;
732
733 s->logical_offset = m;
734
735 return s->buffer + (where - s->buffer_offset);
736 }
737
738
739 gfc_char4_t *
740 mem_alloc_w4 (stream * strm, int * len)
741 {
742 unix_stream * s = (unix_stream *) strm;
743 gfc_offset m;
744 gfc_offset where = s->logical_offset;
745 gfc_char4_t *result = (gfc_char4_t *) s->buffer;
746
747 m = where + *len;
748
749 if (where < s->buffer_offset)
750 return NULL;
751
752 if (m > s->file_length)
753 return NULL;
754
755 s->logical_offset = m;
756 return &result[where - s->buffer_offset];
757 }
758
759
760 /* Stream read function for character(kind=1) internal units. */
761
762 static ssize_t
763 mem_read (stream * s, void * buf, ssize_t nbytes)
764 {
765 void *p;
766 int nb = nbytes;
767
768 p = mem_alloc_r (s, &nb);
769 if (p)
770 {
771 memcpy (buf, p, nb);
772 return (ssize_t) nb;
773 }
774 else
775 return 0;
776 }
777
778
779 /* Stream read function for chracter(kind=4) internal units. */
780
781 static ssize_t
782 mem_read4 (stream * s, void * buf, ssize_t nbytes)
783 {
784 void *p;
785 int nb = nbytes;
786
787 p = mem_alloc_r (s, &nb);
788 if (p)
789 {
790 memcpy (buf, p, nb);
791 return (ssize_t) nb;
792 }
793 else
794 return 0;
795 }
796
797
798 /* Stream write function for character(kind=1) internal units. */
799
800 static ssize_t
801 mem_write (stream * s, const void * buf, ssize_t nbytes)
802 {
803 void *p;
804 int nb = nbytes;
805
806 p = mem_alloc_w (s, &nb);
807 if (p)
808 {
809 memcpy (p, buf, nb);
810 return (ssize_t) nb;
811 }
812 else
813 return 0;
814 }
815
816
817 /* Stream write function for character(kind=4) internal units. */
818
819 static ssize_t
820 mem_write4 (stream * s, const void * buf, ssize_t nwords)
821 {
822 gfc_char4_t *p;
823 int nw = nwords;
824
825 p = mem_alloc_w4 (s, &nw);
826 if (p)
827 {
828 while (nw--)
829 *p++ = (gfc_char4_t) *((char *) buf);
830 return nwords;
831 }
832 else
833 return 0;
834 }
835
836
837 static gfc_offset
838 mem_seek (stream * strm, gfc_offset offset, int whence)
839 {
840 unix_stream * s = (unix_stream *) strm;
841 switch (whence)
842 {
843 case SEEK_SET:
844 break;
845 case SEEK_CUR:
846 offset += s->logical_offset;
847 break;
848 case SEEK_END:
849 offset += s->file_length;
850 break;
851 default:
852 return -1;
853 }
854
855 /* Note that for internal array I/O it's actually possible to have a
856 negative offset, so don't check for that. */
857 if (offset > s->file_length)
858 {
859 errno = EINVAL;
860 return -1;
861 }
862
863 s->logical_offset = offset;
864
865 /* Returning < 0 is the error indicator for sseek(), so return 0 if
866 offset is negative. Thus if the return value is 0, the caller
867 has to use stell() to get the real value of logical_offset. */
868 if (offset >= 0)
869 return offset;
870 return 0;
871 }
872
873
874 static gfc_offset
875 mem_tell (stream * s)
876 {
877 return ((unix_stream *)s)->logical_offset;
878 }
879
880
881 static int
882 mem_truncate (unix_stream * s __attribute__ ((unused)),
883 gfc_offset length __attribute__ ((unused)))
884 {
885 return 0;
886 }
887
888
889 static int
890 mem_flush (unix_stream * s __attribute__ ((unused)))
891 {
892 return 0;
893 }
894
895
896 static int
897 mem_close (unix_stream * s)
898 {
899 free (s);
900
901 return 0;
902 }
903
904 static const struct stream_vtable mem_vtable = {
905 .read = (void *) mem_read,
906 .write = (void *) mem_write,
907 .seek = (void *) mem_seek,
908 .tell = (void *) mem_tell,
909 /* buf_size is not a typo, we just reuse an identical
910 implementation. */
911 .size = (void *) buf_size,
912 .trunc = (void *) mem_truncate,
913 .close = (void *) mem_close,
914 .flush = (void *) mem_flush
915 };
916
917 static const struct stream_vtable mem4_vtable = {
918 .read = (void *) mem_read4,
919 .write = (void *) mem_write4,
920 .seek = (void *) mem_seek,
921 .tell = (void *) mem_tell,
922 /* buf_size is not a typo, we just reuse an identical
923 implementation. */
924 .size = (void *) buf_size,
925 .trunc = (void *) mem_truncate,
926 .close = (void *) mem_close,
927 .flush = (void *) mem_flush
928 };
929
930 /*********************************************************************
931 Public functions -- A reimplementation of this module needs to
932 define functional equivalents of the following.
933 *********************************************************************/
934
935 /* open_internal()-- Returns a stream structure from a character(kind=1)
936 internal file */
937
938 stream *
939 open_internal (char *base, int length, gfc_offset offset)
940 {
941 unix_stream *s;
942
943 s = xcalloc (1, sizeof (unix_stream));
944
945 s->buffer = base;
946 s->buffer_offset = offset;
947
948 s->active = s->file_length = length;
949
950 s->st.vptr = &mem_vtable;
951
952 return (stream *) s;
953 }
954
955 /* open_internal4()-- Returns a stream structure from a character(kind=4)
956 internal file */
957
958 stream *
959 open_internal4 (char *base, int length, gfc_offset offset)
960 {
961 unix_stream *s;
962
963 s = xcalloc (1, sizeof (unix_stream));
964
965 s->buffer = base;
966 s->buffer_offset = offset;
967
968 s->active = s->file_length = length * sizeof (gfc_char4_t);
969
970 s->st.vptr = &mem4_vtable;
971
972 return (stream *) s;
973 }
974
975
976 /* "Unbuffered" really means I/O statement buffering. For formatted
977 I/O, the fbuf manages this, and then uses raw I/O. For unformatted
978 I/O, buffered I/O is used, and the buffer is flushed at the end of
979 each I/O statement, where this function is called. */
980
981 int
982 flush_if_unbuffered (stream* s)
983 {
984 unix_stream* us = (unix_stream*) s;
985 if (us->unbuffered)
986 return sflush (s);
987 return 0;
988 }
989
990
991 /* fd_to_stream()-- Given an open file descriptor, build a stream
992 * around it. */
993
994 static stream *
995 fd_to_stream (int fd, bool unformatted)
996 {
997 struct stat statbuf;
998 unix_stream *s;
999
1000 s = xcalloc (1, sizeof (unix_stream));
1001
1002 s->fd = fd;
1003
1004 /* Get the current length of the file. */
1005
1006 fstat (fd, &statbuf);
1007
1008 s->st_dev = statbuf.st_dev;
1009 s->st_ino = statbuf.st_ino;
1010 s->file_length = statbuf.st_size;
1011
1012 /* Only use buffered IO for regular files. */
1013 if (S_ISREG (statbuf.st_mode)
1014 && !options.all_unbuffered
1015 && !(options.unbuffered_preconnected &&
1016 (s->fd == STDIN_FILENO
1017 || s->fd == STDOUT_FILENO
1018 || s->fd == STDERR_FILENO)))
1019 buf_init (s);
1020 else
1021 {
1022 if (unformatted)
1023 {
1024 s->unbuffered = true;
1025 buf_init (s);
1026 }
1027 else
1028 raw_init (s);
1029 }
1030
1031 return (stream *) s;
1032 }
1033
1034
1035 /* Given the Fortran unit number, convert it to a C file descriptor. */
1036
1037 int
1038 unit_to_fd (int unit)
1039 {
1040 gfc_unit *us;
1041 int fd;
1042
1043 us = find_unit (unit);
1044 if (us == NULL)
1045 return -1;
1046
1047 fd = ((unix_stream *) us->s)->fd;
1048 unlock_unit (us);
1049 return fd;
1050 }
1051
1052
1053 /* unpack_filename()-- Given a fortran string and a pointer to a
1054 * buffer that is PATH_MAX characters, convert the fortran string to a
1055 * C string in the buffer. Returns nonzero if this is not possible. */
1056
1057 int
1058 unpack_filename (char *cstring, const char *fstring, int len)
1059 {
1060 if (fstring == NULL)
1061 return EFAULT;
1062 len = fstrlen (fstring, len);
1063 if (len >= PATH_MAX)
1064 return ENAMETOOLONG;
1065
1066 memmove (cstring, fstring, len);
1067 cstring[len] = '\0';
1068
1069 return 0;
1070 }
1071
1072
1073 /* Set the close-on-exec flag for an existing fd, if the system
1074 supports such. */
1075
1076 static void __attribute__ ((unused))
1077 set_close_on_exec (int fd __attribute__ ((unused)))
1078 {
1079 /* Mingw does not define F_SETFD. */
1080 #if defined(F_SETFD) && defined(FD_CLOEXEC)
1081 if (fd >= 0)
1082 fcntl(fd, F_SETFD, FD_CLOEXEC);
1083 #endif
1084 }
1085
1086
1087 /* Helper function for tempfile(). Tries to open a temporary file in
1088 the directory specified by tempdir. If successful, the file name is
1089 stored in fname and the descriptor returned. Returns -1 on
1090 failure. */
1091
1092 static int
1093 tempfile_open (const char *tempdir, char **fname)
1094 {
1095 int fd;
1096 const char *slash = "/";
1097 #if defined(HAVE_UMASK) && defined(HAVE_MKSTEMP)
1098 mode_t mode_mask;
1099 #endif
1100
1101 if (!tempdir)
1102 return -1;
1103
1104 /* Check for the special case that tempdir ends with a slash or
1105 backslash. */
1106 size_t tempdirlen = strlen (tempdir);
1107 if (*tempdir == 0 || tempdir[tempdirlen - 1] == '/'
1108 #ifdef __MINGW32__
1109 || tempdir[tempdirlen - 1] == '\\'
1110 #endif
1111 )
1112 slash = "";
1113
1114 // Take care that the template is longer in the mktemp() branch.
1115 char * template = xmalloc (tempdirlen + 23);
1116
1117 #ifdef HAVE_MKSTEMP
1118 snprintf (template, tempdirlen + 23, "%s%sgfortrantmpXXXXXX",
1119 tempdir, slash);
1120
1121 #ifdef HAVE_UMASK
1122 /* Temporarily set the umask such that the file has 0600 permissions. */
1123 mode_mask = umask (S_IXUSR | S_IRWXG | S_IRWXO);
1124 #endif
1125
1126 #if defined(HAVE_MKOSTEMP) && defined(O_CLOEXEC)
1127 fd = mkostemp (template, O_CLOEXEC);
1128 #else
1129 fd = mkstemp (template);
1130 set_close_on_exec (fd);
1131 #endif
1132
1133 #ifdef HAVE_UMASK
1134 (void) umask (mode_mask);
1135 #endif
1136
1137 #else /* HAVE_MKSTEMP */
1138 fd = -1;
1139 int count = 0;
1140 size_t slashlen = strlen (slash);
1141 int flags = O_RDWR | O_CREAT | O_EXCL;
1142 #if defined(HAVE_CRLF) && defined(O_BINARY)
1143 flags |= O_BINARY;
1144 #endif
1145 #ifdef O_CLOEXEC
1146 flags |= O_CLOEXEC;
1147 #endif
1148 do
1149 {
1150 snprintf (template, tempdirlen + 23, "%s%sgfortrantmpaaaXXXXXX",
1151 tempdir, slash);
1152 if (count > 0)
1153 {
1154 int c = count;
1155 template[tempdirlen + slashlen + 13] = 'a' + (c% 26);
1156 c /= 26;
1157 template[tempdirlen + slashlen + 12] = 'a' + (c % 26);
1158 c /= 26;
1159 template[tempdirlen + slashlen + 11] = 'a' + (c % 26);
1160 if (c >= 26)
1161 break;
1162 }
1163
1164 if (!mktemp (template))
1165 {
1166 errno = EEXIST;
1167 count++;
1168 continue;
1169 }
1170
1171 fd = open (template, flags, S_IRUSR | S_IWUSR);
1172 }
1173 while (fd == -1 && errno == EEXIST);
1174 #ifndef O_CLOEXEC
1175 set_close_on_exec (fd);
1176 #endif
1177 #endif /* HAVE_MKSTEMP */
1178
1179 *fname = template;
1180 return fd;
1181 }
1182
1183
1184 /* tempfile()-- Generate a temporary filename for a scratch file and
1185 * open it. mkstemp() opens the file for reading and writing, but the
1186 * library mode prevents anything that is not allowed. The descriptor
1187 * is returned, which is -1 on error. The template is pointed to by
1188 * opp->file, which is copied into the unit structure
1189 * and freed later. */
1190
1191 static int
1192 tempfile (st_parameter_open *opp)
1193 {
1194 const char *tempdir;
1195 char *fname;
1196 int fd = -1;
1197
1198 tempdir = secure_getenv ("TMPDIR");
1199 fd = tempfile_open (tempdir, &fname);
1200 #ifdef __MINGW32__
1201 if (fd == -1)
1202 {
1203 char buffer[MAX_PATH + 1];
1204 DWORD ret;
1205 ret = GetTempPath (MAX_PATH, buffer);
1206 /* If we are not able to get a temp-directory, we use
1207 current directory. */
1208 if (ret > MAX_PATH || !ret)
1209 buffer[0] = 0;
1210 else
1211 buffer[ret] = 0;
1212 tempdir = strdup (buffer);
1213 fd = tempfile_open (tempdir, &fname);
1214 }
1215 #elif defined(__CYGWIN__)
1216 if (fd == -1)
1217 {
1218 tempdir = secure_getenv ("TMP");
1219 fd = tempfile_open (tempdir, &fname);
1220 }
1221 if (fd == -1)
1222 {
1223 tempdir = secure_getenv ("TEMP");
1224 fd = tempfile_open (tempdir, &fname);
1225 }
1226 #endif
1227 if (fd == -1)
1228 fd = tempfile_open (P_tmpdir, &fname);
1229
1230 opp->file = fname;
1231 opp->file_len = strlen (fname); /* Don't include trailing nul */
1232
1233 return fd;
1234 }
1235
1236
1237 /* regular_file()-- Open a regular file.
1238 * Change flags->action if it is ACTION_UNSPECIFIED on entry,
1239 * unless an error occurs.
1240 * Returns the descriptor, which is less than zero on error. */
1241
1242 static int
1243 regular_file (st_parameter_open *opp, unit_flags *flags)
1244 {
1245 char path[min(PATH_MAX, opp->file_len + 1)];
1246 int mode;
1247 int rwflag;
1248 int crflag, crflag2;
1249 int fd;
1250 int err;
1251
1252 err = unpack_filename (path, opp->file, opp->file_len);
1253 if (err)
1254 {
1255 errno = err; /* Fake an OS error */
1256 return -1;
1257 }
1258
1259 #ifdef __CYGWIN__
1260 if (opp->file_len == 7)
1261 {
1262 if (strncmp (path, "CONOUT$", 7) == 0
1263 || strncmp (path, "CONERR$", 7) == 0)
1264 {
1265 fd = open ("/dev/conout", O_WRONLY);
1266 flags->action = ACTION_WRITE;
1267 return fd;
1268 }
1269 }
1270
1271 if (opp->file_len == 6 && strncmp (path, "CONIN$", 6) == 0)
1272 {
1273 fd = open ("/dev/conin", O_RDONLY);
1274 flags->action = ACTION_READ;
1275 return fd;
1276 }
1277 #endif
1278
1279
1280 #ifdef __MINGW32__
1281 if (opp->file_len == 7)
1282 {
1283 if (strncmp (path, "CONOUT$", 7) == 0
1284 || strncmp (path, "CONERR$", 7) == 0)
1285 {
1286 fd = open ("CONOUT$", O_WRONLY);
1287 flags->action = ACTION_WRITE;
1288 return fd;
1289 }
1290 }
1291
1292 if (opp->file_len == 6 && strncmp (path, "CONIN$", 6) == 0)
1293 {
1294 fd = open ("CONIN$", O_RDONLY);
1295 flags->action = ACTION_READ;
1296 return fd;
1297 }
1298 #endif
1299
1300 switch (flags->action)
1301 {
1302 case ACTION_READ:
1303 rwflag = O_RDONLY;
1304 break;
1305
1306 case ACTION_WRITE:
1307 rwflag = O_WRONLY;
1308 break;
1309
1310 case ACTION_READWRITE:
1311 case ACTION_UNSPECIFIED:
1312 rwflag = O_RDWR;
1313 break;
1314
1315 default:
1316 internal_error (&opp->common, "regular_file(): Bad action");
1317 }
1318
1319 switch (flags->status)
1320 {
1321 case STATUS_NEW:
1322 crflag = O_CREAT | O_EXCL;
1323 break;
1324
1325 case STATUS_OLD: /* open will fail if the file does not exist*/
1326 crflag = 0;
1327 break;
1328
1329 case STATUS_UNKNOWN:
1330 if (rwflag == O_RDONLY)
1331 crflag = 0;
1332 else
1333 crflag = O_CREAT;
1334 break;
1335
1336 case STATUS_REPLACE:
1337 crflag = O_CREAT | O_TRUNC;
1338 break;
1339
1340 default:
1341 /* Note: STATUS_SCRATCH is handled by tempfile () and should
1342 never be seen here. */
1343 internal_error (&opp->common, "regular_file(): Bad status");
1344 }
1345
1346 /* rwflag |= O_LARGEFILE; */
1347
1348 #if defined(HAVE_CRLF) && defined(O_BINARY)
1349 crflag |= O_BINARY;
1350 #endif
1351
1352 #ifdef O_CLOEXEC
1353 crflag |= O_CLOEXEC;
1354 #endif
1355
1356 mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH;
1357 fd = open (path, rwflag | crflag, mode);
1358 if (flags->action != ACTION_UNSPECIFIED)
1359 return fd;
1360
1361 if (fd >= 0)
1362 {
1363 flags->action = ACTION_READWRITE;
1364 return fd;
1365 }
1366 if (errno != EACCES && errno != EROFS)
1367 return fd;
1368
1369 /* retry for read-only access */
1370 rwflag = O_RDONLY;
1371 if (flags->status == STATUS_UNKNOWN)
1372 crflag2 = crflag & ~(O_CREAT);
1373 else
1374 crflag2 = crflag;
1375 fd = open (path, rwflag | crflag2, mode);
1376 if (fd >=0)
1377 {
1378 flags->action = ACTION_READ;
1379 return fd; /* success */
1380 }
1381
1382 if (errno != EACCES && errno != ENOENT)
1383 return fd; /* failure */
1384
1385 /* retry for write-only access */
1386 rwflag = O_WRONLY;
1387 fd = open (path, rwflag | crflag, mode);
1388 if (fd >=0)
1389 {
1390 flags->action = ACTION_WRITE;
1391 return fd; /* success */
1392 }
1393 return fd; /* failure */
1394 }
1395
1396
1397 /* open_external()-- Open an external file, unix specific version.
1398 * Change flags->action if it is ACTION_UNSPECIFIED on entry.
1399 * Returns NULL on operating system error. */
1400
1401 stream *
1402 open_external (st_parameter_open *opp, unit_flags *flags)
1403 {
1404 int fd;
1405
1406 if (flags->status == STATUS_SCRATCH)
1407 {
1408 fd = tempfile (opp);
1409 if (flags->action == ACTION_UNSPECIFIED)
1410 flags->action = ACTION_READWRITE;
1411
1412 #if HAVE_UNLINK_OPEN_FILE
1413 /* We can unlink scratch files now and it will go away when closed. */
1414 if (fd >= 0)
1415 unlink (opp->file);
1416 #endif
1417 }
1418 else
1419 {
1420 /* regular_file resets flags->action if it is ACTION_UNSPECIFIED and
1421 * if it succeeds */
1422 fd = regular_file (opp, flags);
1423 #ifndef O_CLOEXEC
1424 set_close_on_exec (fd);
1425 #endif
1426 }
1427
1428 if (fd < 0)
1429 return NULL;
1430 fd = fix_fd (fd);
1431
1432 return fd_to_stream (fd, flags->form == FORM_UNFORMATTED);
1433 }
1434
1435
1436 /* input_stream()-- Return a stream pointer to the default input stream.
1437 * Called on initialization. */
1438
1439 stream *
1440 input_stream (void)
1441 {
1442 return fd_to_stream (STDIN_FILENO, false);
1443 }
1444
1445
1446 /* output_stream()-- Return a stream pointer to the default output stream.
1447 * Called on initialization. */
1448
1449 stream *
1450 output_stream (void)
1451 {
1452 stream * s;
1453
1454 #if defined(HAVE_CRLF) && defined(HAVE_SETMODE)
1455 setmode (STDOUT_FILENO, O_BINARY);
1456 #endif
1457
1458 s = fd_to_stream (STDOUT_FILENO, false);
1459 return s;
1460 }
1461
1462
1463 /* error_stream()-- Return a stream pointer to the default error stream.
1464 * Called on initialization. */
1465
1466 stream *
1467 error_stream (void)
1468 {
1469 stream * s;
1470
1471 #if defined(HAVE_CRLF) && defined(HAVE_SETMODE)
1472 setmode (STDERR_FILENO, O_BINARY);
1473 #endif
1474
1475 s = fd_to_stream (STDERR_FILENO, false);
1476 return s;
1477 }
1478
1479
1480 /* compare_file_filename()-- Given an open stream and a fortran string
1481 * that is a filename, figure out if the file is the same as the
1482 * filename. */
1483
1484 int
1485 compare_file_filename (gfc_unit *u, const char *name, int len)
1486 {
1487 char path[min(PATH_MAX, len + 1)];
1488 struct stat st;
1489 #ifdef HAVE_WORKING_STAT
1490 unix_stream *s;
1491 #else
1492 # ifdef __MINGW32__
1493 uint64_t id1, id2;
1494 # endif
1495 #endif
1496
1497 if (unpack_filename (path, name, len))
1498 return 0; /* Can't be the same */
1499
1500 /* If the filename doesn't exist, then there is no match with the
1501 * existing file. */
1502
1503 if (stat (path, &st) < 0)
1504 return 0;
1505
1506 #ifdef HAVE_WORKING_STAT
1507 s = (unix_stream *) (u->s);
1508 return (st.st_dev == s->st_dev) && (st.st_ino == s->st_ino);
1509 #else
1510
1511 # ifdef __MINGW32__
1512 /* We try to match files by a unique ID. On some filesystems (network
1513 fs and FAT), we can't generate this unique ID, and will simply compare
1514 filenames. */
1515 id1 = id_from_path (path);
1516 id2 = id_from_fd (((unix_stream *) (u->s))->fd);
1517 if (id1 || id2)
1518 return (id1 == id2);
1519 # endif
1520
1521 if (len != u->file_len)
1522 return 0;
1523 return (memcmp(path, u->file, len) == 0);
1524 #endif
1525 }
1526
1527
1528 #ifdef HAVE_WORKING_STAT
1529 # define FIND_FILE0_DECL struct stat *st
1530 # define FIND_FILE0_ARGS st
1531 #else
1532 # define FIND_FILE0_DECL uint64_t id, const char *file, gfc_charlen_type file_len
1533 # define FIND_FILE0_ARGS id, file, file_len
1534 #endif
1535
1536 /* find_file0()-- Recursive work function for find_file() */
1537
1538 static gfc_unit *
1539 find_file0 (gfc_unit *u, FIND_FILE0_DECL)
1540 {
1541 gfc_unit *v;
1542 #if defined(__MINGW32__) && !HAVE_WORKING_STAT
1543 uint64_t id1;
1544 #endif
1545
1546 if (u == NULL)
1547 return NULL;
1548
1549 #ifdef HAVE_WORKING_STAT
1550 if (u->s != NULL)
1551 {
1552 unix_stream *s = (unix_stream *) (u->s);
1553 if (st[0].st_dev == s->st_dev && st[0].st_ino == s->st_ino)
1554 return u;
1555 }
1556 #else
1557 # ifdef __MINGW32__
1558 if (u->s && ((id1 = id_from_fd (((unix_stream *) u->s)->fd)) || id1))
1559 {
1560 if (id == id1)
1561 return u;
1562 }
1563 else
1564 # endif
1565 if (compare_string (u->file_len, u->file, file_len, file) == 0)
1566 return u;
1567 #endif
1568
1569 v = find_file0 (u->left, FIND_FILE0_ARGS);
1570 if (v != NULL)
1571 return v;
1572
1573 v = find_file0 (u->right, FIND_FILE0_ARGS);
1574 if (v != NULL)
1575 return v;
1576
1577 return NULL;
1578 }
1579
1580
1581 /* find_file()-- Take the current filename and see if there is a unit
1582 * that has the file already open. Returns a pointer to the unit if so. */
1583
1584 gfc_unit *
1585 find_file (const char *file, gfc_charlen_type file_len)
1586 {
1587 char path[min(PATH_MAX, file_len + 1)];
1588 struct stat st[1];
1589 gfc_unit *u;
1590 #if defined(__MINGW32__) && !HAVE_WORKING_STAT
1591 uint64_t id = 0ULL;
1592 #endif
1593
1594 if (unpack_filename (path, file, file_len))
1595 return NULL;
1596
1597 if (stat (path, &st[0]) < 0)
1598 return NULL;
1599
1600 #if defined(__MINGW32__) && !HAVE_WORKING_STAT
1601 id = id_from_path (path);
1602 #endif
1603
1604 __gthread_mutex_lock (&unit_lock);
1605 retry:
1606 u = find_file0 (unit_root, FIND_FILE0_ARGS);
1607 if (u != NULL)
1608 {
1609 /* Fast path. */
1610 if (! __gthread_mutex_trylock (&u->lock))
1611 {
1612 /* assert (u->closed == 0); */
1613 __gthread_mutex_unlock (&unit_lock);
1614 return u;
1615 }
1616
1617 inc_waiting_locked (u);
1618 }
1619 __gthread_mutex_unlock (&unit_lock);
1620 if (u != NULL)
1621 {
1622 __gthread_mutex_lock (&u->lock);
1623 if (u->closed)
1624 {
1625 __gthread_mutex_lock (&unit_lock);
1626 __gthread_mutex_unlock (&u->lock);
1627 if (predec_waiting_locked (u) == 0)
1628 free (u);
1629 goto retry;
1630 }
1631
1632 dec_waiting_unlocked (u);
1633 }
1634 return u;
1635 }
1636
1637 static gfc_unit *
1638 flush_all_units_1 (gfc_unit *u, int min_unit)
1639 {
1640 while (u != NULL)
1641 {
1642 if (u->unit_number > min_unit)
1643 {
1644 gfc_unit *r = flush_all_units_1 (u->left, min_unit);
1645 if (r != NULL)
1646 return r;
1647 }
1648 if (u->unit_number >= min_unit)
1649 {
1650 if (__gthread_mutex_trylock (&u->lock))
1651 return u;
1652 if (u->s)
1653 sflush (u->s);
1654 __gthread_mutex_unlock (&u->lock);
1655 }
1656 u = u->right;
1657 }
1658 return NULL;
1659 }
1660
1661 void
1662 flush_all_units (void)
1663 {
1664 gfc_unit *u;
1665 int min_unit = 0;
1666
1667 __gthread_mutex_lock (&unit_lock);
1668 do
1669 {
1670 u = flush_all_units_1 (unit_root, min_unit);
1671 if (u != NULL)
1672 inc_waiting_locked (u);
1673 __gthread_mutex_unlock (&unit_lock);
1674 if (u == NULL)
1675 return;
1676
1677 __gthread_mutex_lock (&u->lock);
1678
1679 min_unit = u->unit_number + 1;
1680
1681 if (u->closed == 0)
1682 {
1683 sflush (u->s);
1684 __gthread_mutex_lock (&unit_lock);
1685 __gthread_mutex_unlock (&u->lock);
1686 (void) predec_waiting_locked (u);
1687 }
1688 else
1689 {
1690 __gthread_mutex_lock (&unit_lock);
1691 __gthread_mutex_unlock (&u->lock);
1692 if (predec_waiting_locked (u) == 0)
1693 free (u);
1694 }
1695 }
1696 while (1);
1697 }
1698
1699
1700 /* delete_file()-- Given a unit structure, delete the file associated
1701 * with the unit. Returns nonzero if something went wrong. */
1702
1703 int
1704 delete_file (gfc_unit * u)
1705 {
1706 char path[min(PATH_MAX, u->file_len + 1)];
1707 int err = unpack_filename (path, u->file, u->file_len);
1708
1709 if (err)
1710 { /* Shouldn't be possible */
1711 errno = err;
1712 return 1;
1713 }
1714
1715 return unlink (path);
1716 }
1717
1718
1719 /* file_exists()-- Returns nonzero if the current filename exists on
1720 * the system */
1721
1722 int
1723 file_exists (const char *file, gfc_charlen_type file_len)
1724 {
1725 char path[min(PATH_MAX, file_len + 1)];
1726
1727 if (unpack_filename (path, file, file_len))
1728 return 0;
1729
1730 return !(access (path, F_OK));
1731 }
1732
1733
1734 /* file_size()-- Returns the size of the file. */
1735
1736 GFC_IO_INT
1737 file_size (const char *file, gfc_charlen_type file_len)
1738 {
1739 char path[min(PATH_MAX, file_len + 1)];
1740 struct stat statbuf;
1741
1742 if (unpack_filename (path, file, file_len))
1743 return -1;
1744
1745 if (stat (path, &statbuf) < 0)
1746 return -1;
1747
1748 return (GFC_IO_INT) statbuf.st_size;
1749 }
1750
1751 static const char yes[] = "YES", no[] = "NO", unknown[] = "UNKNOWN";
1752
1753 /* inquire_sequential()-- Given a fortran string, determine if the
1754 * file is suitable for sequential access. Returns a C-style
1755 * string. */
1756
1757 const char *
1758 inquire_sequential (const char *string, int len)
1759 {
1760 char path[min(PATH_MAX, len + 1)];
1761 struct stat statbuf;
1762
1763 if (string == NULL ||
1764 unpack_filename (path, string, len) || stat (path, &statbuf) < 0)
1765 return unknown;
1766
1767 if (S_ISREG (statbuf.st_mode) ||
1768 S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode))
1769 return unknown;
1770
1771 if (S_ISDIR (statbuf.st_mode) || S_ISBLK (statbuf.st_mode))
1772 return no;
1773
1774 return unknown;
1775 }
1776
1777
1778 /* inquire_direct()-- Given a fortran string, determine if the file is
1779 * suitable for direct access. Returns a C-style string. */
1780
1781 const char *
1782 inquire_direct (const char *string, int len)
1783 {
1784 char path[min(PATH_MAX, len + 1)];
1785 struct stat statbuf;
1786
1787 if (string == NULL ||
1788 unpack_filename (path, string, len) || stat (path, &statbuf) < 0)
1789 return unknown;
1790
1791 if (S_ISREG (statbuf.st_mode) || S_ISBLK (statbuf.st_mode))
1792 return unknown;
1793
1794 if (S_ISDIR (statbuf.st_mode) ||
1795 S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode))
1796 return no;
1797
1798 return unknown;
1799 }
1800
1801
1802 /* inquire_formatted()-- Given a fortran string, determine if the file
1803 * is suitable for formatted form. Returns a C-style string. */
1804
1805 const char *
1806 inquire_formatted (const char *string, int len)
1807 {
1808 char path[min(PATH_MAX, len + 1)];
1809 struct stat statbuf;
1810
1811 if (string == NULL ||
1812 unpack_filename (path, string, len) || stat (path, &statbuf) < 0)
1813 return unknown;
1814
1815 if (S_ISREG (statbuf.st_mode) ||
1816 S_ISBLK (statbuf.st_mode) ||
1817 S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode))
1818 return unknown;
1819
1820 if (S_ISDIR (statbuf.st_mode))
1821 return no;
1822
1823 return unknown;
1824 }
1825
1826
1827 /* inquire_unformatted()-- Given a fortran string, determine if the file
1828 * is suitable for unformatted form. Returns a C-style string. */
1829
1830 const char *
1831 inquire_unformatted (const char *string, int len)
1832 {
1833 return inquire_formatted (string, len);
1834 }
1835
1836
1837 /* inquire_access()-- Given a fortran string, determine if the file is
1838 * suitable for access. */
1839
1840 static const char *
1841 inquire_access (const char *string, int len, int mode)
1842 {
1843 char path[min(PATH_MAX, len + 1)];
1844
1845 if (string == NULL || unpack_filename (path, string, len) ||
1846 access (path, mode) < 0)
1847 return no;
1848
1849 return yes;
1850 }
1851
1852
1853 /* inquire_read()-- Given a fortran string, determine if the file is
1854 * suitable for READ access. */
1855
1856 const char *
1857 inquire_read (const char *string, int len)
1858 {
1859 return inquire_access (string, len, R_OK);
1860 }
1861
1862
1863 /* inquire_write()-- Given a fortran string, determine if the file is
1864 * suitable for READ access. */
1865
1866 const char *
1867 inquire_write (const char *string, int len)
1868 {
1869 return inquire_access (string, len, W_OK);
1870 }
1871
1872
1873 /* inquire_readwrite()-- Given a fortran string, determine if the file is
1874 * suitable for read and write access. */
1875
1876 const char *
1877 inquire_readwrite (const char *string, int len)
1878 {
1879 return inquire_access (string, len, R_OK | W_OK);
1880 }
1881
1882
1883 int
1884 stream_isatty (stream *s)
1885 {
1886 return isatty (((unix_stream *) s)->fd);
1887 }
1888
1889 int
1890 stream_ttyname (stream *s __attribute__ ((unused)),
1891 char * buf __attribute__ ((unused)),
1892 size_t buflen __attribute__ ((unused)))
1893 {
1894 #ifdef HAVE_TTYNAME_R
1895 return ttyname_r (((unix_stream *) s)->fd, buf, buflen);
1896 #elif defined HAVE_TTYNAME
1897 char *p;
1898 size_t plen;
1899 p = ttyname (((unix_stream *) s)->fd);
1900 if (!p)
1901 return errno;
1902 plen = strlen (p);
1903 if (buflen < plen)
1904 plen = buflen;
1905 memcpy (buf, p, plen);
1906 return 0;
1907 #else
1908 return ENOSYS;
1909 #endif
1910 }
1911
1912
1913
1914
1915 /* How files are stored: This is an operating-system specific issue,
1916 and therefore belongs here. There are three cases to consider.
1917
1918 Direct Access:
1919 Records are written as block of bytes corresponding to the record
1920 length of the file. This goes for both formatted and unformatted
1921 records. Positioning is done explicitly for each data transfer,
1922 so positioning is not much of an issue.
1923
1924 Sequential Formatted:
1925 Records are separated by newline characters. The newline character
1926 is prohibited from appearing in a string. If it does, this will be
1927 messed up on the next read. End of file is also the end of a record.
1928
1929 Sequential Unformatted:
1930 In this case, we are merely copying bytes to and from main storage,
1931 yet we need to keep track of varying record lengths. We adopt
1932 the solution used by f2c. Each record contains a pair of length
1933 markers:
1934
1935 Length of record n in bytes
1936 Data of record n
1937 Length of record n in bytes
1938
1939 Length of record n+1 in bytes
1940 Data of record n+1
1941 Length of record n+1 in bytes
1942
1943 The length is stored at the end of a record to allow backspacing to the
1944 previous record. Between data transfer statements, the file pointer
1945 is left pointing to the first length of the current record.
1946
1947 ENDFILE records are never explicitly stored.
1948
1949 */