]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/io/write.c
re PR fortran/65541 (namelist regression)
[thirdparty/gcc.git] / libgfortran / io / write.c
1 /* Copyright (C) 2002-2015 Free Software Foundation, Inc.
2 Contributed by Andy Vaught
3 Namelist output contributed by Paul Thomas
4 F2003 I/O support contributed by Jerry DeLisle
5
6 This file is part of the GNU Fortran runtime library (libgfortran).
7
8 Libgfortran is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 Libgfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 #include "io.h"
28 #include "fbuf.h"
29 #include "format.h"
30 #include "unix.h"
31 #include <assert.h>
32 #include <string.h>
33 #include <ctype.h>
34 #include <stdlib.h>
35 #include <errno.h>
36 #define star_fill(p, n) memset(p, '*', n)
37
38 typedef unsigned char uchar;
39
40 /* Helper functions for character(kind=4) internal units. These are needed
41 by write_float.def. */
42
43 static void
44 memcpy4 (gfc_char4_t *dest, const char *source, int k)
45 {
46 int j;
47
48 const char *p = source;
49 for (j = 0; j < k; j++)
50 *dest++ = (gfc_char4_t) *p++;
51 }
52
53 /* This include contains the heart and soul of formatted floating point. */
54 #include "write_float.def"
55
56 /* Write out default char4. */
57
58 static void
59 write_default_char4 (st_parameter_dt *dtp, const gfc_char4_t *source,
60 int src_len, int w_len)
61 {
62 char *p;
63 int j, k = 0;
64 gfc_char4_t c;
65 uchar d;
66
67 /* Take care of preceding blanks. */
68 if (w_len > src_len)
69 {
70 k = w_len - src_len;
71 p = write_block (dtp, k);
72 if (p == NULL)
73 return;
74 if (is_char4_unit (dtp))
75 {
76 gfc_char4_t *p4 = (gfc_char4_t *) p;
77 memset4 (p4, ' ', k);
78 }
79 else
80 memset (p, ' ', k);
81 }
82
83 /* Get ready to handle delimiters if needed. */
84 switch (dtp->u.p.current_unit->delim_status)
85 {
86 case DELIM_APOSTROPHE:
87 d = '\'';
88 break;
89 case DELIM_QUOTE:
90 d = '"';
91 break;
92 default:
93 d = ' ';
94 break;
95 }
96
97 /* Now process the remaining characters, one at a time. */
98 for (j = 0; j < src_len; j++)
99 {
100 c = source[j];
101 if (is_char4_unit (dtp))
102 {
103 gfc_char4_t *q;
104 /* Handle delimiters if any. */
105 if (c == d && d != ' ')
106 {
107 p = write_block (dtp, 2);
108 if (p == NULL)
109 return;
110 q = (gfc_char4_t *) p;
111 *q++ = c;
112 }
113 else
114 {
115 p = write_block (dtp, 1);
116 if (p == NULL)
117 return;
118 q = (gfc_char4_t *) p;
119 }
120 *q = c;
121 }
122 else
123 {
124 /* Handle delimiters if any. */
125 if (c == d && d != ' ')
126 {
127 p = write_block (dtp, 2);
128 if (p == NULL)
129 return;
130 *p++ = (uchar) c;
131 }
132 else
133 {
134 p = write_block (dtp, 1);
135 if (p == NULL)
136 return;
137 }
138 *p = c > 255 ? '?' : (uchar) c;
139 }
140 }
141 }
142
143
144 /* Write out UTF-8 converted from char4. */
145
146 static void
147 write_utf8_char4 (st_parameter_dt *dtp, gfc_char4_t *source,
148 int src_len, int w_len)
149 {
150 char *p;
151 int j, k = 0;
152 gfc_char4_t c;
153 static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
154 static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
155 int nbytes;
156 uchar buf[6], d, *q;
157
158 /* Take care of preceding blanks. */
159 if (w_len > src_len)
160 {
161 k = w_len - src_len;
162 p = write_block (dtp, k);
163 if (p == NULL)
164 return;
165 memset (p, ' ', k);
166 }
167
168 /* Get ready to handle delimiters if needed. */
169 switch (dtp->u.p.current_unit->delim_status)
170 {
171 case DELIM_APOSTROPHE:
172 d = '\'';
173 break;
174 case DELIM_QUOTE:
175 d = '"';
176 break;
177 default:
178 d = ' ';
179 break;
180 }
181
182 /* Now process the remaining characters, one at a time. */
183 for (j = k; j < src_len; j++)
184 {
185 c = source[j];
186 if (c < 0x80)
187 {
188 /* Handle the delimiters if any. */
189 if (c == d && d != ' ')
190 {
191 p = write_block (dtp, 2);
192 if (p == NULL)
193 return;
194 *p++ = (uchar) c;
195 }
196 else
197 {
198 p = write_block (dtp, 1);
199 if (p == NULL)
200 return;
201 }
202 *p = (uchar) c;
203 }
204 else
205 {
206 /* Convert to UTF-8 sequence. */
207 nbytes = 1;
208 q = &buf[6];
209
210 do
211 {
212 *--q = ((c & 0x3F) | 0x80);
213 c >>= 6;
214 nbytes++;
215 }
216 while (c >= 0x3F || (c & limits[nbytes-1]));
217
218 *--q = (c | masks[nbytes-1]);
219
220 p = write_block (dtp, nbytes);
221 if (p == NULL)
222 return;
223
224 while (q < &buf[6])
225 *p++ = *q++;
226 }
227 }
228 }
229
230
231 void
232 write_a (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
233 {
234 int wlen;
235 char *p;
236
237 wlen = f->u.string.length < 0
238 || (f->format == FMT_G && f->u.string.length == 0)
239 ? len : f->u.string.length;
240
241 #ifdef HAVE_CRLF
242 /* If this is formatted STREAM IO convert any embedded line feed characters
243 to CR_LF on systems that use that sequence for newlines. See F2003
244 Standard sections 10.6.3 and 9.9 for further information. */
245 if (is_stream_io (dtp))
246 {
247 const char crlf[] = "\r\n";
248 int i, q, bytes;
249 q = bytes = 0;
250
251 /* Write out any padding if needed. */
252 if (len < wlen)
253 {
254 p = write_block (dtp, wlen - len);
255 if (p == NULL)
256 return;
257 memset (p, ' ', wlen - len);
258 }
259
260 /* Scan the source string looking for '\n' and convert it if found. */
261 for (i = 0; i < wlen; i++)
262 {
263 if (source[i] == '\n')
264 {
265 /* Write out the previously scanned characters in the string. */
266 if (bytes > 0)
267 {
268 p = write_block (dtp, bytes);
269 if (p == NULL)
270 return;
271 memcpy (p, &source[q], bytes);
272 q += bytes;
273 bytes = 0;
274 }
275
276 /* Write out the CR_LF sequence. */
277 q++;
278 p = write_block (dtp, 2);
279 if (p == NULL)
280 return;
281 memcpy (p, crlf, 2);
282 }
283 else
284 bytes++;
285 }
286
287 /* Write out any remaining bytes if no LF was found. */
288 if (bytes > 0)
289 {
290 p = write_block (dtp, bytes);
291 if (p == NULL)
292 return;
293 memcpy (p, &source[q], bytes);
294 }
295 }
296 else
297 {
298 #endif
299 p = write_block (dtp, wlen);
300 if (p == NULL)
301 return;
302
303 if (unlikely (is_char4_unit (dtp)))
304 {
305 gfc_char4_t *p4 = (gfc_char4_t *) p;
306 if (wlen < len)
307 memcpy4 (p4, source, wlen);
308 else
309 {
310 memset4 (p4, ' ', wlen - len);
311 memcpy4 (p4 + wlen - len, source, len);
312 }
313 return;
314 }
315
316 if (wlen < len)
317 memcpy (p, source, wlen);
318 else
319 {
320 memset (p, ' ', wlen - len);
321 memcpy (p + wlen - len, source, len);
322 }
323 #ifdef HAVE_CRLF
324 }
325 #endif
326 }
327
328
329 /* The primary difference between write_a_char4 and write_a is that we have to
330 deal with writing from the first byte of the 4-byte character and pay
331 attention to the most significant bytes. For ENCODING="default" write the
332 lowest significant byte. If the 3 most significant bytes contain
333 non-zero values, emit a '?'. For ENCODING="utf-8", convert the UCS-32 value
334 to the UTF-8 encoded string before writing out. */
335
336 void
337 write_a_char4 (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
338 {
339 int wlen;
340 gfc_char4_t *q;
341
342 wlen = f->u.string.length < 0
343 || (f->format == FMT_G && f->u.string.length == 0)
344 ? len : f->u.string.length;
345
346 q = (gfc_char4_t *) source;
347 #ifdef HAVE_CRLF
348 /* If this is formatted STREAM IO convert any embedded line feed characters
349 to CR_LF on systems that use that sequence for newlines. See F2003
350 Standard sections 10.6.3 and 9.9 for further information. */
351 if (is_stream_io (dtp))
352 {
353 const gfc_char4_t crlf[] = {0x000d,0x000a};
354 int i, bytes;
355 gfc_char4_t *qq;
356 bytes = 0;
357
358 /* Write out any padding if needed. */
359 if (len < wlen)
360 {
361 char *p;
362 p = write_block (dtp, wlen - len);
363 if (p == NULL)
364 return;
365 memset (p, ' ', wlen - len);
366 }
367
368 /* Scan the source string looking for '\n' and convert it if found. */
369 qq = (gfc_char4_t *) source;
370 for (i = 0; i < wlen; i++)
371 {
372 if (qq[i] == '\n')
373 {
374 /* Write out the previously scanned characters in the string. */
375 if (bytes > 0)
376 {
377 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
378 write_utf8_char4 (dtp, q, bytes, 0);
379 else
380 write_default_char4 (dtp, q, bytes, 0);
381 bytes = 0;
382 }
383
384 /* Write out the CR_LF sequence. */
385 write_default_char4 (dtp, crlf, 2, 0);
386 }
387 else
388 bytes++;
389 }
390
391 /* Write out any remaining bytes if no LF was found. */
392 if (bytes > 0)
393 {
394 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
395 write_utf8_char4 (dtp, q, bytes, 0);
396 else
397 write_default_char4 (dtp, q, bytes, 0);
398 }
399 }
400 else
401 {
402 #endif
403 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
404 write_utf8_char4 (dtp, q, len, wlen);
405 else
406 write_default_char4 (dtp, q, len, wlen);
407 #ifdef HAVE_CRLF
408 }
409 #endif
410 }
411
412
413 static GFC_INTEGER_LARGEST
414 extract_int (const void *p, int len)
415 {
416 GFC_INTEGER_LARGEST i = 0;
417
418 if (p == NULL)
419 return i;
420
421 switch (len)
422 {
423 case 1:
424 {
425 GFC_INTEGER_1 tmp;
426 memcpy ((void *) &tmp, p, len);
427 i = tmp;
428 }
429 break;
430 case 2:
431 {
432 GFC_INTEGER_2 tmp;
433 memcpy ((void *) &tmp, p, len);
434 i = tmp;
435 }
436 break;
437 case 4:
438 {
439 GFC_INTEGER_4 tmp;
440 memcpy ((void *) &tmp, p, len);
441 i = tmp;
442 }
443 break;
444 case 8:
445 {
446 GFC_INTEGER_8 tmp;
447 memcpy ((void *) &tmp, p, len);
448 i = tmp;
449 }
450 break;
451 #ifdef HAVE_GFC_INTEGER_16
452 case 16:
453 {
454 GFC_INTEGER_16 tmp;
455 memcpy ((void *) &tmp, p, len);
456 i = tmp;
457 }
458 break;
459 #endif
460 default:
461 internal_error (NULL, "bad integer kind");
462 }
463
464 return i;
465 }
466
467 static GFC_UINTEGER_LARGEST
468 extract_uint (const void *p, int len)
469 {
470 GFC_UINTEGER_LARGEST i = 0;
471
472 if (p == NULL)
473 return i;
474
475 switch (len)
476 {
477 case 1:
478 {
479 GFC_INTEGER_1 tmp;
480 memcpy ((void *) &tmp, p, len);
481 i = (GFC_UINTEGER_1) tmp;
482 }
483 break;
484 case 2:
485 {
486 GFC_INTEGER_2 tmp;
487 memcpy ((void *) &tmp, p, len);
488 i = (GFC_UINTEGER_2) tmp;
489 }
490 break;
491 case 4:
492 {
493 GFC_INTEGER_4 tmp;
494 memcpy ((void *) &tmp, p, len);
495 i = (GFC_UINTEGER_4) tmp;
496 }
497 break;
498 case 8:
499 {
500 GFC_INTEGER_8 tmp;
501 memcpy ((void *) &tmp, p, len);
502 i = (GFC_UINTEGER_8) tmp;
503 }
504 break;
505 #ifdef HAVE_GFC_INTEGER_16
506 case 10:
507 case 16:
508 {
509 GFC_INTEGER_16 tmp = 0;
510 memcpy ((void *) &tmp, p, len);
511 i = (GFC_UINTEGER_16) tmp;
512 }
513 break;
514 #endif
515 default:
516 internal_error (NULL, "bad integer kind");
517 }
518
519 return i;
520 }
521
522
523 void
524 write_l (st_parameter_dt *dtp, const fnode *f, char *source, int len)
525 {
526 char *p;
527 int wlen;
528 GFC_INTEGER_LARGEST n;
529
530 wlen = (f->format == FMT_G && f->u.w == 0) ? 1 : f->u.w;
531
532 p = write_block (dtp, wlen);
533 if (p == NULL)
534 return;
535
536 n = extract_int (source, len);
537
538 if (unlikely (is_char4_unit (dtp)))
539 {
540 gfc_char4_t *p4 = (gfc_char4_t *) p;
541 memset4 (p4, ' ', wlen -1);
542 p4[wlen - 1] = (n) ? 'T' : 'F';
543 return;
544 }
545
546 memset (p, ' ', wlen -1);
547 p[wlen - 1] = (n) ? 'T' : 'F';
548 }
549
550
551 static void
552 write_boz (st_parameter_dt *dtp, const fnode *f, const char *q, int n)
553 {
554 int w, m, digits, nzero, nblank;
555 char *p;
556
557 w = f->u.integer.w;
558 m = f->u.integer.m;
559
560 /* Special case: */
561
562 if (m == 0 && n == 0)
563 {
564 if (w == 0)
565 w = 1;
566
567 p = write_block (dtp, w);
568 if (p == NULL)
569 return;
570 if (unlikely (is_char4_unit (dtp)))
571 {
572 gfc_char4_t *p4 = (gfc_char4_t *) p;
573 memset4 (p4, ' ', w);
574 }
575 else
576 memset (p, ' ', w);
577 goto done;
578 }
579
580 digits = strlen (q);
581
582 /* Select a width if none was specified. The idea here is to always
583 print something. */
584
585 if (w == 0)
586 w = ((digits < m) ? m : digits);
587
588 p = write_block (dtp, w);
589 if (p == NULL)
590 return;
591
592 nzero = 0;
593 if (digits < m)
594 nzero = m - digits;
595
596 /* See if things will work. */
597
598 nblank = w - (nzero + digits);
599
600 if (unlikely (is_char4_unit (dtp)))
601 {
602 gfc_char4_t *p4 = (gfc_char4_t *) p;
603 if (nblank < 0)
604 {
605 memset4 (p4, '*', w);
606 return;
607 }
608
609 if (!dtp->u.p.no_leading_blank)
610 {
611 memset4 (p4, ' ', nblank);
612 q += nblank;
613 memset4 (p4, '0', nzero);
614 q += nzero;
615 memcpy4 (p4, q, digits);
616 }
617 else
618 {
619 memset4 (p4, '0', nzero);
620 q += nzero;
621 memcpy4 (p4, q, digits);
622 q += digits;
623 memset4 (p4, ' ', nblank);
624 dtp->u.p.no_leading_blank = 0;
625 }
626 return;
627 }
628
629 if (nblank < 0)
630 {
631 star_fill (p, w);
632 goto done;
633 }
634
635 if (!dtp->u.p.no_leading_blank)
636 {
637 memset (p, ' ', nblank);
638 p += nblank;
639 memset (p, '0', nzero);
640 p += nzero;
641 memcpy (p, q, digits);
642 }
643 else
644 {
645 memset (p, '0', nzero);
646 p += nzero;
647 memcpy (p, q, digits);
648 p += digits;
649 memset (p, ' ', nblank);
650 dtp->u.p.no_leading_blank = 0;
651 }
652
653 done:
654 return;
655 }
656
657 static void
658 write_decimal (st_parameter_dt *dtp, const fnode *f, const char *source,
659 int len,
660 const char *(*conv) (GFC_INTEGER_LARGEST, char *, size_t))
661 {
662 GFC_INTEGER_LARGEST n = 0;
663 int w, m, digits, nsign, nzero, nblank;
664 char *p;
665 const char *q;
666 sign_t sign;
667 char itoa_buf[GFC_BTOA_BUF_SIZE];
668
669 w = f->u.integer.w;
670 m = f->format == FMT_G ? -1 : f->u.integer.m;
671
672 n = extract_int (source, len);
673
674 /* Special case: */
675 if (m == 0 && n == 0)
676 {
677 if (w == 0)
678 w = 1;
679
680 p = write_block (dtp, w);
681 if (p == NULL)
682 return;
683 if (unlikely (is_char4_unit (dtp)))
684 {
685 gfc_char4_t *p4 = (gfc_char4_t *) p;
686 memset4 (p4, ' ', w);
687 }
688 else
689 memset (p, ' ', w);
690 goto done;
691 }
692
693 sign = calculate_sign (dtp, n < 0);
694 if (n < 0)
695 n = -n;
696 nsign = sign == S_NONE ? 0 : 1;
697
698 /* conv calls itoa which sets the negative sign needed
699 by write_integer. The sign '+' or '-' is set below based on sign
700 calculated above, so we just point past the sign in the string
701 before proceeding to avoid double signs in corner cases.
702 (see PR38504) */
703 q = conv (n, itoa_buf, sizeof (itoa_buf));
704 if (*q == '-')
705 q++;
706
707 digits = strlen (q);
708
709 /* Select a width if none was specified. The idea here is to always
710 print something. */
711
712 if (w == 0)
713 w = ((digits < m) ? m : digits) + nsign;
714
715 p = write_block (dtp, w);
716 if (p == NULL)
717 return;
718
719 nzero = 0;
720 if (digits < m)
721 nzero = m - digits;
722
723 /* See if things will work. */
724
725 nblank = w - (nsign + nzero + digits);
726
727 if (unlikely (is_char4_unit (dtp)))
728 {
729 gfc_char4_t * p4 = (gfc_char4_t *) p;
730 if (nblank < 0)
731 {
732 memset4 (p4, '*', w);
733 goto done;
734 }
735
736 memset4 (p4, ' ', nblank);
737 p4 += nblank;
738
739 switch (sign)
740 {
741 case S_PLUS:
742 *p4++ = '+';
743 break;
744 case S_MINUS:
745 *p4++ = '-';
746 break;
747 case S_NONE:
748 break;
749 }
750
751 memset4 (p4, '0', nzero);
752 p4 += nzero;
753
754 memcpy4 (p4, q, digits);
755 return;
756 }
757
758 if (nblank < 0)
759 {
760 star_fill (p, w);
761 goto done;
762 }
763
764 memset (p, ' ', nblank);
765 p += nblank;
766
767 switch (sign)
768 {
769 case S_PLUS:
770 *p++ = '+';
771 break;
772 case S_MINUS:
773 *p++ = '-';
774 break;
775 case S_NONE:
776 break;
777 }
778
779 memset (p, '0', nzero);
780 p += nzero;
781
782 memcpy (p, q, digits);
783
784 done:
785 return;
786 }
787
788
789 /* Convert unsigned octal to ascii. */
790
791 static const char *
792 otoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
793 {
794 char *p;
795
796 assert (len >= GFC_OTOA_BUF_SIZE);
797
798 if (n == 0)
799 return "0";
800
801 p = buffer + GFC_OTOA_BUF_SIZE - 1;
802 *p = '\0';
803
804 while (n != 0)
805 {
806 *--p = '0' + (n & 7);
807 n >>= 3;
808 }
809
810 return p;
811 }
812
813
814 /* Convert unsigned binary to ascii. */
815
816 static const char *
817 btoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
818 {
819 char *p;
820
821 assert (len >= GFC_BTOA_BUF_SIZE);
822
823 if (n == 0)
824 return "0";
825
826 p = buffer + GFC_BTOA_BUF_SIZE - 1;
827 *p = '\0';
828
829 while (n != 0)
830 {
831 *--p = '0' + (n & 1);
832 n >>= 1;
833 }
834
835 return p;
836 }
837
838 /* The following three functions, btoa_big, otoa_big, and ztoa_big, are needed
839 to convert large reals with kind sizes that exceed the largest integer type
840 available on certain platforms. In these cases, byte by byte conversion is
841 performed. Endianess is taken into account. */
842
843 /* Conversion to binary. */
844
845 static const char *
846 btoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
847 {
848 char *q;
849 int i, j;
850
851 q = buffer;
852 if (big_endian)
853 {
854 const char *p = s;
855 for (i = 0; i < len; i++)
856 {
857 char c = *p;
858
859 /* Test for zero. Needed by write_boz later. */
860 if (*p != 0)
861 *n = 1;
862
863 for (j = 0; j < 8; j++)
864 {
865 *q++ = (c & 128) ? '1' : '0';
866 c <<= 1;
867 }
868 p++;
869 }
870 }
871 else
872 {
873 const char *p = s + len - 1;
874 for (i = 0; i < len; i++)
875 {
876 char c = *p;
877
878 /* Test for zero. Needed by write_boz later. */
879 if (*p != 0)
880 *n = 1;
881
882 for (j = 0; j < 8; j++)
883 {
884 *q++ = (c & 128) ? '1' : '0';
885 c <<= 1;
886 }
887 p--;
888 }
889 }
890
891 *q = '\0';
892
893 if (*n == 0)
894 return "0";
895
896 /* Move past any leading zeros. */
897 while (*buffer == '0')
898 buffer++;
899
900 return buffer;
901
902 }
903
904 /* Conversion to octal. */
905
906 static const char *
907 otoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
908 {
909 char *q;
910 int i, j, k;
911 uint8_t octet;
912
913 q = buffer + GFC_OTOA_BUF_SIZE - 1;
914 *q = '\0';
915 i = k = octet = 0;
916
917 if (big_endian)
918 {
919 const char *p = s + len - 1;
920 char c = *p;
921 while (i < len)
922 {
923 /* Test for zero. Needed by write_boz later. */
924 if (*p != 0)
925 *n = 1;
926
927 for (j = 0; j < 3 && i < len; j++)
928 {
929 octet |= (c & 1) << j;
930 c >>= 1;
931 if (++k > 7)
932 {
933 i++;
934 k = 0;
935 c = *--p;
936 }
937 }
938 *--q = '0' + octet;
939 octet = 0;
940 }
941 }
942 else
943 {
944 const char *p = s;
945 char c = *p;
946 while (i < len)
947 {
948 /* Test for zero. Needed by write_boz later. */
949 if (*p != 0)
950 *n = 1;
951
952 for (j = 0; j < 3 && i < len; j++)
953 {
954 octet |= (c & 1) << j;
955 c >>= 1;
956 if (++k > 7)
957 {
958 i++;
959 k = 0;
960 c = *++p;
961 }
962 }
963 *--q = '0' + octet;
964 octet = 0;
965 }
966 }
967
968 if (*n == 0)
969 return "0";
970
971 /* Move past any leading zeros. */
972 while (*q == '0')
973 q++;
974
975 return q;
976 }
977
978 /* Conversion to hexidecimal. */
979
980 static const char *
981 ztoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
982 {
983 static char a[16] = {'0', '1', '2', '3', '4', '5', '6', '7',
984 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
985
986 char *q;
987 uint8_t h, l;
988 int i;
989
990 q = buffer;
991
992 if (big_endian)
993 {
994 const char *p = s;
995 for (i = 0; i < len; i++)
996 {
997 /* Test for zero. Needed by write_boz later. */
998 if (*p != 0)
999 *n = 1;
1000
1001 h = (*p >> 4) & 0x0F;
1002 l = *p++ & 0x0F;
1003 *q++ = a[h];
1004 *q++ = a[l];
1005 }
1006 }
1007 else
1008 {
1009 const char *p = s + len - 1;
1010 for (i = 0; i < len; i++)
1011 {
1012 /* Test for zero. Needed by write_boz later. */
1013 if (*p != 0)
1014 *n = 1;
1015
1016 h = (*p >> 4) & 0x0F;
1017 l = *p-- & 0x0F;
1018 *q++ = a[h];
1019 *q++ = a[l];
1020 }
1021 }
1022
1023 *q = '\0';
1024
1025 if (*n == 0)
1026 return "0";
1027
1028 /* Move past any leading zeros. */
1029 while (*buffer == '0')
1030 buffer++;
1031
1032 return buffer;
1033 }
1034
1035 /* gfc_itoa()-- Integer to decimal conversion.
1036 The itoa function is a widespread non-standard extension to standard
1037 C, often declared in <stdlib.h>. Even though the itoa defined here
1038 is a static function we take care not to conflict with any prior
1039 non-static declaration. Hence the 'gfc_' prefix, which is normally
1040 reserved for functions with external linkage. */
1041
1042 static const char *
1043 gfc_itoa (GFC_INTEGER_LARGEST n, char *buffer, size_t len)
1044 {
1045 int negative;
1046 char *p;
1047 GFC_UINTEGER_LARGEST t;
1048
1049 assert (len >= GFC_ITOA_BUF_SIZE);
1050
1051 if (n == 0)
1052 return "0";
1053
1054 negative = 0;
1055 t = n;
1056 if (n < 0)
1057 {
1058 negative = 1;
1059 t = -n; /*must use unsigned to protect from overflow*/
1060 }
1061
1062 p = buffer + GFC_ITOA_BUF_SIZE - 1;
1063 *p = '\0';
1064
1065 while (t != 0)
1066 {
1067 *--p = '0' + (t % 10);
1068 t /= 10;
1069 }
1070
1071 if (negative)
1072 *--p = '-';
1073 return p;
1074 }
1075
1076
1077 void
1078 write_i (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1079 {
1080 write_decimal (dtp, f, p, len, (void *) gfc_itoa);
1081 }
1082
1083
1084 void
1085 write_b (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1086 {
1087 const char *p;
1088 char itoa_buf[GFC_BTOA_BUF_SIZE];
1089 GFC_UINTEGER_LARGEST n = 0;
1090
1091 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1092 {
1093 p = btoa_big (source, itoa_buf, len, &n);
1094 write_boz (dtp, f, p, n);
1095 }
1096 else
1097 {
1098 n = extract_uint (source, len);
1099 p = btoa (n, itoa_buf, sizeof (itoa_buf));
1100 write_boz (dtp, f, p, n);
1101 }
1102 }
1103
1104
1105 void
1106 write_o (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1107 {
1108 const char *p;
1109 char itoa_buf[GFC_OTOA_BUF_SIZE];
1110 GFC_UINTEGER_LARGEST n = 0;
1111
1112 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1113 {
1114 p = otoa_big (source, itoa_buf, len, &n);
1115 write_boz (dtp, f, p, n);
1116 }
1117 else
1118 {
1119 n = extract_uint (source, len);
1120 p = otoa (n, itoa_buf, sizeof (itoa_buf));
1121 write_boz (dtp, f, p, n);
1122 }
1123 }
1124
1125 void
1126 write_z (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1127 {
1128 const char *p;
1129 char itoa_buf[GFC_XTOA_BUF_SIZE];
1130 GFC_UINTEGER_LARGEST n = 0;
1131
1132 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1133 {
1134 p = ztoa_big (source, itoa_buf, len, &n);
1135 write_boz (dtp, f, p, n);
1136 }
1137 else
1138 {
1139 n = extract_uint (source, len);
1140 p = gfc_xtoa (n, itoa_buf, sizeof (itoa_buf));
1141 write_boz (dtp, f, p, n);
1142 }
1143 }
1144
1145
1146 void
1147 write_d (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1148 {
1149 write_float (dtp, f, p, len, 0);
1150 }
1151
1152
1153 void
1154 write_e (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1155 {
1156 write_float (dtp, f, p, len, 0);
1157 }
1158
1159
1160 void
1161 write_f (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1162 {
1163 write_float (dtp, f, p, len, 0);
1164 }
1165
1166
1167 void
1168 write_en (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1169 {
1170 write_float (dtp, f, p, len, 0);
1171 }
1172
1173
1174 void
1175 write_es (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1176 {
1177 write_float (dtp, f, p, len, 0);
1178 }
1179
1180
1181 /* Take care of the X/TR descriptor. */
1182
1183 void
1184 write_x (st_parameter_dt *dtp, int len, int nspaces)
1185 {
1186 char *p;
1187
1188 p = write_block (dtp, len);
1189 if (p == NULL)
1190 return;
1191 if (nspaces > 0 && len - nspaces >= 0)
1192 {
1193 if (unlikely (is_char4_unit (dtp)))
1194 {
1195 gfc_char4_t *p4 = (gfc_char4_t *) p;
1196 memset4 (&p4[len - nspaces], ' ', nspaces);
1197 }
1198 else
1199 memset (&p[len - nspaces], ' ', nspaces);
1200 }
1201 }
1202
1203
1204 /* List-directed writing. */
1205
1206
1207 /* Write a single character to the output. Returns nonzero if
1208 something goes wrong. */
1209
1210 static int
1211 write_char (st_parameter_dt *dtp, int c)
1212 {
1213 char *p;
1214
1215 p = write_block (dtp, 1);
1216 if (p == NULL)
1217 return 1;
1218 if (unlikely (is_char4_unit (dtp)))
1219 {
1220 gfc_char4_t *p4 = (gfc_char4_t *) p;
1221 *p4 = c;
1222 return 0;
1223 }
1224
1225 *p = (uchar) c;
1226
1227 return 0;
1228 }
1229
1230
1231 /* Write a list-directed logical value. */
1232
1233 static void
1234 write_logical (st_parameter_dt *dtp, const char *source, int length)
1235 {
1236 write_char (dtp, extract_int (source, length) ? 'T' : 'F');
1237 }
1238
1239
1240 /* Write a list-directed integer value. */
1241
1242 static void
1243 write_integer (st_parameter_dt *dtp, const char *source, int length)
1244 {
1245 char *p;
1246 const char *q;
1247 int digits;
1248 int width;
1249 char itoa_buf[GFC_ITOA_BUF_SIZE];
1250
1251 q = gfc_itoa (extract_int (source, length), itoa_buf, sizeof (itoa_buf));
1252
1253 switch (length)
1254 {
1255 case 1:
1256 width = 4;
1257 break;
1258
1259 case 2:
1260 width = 6;
1261 break;
1262
1263 case 4:
1264 width = 11;
1265 break;
1266
1267 case 8:
1268 width = 20;
1269 break;
1270
1271 default:
1272 width = 0;
1273 break;
1274 }
1275
1276 digits = strlen (q);
1277
1278 if (width < digits)
1279 width = digits;
1280 p = write_block (dtp, width);
1281 if (p == NULL)
1282 return;
1283
1284 if (unlikely (is_char4_unit (dtp)))
1285 {
1286 gfc_char4_t *p4 = (gfc_char4_t *) p;
1287 if (dtp->u.p.no_leading_blank)
1288 {
1289 memcpy4 (p4, q, digits);
1290 memset4 (p4 + digits, ' ', width - digits);
1291 }
1292 else
1293 {
1294 memset4 (p4, ' ', width - digits);
1295 memcpy4 (p4 + width - digits, q, digits);
1296 }
1297 return;
1298 }
1299
1300 if (dtp->u.p.no_leading_blank)
1301 {
1302 memcpy (p, q, digits);
1303 memset (p + digits, ' ', width - digits);
1304 }
1305 else
1306 {
1307 memset (p, ' ', width - digits);
1308 memcpy (p + width - digits, q, digits);
1309 }
1310 }
1311
1312
1313 /* Write a list-directed string. We have to worry about delimiting
1314 the strings if the file has been opened in that mode. */
1315
1316 #define DELIM 1
1317 #define NODELIM 0
1318
1319 static void
1320 write_character (st_parameter_dt *dtp, const char *source, int kind, int length, int mode)
1321 {
1322 int i, extra;
1323 char *p, d;
1324
1325 if (mode == DELIM)
1326 {
1327 switch (dtp->u.p.current_unit->delim_status)
1328 {
1329 case DELIM_APOSTROPHE:
1330 d = '\'';
1331 break;
1332 case DELIM_QUOTE:
1333 d = '"';
1334 break;
1335 default:
1336 d = ' ';
1337 break;
1338 }
1339 }
1340 else
1341 d = ' ';
1342
1343 if (kind == 1)
1344 {
1345 if (d == ' ')
1346 extra = 0;
1347 else
1348 {
1349 extra = 2;
1350
1351 for (i = 0; i < length; i++)
1352 if (source[i] == d)
1353 extra++;
1354 }
1355
1356 p = write_block (dtp, length + extra);
1357 if (p == NULL)
1358 return;
1359
1360 if (unlikely (is_char4_unit (dtp)))
1361 {
1362 gfc_char4_t d4 = (gfc_char4_t) d;
1363 gfc_char4_t *p4 = (gfc_char4_t *) p;
1364
1365 if (d4 == ' ')
1366 memcpy4 (p4, source, length);
1367 else
1368 {
1369 *p4++ = d4;
1370
1371 for (i = 0; i < length; i++)
1372 {
1373 *p4++ = (gfc_char4_t) source[i];
1374 if (source[i] == d)
1375 *p4++ = d4;
1376 }
1377
1378 *p4 = d4;
1379 }
1380 return;
1381 }
1382
1383 if (d == ' ')
1384 memcpy (p, source, length);
1385 else
1386 {
1387 *p++ = d;
1388
1389 for (i = 0; i < length; i++)
1390 {
1391 *p++ = source[i];
1392 if (source[i] == d)
1393 *p++ = d;
1394 }
1395
1396 *p = d;
1397 }
1398 }
1399 else
1400 {
1401 if (d == ' ')
1402 {
1403 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
1404 write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
1405 else
1406 write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
1407 }
1408 else
1409 {
1410 p = write_block (dtp, 1);
1411 *p = d;
1412
1413 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
1414 write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
1415 else
1416 write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
1417
1418 p = write_block (dtp, 1);
1419 *p = d;
1420 }
1421 }
1422 }
1423
1424
1425 /* Set an fnode to default format. */
1426
1427 static void
1428 set_fnode_default (st_parameter_dt *dtp, fnode *f, int length)
1429 {
1430 f->format = FMT_G;
1431 switch (length)
1432 {
1433 case 4:
1434 f->u.real.w = 16;
1435 f->u.real.d = 9;
1436 f->u.real.e = 2;
1437 break;
1438 case 8:
1439 f->u.real.w = 25;
1440 f->u.real.d = 17;
1441 f->u.real.e = 3;
1442 break;
1443 case 10:
1444 f->u.real.w = 30;
1445 f->u.real.d = 21;
1446 f->u.real.e = 4;
1447 break;
1448 case 16:
1449 f->u.real.w = 45;
1450 f->u.real.d = 36;
1451 f->u.real.e = 4;
1452 break;
1453 default:
1454 internal_error (&dtp->common, "bad real kind");
1455 break;
1456 }
1457 }
1458
1459 /* Output a real number with default format. To guarantee that a
1460 binary -> decimal -> binary roundtrip conversion recovers the
1461 original value, IEEE 754-2008 requires 9, 17, 21 and 36 significant
1462 digits for REAL kinds 4, 8, 10, and 16, respectively. Thus, we use
1463 1PG16.9E2 for REAL(4), 1PG25.17E3 for REAL(8), 1PG30.21E4 for
1464 REAL(10) and 1PG45.36E4 for REAL(16). The exception is that the
1465 Fortran standard requires outputting an extra digit when the scale
1466 factor is 1 and when the magnitude of the value is such that E
1467 editing is used. However, gfortran compensates for this, and thus
1468 for list formatted the same number of significant digits is
1469 generated both when using F and E editing. */
1470
1471 void
1472 write_real (st_parameter_dt *dtp, const char *source, int length)
1473 {
1474 fnode f ;
1475 int org_scale = dtp->u.p.scale_factor;
1476 dtp->u.p.scale_factor = 1;
1477 set_fnode_default (dtp, &f, length);
1478 write_float (dtp, &f, source , length, 1);
1479 dtp->u.p.scale_factor = org_scale;
1480 }
1481
1482 /* Similar to list formatted REAL output, for kPG0 where k > 0 we
1483 compensate for the extra digit. */
1484
1485 void
1486 write_real_g0 (st_parameter_dt *dtp, const char *source, int length, int d)
1487 {
1488 fnode f;
1489 int comp_d;
1490 set_fnode_default (dtp, &f, length);
1491 if (d > 0)
1492 f.u.real.d = d;
1493
1494 /* Compensate for extra digits when using scale factor, d is not
1495 specified, and the magnitude is such that E editing is used. */
1496 if (dtp->u.p.scale_factor > 0 && d == 0)
1497 comp_d = 1;
1498 else
1499 comp_d = 0;
1500 dtp->u.p.g0_no_blanks = 1;
1501 write_float (dtp, &f, source , length, comp_d);
1502 dtp->u.p.g0_no_blanks = 0;
1503 }
1504
1505
1506 static void
1507 write_complex (st_parameter_dt *dtp, const char *source, int kind, size_t size)
1508 {
1509 char semi_comma =
1510 dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
1511
1512 if (write_char (dtp, '('))
1513 return;
1514 write_real (dtp, source, kind);
1515
1516 if (write_char (dtp, semi_comma))
1517 return;
1518 write_real (dtp, source + size / 2, kind);
1519
1520 write_char (dtp, ')');
1521 }
1522
1523
1524 /* Write the separator between items. */
1525
1526 static void
1527 write_separator (st_parameter_dt *dtp)
1528 {
1529 char *p;
1530
1531 p = write_block (dtp, options.separator_len);
1532 if (p == NULL)
1533 return;
1534 if (unlikely (is_char4_unit (dtp)))
1535 {
1536 gfc_char4_t *p4 = (gfc_char4_t *) p;
1537 memcpy4 (p4, options.separator, options.separator_len);
1538 }
1539 else
1540 memcpy (p, options.separator, options.separator_len);
1541 }
1542
1543
1544 /* Write an item with list formatting.
1545 TODO: handle skipping to the next record correctly, particularly
1546 with strings. */
1547
1548 static void
1549 list_formatted_write_scalar (st_parameter_dt *dtp, bt type, void *p, int kind,
1550 size_t size)
1551 {
1552 if (dtp->u.p.current_unit == NULL)
1553 return;
1554
1555 if (dtp->u.p.first_item)
1556 {
1557 dtp->u.p.first_item = 0;
1558 write_char (dtp, ' ');
1559 }
1560 else
1561 {
1562 if (type != BT_CHARACTER || !dtp->u.p.char_flag ||
1563 (dtp->u.p.current_unit->delim_status != DELIM_NONE
1564 && dtp->u.p.current_unit->delim_status != DELIM_UNSPECIFIED))
1565 write_separator (dtp);
1566 }
1567
1568 switch (type)
1569 {
1570 case BT_INTEGER:
1571 write_integer (dtp, p, kind);
1572 break;
1573 case BT_LOGICAL:
1574 write_logical (dtp, p, kind);
1575 break;
1576 case BT_CHARACTER:
1577 write_character (dtp, p, kind, size, DELIM);
1578 break;
1579 case BT_REAL:
1580 write_real (dtp, p, kind);
1581 break;
1582 case BT_COMPLEX:
1583 write_complex (dtp, p, kind, size);
1584 break;
1585 default:
1586 internal_error (&dtp->common, "list_formatted_write(): Bad type");
1587 }
1588
1589 fbuf_flush_list (dtp->u.p.current_unit, LIST_WRITING);
1590 dtp->u.p.char_flag = (type == BT_CHARACTER);
1591 }
1592
1593
1594 void
1595 list_formatted_write (st_parameter_dt *dtp, bt type, void *p, int kind,
1596 size_t size, size_t nelems)
1597 {
1598 size_t elem;
1599 char *tmp;
1600 size_t stride = type == BT_CHARACTER ?
1601 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
1602
1603 tmp = (char *) p;
1604
1605 /* Big loop over all the elements. */
1606 for (elem = 0; elem < nelems; elem++)
1607 {
1608 dtp->u.p.item_count++;
1609 list_formatted_write_scalar (dtp, type, tmp + elem * stride, kind, size);
1610 }
1611 }
1612
1613 /* NAMELIST OUTPUT
1614
1615 nml_write_obj writes a namelist object to the output stream. It is called
1616 recursively for derived type components:
1617 obj = is the namelist_info for the current object.
1618 offset = the offset relative to the address held by the object for
1619 derived type arrays.
1620 base = is the namelist_info of the derived type, when obj is a
1621 component.
1622 base_name = the full name for a derived type, including qualifiers
1623 if any.
1624 The returned value is a pointer to the object beyond the last one
1625 accessed, including nested derived types. Notice that the namelist is
1626 a linear linked list of objects, including derived types and their
1627 components. A tree, of sorts, is implied by the compound names of
1628 the derived type components and this is how this function recurses through
1629 the list. */
1630
1631 /* A generous estimate of the number of characters needed to print
1632 repeat counts and indices, including commas, asterices and brackets. */
1633
1634 #define NML_DIGITS 20
1635
1636 static void
1637 namelist_write_newline (st_parameter_dt *dtp)
1638 {
1639 if (!is_internal_unit (dtp))
1640 {
1641 #ifdef HAVE_CRLF
1642 write_character (dtp, "\r\n", 1, 2, NODELIM);
1643 #else
1644 write_character (dtp, "\n", 1, 1, NODELIM);
1645 #endif
1646 return;
1647 }
1648
1649 if (is_array_io (dtp))
1650 {
1651 gfc_offset record;
1652 int finished;
1653 char *p;
1654 int length = dtp->u.p.current_unit->bytes_left;
1655
1656 p = write_block (dtp, length);
1657 if (p == NULL)
1658 return;
1659
1660 if (unlikely (is_char4_unit (dtp)))
1661 {
1662 gfc_char4_t *p4 = (gfc_char4_t *) p;
1663 memset4 (p4, ' ', length);
1664 }
1665 else
1666 memset (p, ' ', length);
1667
1668 /* Now that the current record has been padded out,
1669 determine where the next record in the array is. */
1670 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
1671 &finished);
1672 if (finished)
1673 dtp->u.p.current_unit->endfile = AT_ENDFILE;
1674 else
1675 {
1676 /* Now seek to this record */
1677 record = record * dtp->u.p.current_unit->recl;
1678
1679 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
1680 {
1681 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
1682 return;
1683 }
1684
1685 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
1686 }
1687 }
1688 else
1689 write_character (dtp, " ", 1, 1, NODELIM);
1690 }
1691
1692
1693 static namelist_info *
1694 nml_write_obj (st_parameter_dt *dtp, namelist_info * obj, index_type offset,
1695 namelist_info * base, char * base_name)
1696 {
1697 int rep_ctr;
1698 int num;
1699 int nml_carry;
1700 int len;
1701 index_type obj_size;
1702 index_type nelem;
1703 size_t dim_i;
1704 size_t clen;
1705 index_type elem_ctr;
1706 size_t obj_name_len;
1707 void * p;
1708 char cup;
1709 char * obj_name;
1710 char * ext_name;
1711 char * q;
1712 size_t ext_name_len;
1713 char rep_buff[NML_DIGITS];
1714 namelist_info * cmp;
1715 namelist_info * retval = obj->next;
1716 size_t base_name_len;
1717 size_t base_var_name_len;
1718 size_t tot_len;
1719
1720 /* Set the character to be used to separate values
1721 to a comma or semi-colon. */
1722
1723 char semi_comma =
1724 dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
1725
1726 /* Write namelist variable names in upper case. If a derived type,
1727 nothing is output. If a component, base and base_name are set. */
1728
1729 if (obj->type != BT_DERIVED)
1730 {
1731 namelist_write_newline (dtp);
1732 write_character (dtp, " ", 1, 1, NODELIM);
1733
1734 len = 0;
1735 if (base)
1736 {
1737 len = strlen (base->var_name);
1738 base_name_len = strlen (base_name);
1739 for (dim_i = 0; dim_i < base_name_len; dim_i++)
1740 {
1741 cup = toupper ((int) base_name[dim_i]);
1742 write_character (dtp, &cup, 1, 1, NODELIM);
1743 }
1744 }
1745 clen = strlen (obj->var_name);
1746 for (dim_i = len; dim_i < clen; dim_i++)
1747 {
1748 cup = toupper ((int) obj->var_name[dim_i]);
1749 if (cup == '+')
1750 cup = '%';
1751 write_character (dtp, &cup, 1, 1, NODELIM);
1752 }
1753 write_character (dtp, "=", 1, 1, NODELIM);
1754 }
1755
1756 /* Counts the number of data output on a line, including names. */
1757
1758 num = 1;
1759
1760 len = obj->len;
1761
1762 switch (obj->type)
1763 {
1764
1765 case BT_REAL:
1766 obj_size = size_from_real_kind (len);
1767 break;
1768
1769 case BT_COMPLEX:
1770 obj_size = size_from_complex_kind (len);
1771 break;
1772
1773 case BT_CHARACTER:
1774 obj_size = obj->string_length;
1775 break;
1776
1777 default:
1778 obj_size = len;
1779 }
1780
1781 if (obj->var_rank)
1782 obj_size = obj->size;
1783
1784 /* Set the index vector and count the number of elements. */
1785
1786 nelem = 1;
1787 for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
1788 {
1789 obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj, dim_i);
1790 nelem = nelem * GFC_DESCRIPTOR_EXTENT (obj, dim_i);
1791 }
1792
1793 /* Main loop to output the data held in the object. */
1794
1795 rep_ctr = 1;
1796 for (elem_ctr = 0; elem_ctr < nelem; elem_ctr++)
1797 {
1798
1799 /* Build the pointer to the data value. The offset is passed by
1800 recursive calls to this function for arrays of derived types.
1801 Is NULL otherwise. */
1802
1803 p = (void *)(obj->mem_pos + elem_ctr * obj_size);
1804 p += offset;
1805
1806 /* Check for repeat counts of intrinsic types. */
1807
1808 if ((elem_ctr < (nelem - 1)) &&
1809 (obj->type != BT_DERIVED) &&
1810 !memcmp (p, (void*)(p + obj_size ), obj_size ))
1811 {
1812 rep_ctr++;
1813 }
1814
1815 /* Execute a repeated output. Note the flag no_leading_blank that
1816 is used in the functions used to output the intrinsic types. */
1817
1818 else
1819 {
1820 if (rep_ctr > 1)
1821 {
1822 snprintf(rep_buff, NML_DIGITS, " %d*", rep_ctr);
1823 write_character (dtp, rep_buff, 1, strlen (rep_buff), NODELIM);
1824 dtp->u.p.no_leading_blank = 1;
1825 }
1826 num++;
1827
1828 /* Output the data, if an intrinsic type, or recurse into this
1829 routine to treat derived types. */
1830
1831 switch (obj->type)
1832 {
1833
1834 case BT_INTEGER:
1835 write_integer (dtp, p, len);
1836 break;
1837
1838 case BT_LOGICAL:
1839 write_logical (dtp, p, len);
1840 break;
1841
1842 case BT_CHARACTER:
1843 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
1844 write_character (dtp, p, 4, obj->string_length, DELIM);
1845 else
1846 write_character (dtp, p, 1, obj->string_length, DELIM);
1847 break;
1848
1849 case BT_REAL:
1850 write_real (dtp, p, len);
1851 break;
1852
1853 case BT_COMPLEX:
1854 dtp->u.p.no_leading_blank = 0;
1855 num++;
1856 write_complex (dtp, p, len, obj_size);
1857 break;
1858
1859 case BT_DERIVED:
1860
1861 /* To treat a derived type, we need to build two strings:
1862 ext_name = the name, including qualifiers that prepends
1863 component names in the output - passed to
1864 nml_write_obj.
1865 obj_name = the derived type name with no qualifiers but %
1866 appended. This is used to identify the
1867 components. */
1868
1869 /* First ext_name => get length of all possible components */
1870
1871 base_name_len = base_name ? strlen (base_name) : 0;
1872 base_var_name_len = base ? strlen (base->var_name) : 0;
1873 ext_name_len = base_name_len + base_var_name_len
1874 + strlen (obj->var_name) + obj->var_rank * NML_DIGITS + 1;
1875 ext_name = xmalloc (ext_name_len);
1876
1877 memcpy (ext_name, base_name, base_name_len);
1878 clen = strlen (obj->var_name + base_var_name_len);
1879 memcpy (ext_name + base_name_len,
1880 obj->var_name + base_var_name_len, clen);
1881
1882 /* Append the qualifier. */
1883
1884 tot_len = base_name_len + clen;
1885 for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
1886 {
1887 if (!dim_i)
1888 {
1889 ext_name[tot_len] = '(';
1890 tot_len++;
1891 }
1892 snprintf (ext_name + tot_len, ext_name_len - tot_len, "%d",
1893 (int) obj->ls[dim_i].idx);
1894 tot_len += strlen (ext_name + tot_len);
1895 ext_name[tot_len] = ((int) dim_i == obj->var_rank - 1) ? ')' : ',';
1896 tot_len++;
1897 }
1898
1899 ext_name[tot_len] = '\0';
1900 for (q = ext_name; *q; q++)
1901 if (*q == '+')
1902 *q = '%';
1903
1904 /* Now obj_name. */
1905
1906 obj_name_len = strlen (obj->var_name) + 1;
1907 obj_name = xmalloc (obj_name_len + 1);
1908 memcpy (obj_name, obj->var_name, obj_name_len-1);
1909 memcpy (obj_name + obj_name_len-1, "%", 2);
1910
1911 /* Now loop over the components. Update the component pointer
1912 with the return value from nml_write_obj => this loop jumps
1913 past nested derived types. */
1914
1915 for (cmp = obj->next;
1916 cmp && !strncmp (cmp->var_name, obj_name, obj_name_len);
1917 cmp = retval)
1918 {
1919 retval = nml_write_obj (dtp, cmp,
1920 (index_type)(p - obj->mem_pos),
1921 obj, ext_name);
1922 }
1923
1924 free (obj_name);
1925 free (ext_name);
1926 goto obj_loop;
1927
1928 default:
1929 internal_error (&dtp->common, "Bad type for namelist write");
1930 }
1931
1932 /* Reset the leading blank suppression, write a comma (or semi-colon)
1933 and, if 5 values have been output, write a newline and advance
1934 to column 2. Reset the repeat counter. */
1935
1936 dtp->u.p.no_leading_blank = 0;
1937 if (obj->type == BT_CHARACTER)
1938 {
1939 if (dtp->u.p.nml_delim != '\0')
1940 write_character (dtp, &semi_comma, 1, 1, NODELIM);
1941 }
1942 else
1943 write_character (dtp, &semi_comma, 1, 1, NODELIM);
1944 if (num > 5)
1945 {
1946 num = 0;
1947 if (dtp->u.p.nml_delim == '\0')
1948 write_character (dtp, &semi_comma, 1, 1, NODELIM);
1949 namelist_write_newline (dtp);
1950 write_character (dtp, " ", 1, 1, NODELIM);
1951 }
1952 rep_ctr = 1;
1953 }
1954
1955 /* Cycle through and increment the index vector. */
1956
1957 obj_loop:
1958
1959 nml_carry = 1;
1960 for (dim_i = 0; nml_carry && (dim_i < (size_t) obj->var_rank); dim_i++)
1961 {
1962 obj->ls[dim_i].idx += nml_carry ;
1963 nml_carry = 0;
1964 if (obj->ls[dim_i].idx > GFC_DESCRIPTOR_UBOUND(obj,dim_i))
1965 {
1966 obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj,dim_i);
1967 nml_carry = 1;
1968 }
1969 }
1970 }
1971
1972 /* Return a pointer beyond the furthest object accessed. */
1973
1974 return retval;
1975 }
1976
1977
1978 /* This is the entry function for namelist writes. It outputs the name
1979 of the namelist and iterates through the namelist by calls to
1980 nml_write_obj. The call below has dummys in the arguments used in
1981 the treatment of derived types. */
1982
1983 void
1984 namelist_write (st_parameter_dt *dtp)
1985 {
1986 namelist_info * t1, *t2, *dummy = NULL;
1987 index_type i;
1988 index_type dummy_offset = 0;
1989 char c;
1990 char * dummy_name = NULL;
1991
1992 /* Set the delimiter for namelist output. */
1993 switch (dtp->u.p.current_unit->delim_status)
1994 {
1995 case DELIM_APOSTROPHE:
1996 dtp->u.p.nml_delim = '\'';
1997 break;
1998 case DELIM_QUOTE:
1999 case DELIM_UNSPECIFIED:
2000 dtp->u.p.nml_delim = '"';
2001 break;
2002 default:
2003 dtp->u.p.nml_delim = '\0';
2004 }
2005
2006 write_character (dtp, "&", 1, 1, NODELIM);
2007
2008 /* Write namelist name in upper case - f95 std. */
2009 for (i = 0 ;i < dtp->namelist_name_len ;i++ )
2010 {
2011 c = toupper ((int) dtp->namelist_name[i]);
2012 write_character (dtp, &c, 1 ,1, NODELIM);
2013 }
2014
2015 if (dtp->u.p.ionml != NULL)
2016 {
2017 t1 = dtp->u.p.ionml;
2018 while (t1 != NULL)
2019 {
2020 t2 = t1;
2021 t1 = nml_write_obj (dtp, t2, dummy_offset, dummy, dummy_name);
2022 }
2023 }
2024
2025 namelist_write_newline (dtp);
2026 write_character (dtp, " /", 1, 2, NODELIM);
2027 }
2028
2029 #undef NML_DIGITS