]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/m4/pack.m4
in_pack.m4 (internal_pack_'rtype_code`): Destination pointer is restrict.
[thirdparty/gcc.git] / libgfortran / m4 / pack.m4
1 `/* Specific implementation of the PACK intrinsic
2 Copyright (C) 2002, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Ligbfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <string.h>'
35
36 include(iparm.m4)dnl
37
38 `#if defined (HAVE_'rtype_name`)
39
40 /* PACK is specified as follows:
41
42 13.14.80 PACK (ARRAY, MASK, [VECTOR])
43
44 Description: Pack an array into an array of rank one under the
45 control of a mask.
46
47 Class: Transformational function.
48
49 Arguments:
50 ARRAY may be of any type. It shall not be scalar.
51 MASK shall be of type LOGICAL. It shall be conformable with ARRAY.
52 VECTOR (optional) shall be of the same type and type parameters
53 as ARRAY. VECTOR shall have at least as many elements as
54 there are true elements in MASK. If MASK is a scalar
55 with the value true, VECTOR shall have at least as many
56 elements as there are in ARRAY.
57
58 Result Characteristics: The result is an array of rank one with the
59 same type and type parameters as ARRAY. If VECTOR is present, the
60 result size is that of VECTOR; otherwise, the result size is the
61 number /t/ of true elements in MASK unless MASK is scalar with the
62 value true, in which case the result size is the size of ARRAY.
63
64 Result Value: Element /i/ of the result is the element of ARRAY
65 that corresponds to the /i/th true element of MASK, taking elements
66 in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
67 present and has size /n/ > /t/, element /i/ of the result has the
68 value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.
69
70 Examples: The nonzero elements of an array M with the value
71 | 0 0 0 |
72 | 9 0 0 | may be "gathered" by the function PACK. The result of
73 | 0 0 7 |
74 PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
75 VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].
76
77 There are two variants of the PACK intrinsic: one, where MASK is
78 array valued, and the other one where MASK is scalar. */
79
80 void
81 pack_'rtype_code` ('rtype` *ret, const 'rtype` *array,
82 const gfc_array_l1 *mask, const 'rtype` *vector)
83 {
84 /* r.* indicates the return array. */
85 index_type rstride0;
86 'rtype_name` * restrict rptr;
87 /* s.* indicates the source array. */
88 index_type sstride[GFC_MAX_DIMENSIONS];
89 index_type sstride0;
90 const 'rtype_name` *sptr;
91 /* m.* indicates the mask array. */
92 index_type mstride[GFC_MAX_DIMENSIONS];
93 index_type mstride0;
94 const GFC_LOGICAL_1 *mptr;
95
96 index_type count[GFC_MAX_DIMENSIONS];
97 index_type extent[GFC_MAX_DIMENSIONS];
98 int zero_sized;
99 index_type n;
100 index_type dim;
101 index_type nelem;
102 index_type total;
103 int mask_kind;
104
105 dim = GFC_DESCRIPTOR_RANK (array);
106
107 mptr = mask->data;
108
109 /* Use the same loop for all logical types, by using GFC_LOGICAL_1
110 and using shifting to address size and endian issues. */
111
112 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
113
114 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
115 #ifdef HAVE_GFC_LOGICAL_16
116 || mask_kind == 16
117 #endif
118 )
119 {
120 /* Do not convert a NULL pointer as we use test for NULL below. */
121 if (mptr)
122 mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
123 }
124 else
125 runtime_error ("Funny sized logical array");
126
127 zero_sized = 0;
128 for (n = 0; n < dim; n++)
129 {
130 count[n] = 0;
131 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
132 if (extent[n] <= 0)
133 zero_sized = 1;
134 sstride[n] = array->dim[n].stride;
135 mstride[n] = mask->dim[n].stride * mask_kind;
136 }
137 if (sstride[0] == 0)
138 sstride[0] = 1;
139 if (mstride[0] == 0)
140 mstride[0] = mask_kind;
141
142 if (zero_sized)
143 sptr = NULL;
144 else
145 sptr = array->data;
146
147 if (ret->data == NULL || compile_options.bounds_check)
148 {
149 /* Count the elements, either for allocating memory or
150 for bounds checking. */
151
152 if (vector != NULL)
153 {
154 /* The return array will have as many
155 elements as there are in VECTOR. */
156 total = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
157 if (total < 0)
158 {
159 total = 0;
160 vector = NULL;
161 }
162 }
163 else
164 {
165 /* We have to count the true elements in MASK. */
166
167 /* TODO: We could speed up pack easily in the case of only
168 few .TRUE. entries in MASK, by keeping track of where we
169 would be in the source array during the initial traversal
170 of MASK, and caching the pointers to those elements. Then,
171 supposed the number of elements is small enough, we would
172 only have to traverse the list, and copy those elements
173 into the result array. In the case of datatypes which fit
174 in one of the integer types we could also cache the
175 value instead of a pointer to it.
176 This approach might be bad from the point of view of
177 cache behavior in the case where our cache is not big
178 enough to hold all elements that have to be copied. */
179
180 const GFC_LOGICAL_1 *m = mptr;
181
182 total = 0;
183 if (zero_sized)
184 m = NULL;
185
186 while (m)
187 {
188 /* Test this element. */
189 if (*m)
190 total++;
191
192 /* Advance to the next element. */
193 m += mstride[0];
194 count[0]++;
195 n = 0;
196 while (count[n] == extent[n])
197 {
198 /* When we get to the end of a dimension, reset it
199 and increment the next dimension. */
200 count[n] = 0;
201 /* We could precalculate this product, but this is a
202 less frequently used path so probably not worth
203 it. */
204 m -= mstride[n] * extent[n];
205 n++;
206 if (n >= dim)
207 {
208 /* Break out of the loop. */
209 m = NULL;
210 break;
211 }
212 else
213 {
214 count[n]++;
215 m += mstride[n];
216 }
217 }
218 }
219 }
220
221 if (ret->data == NULL)
222 {
223 /* Setup the array descriptor. */
224 ret->dim[0].lbound = 0;
225 ret->dim[0].ubound = total - 1;
226 ret->dim[0].stride = 1;
227
228 ret->offset = 0;
229 if (total == 0)
230 {
231 /* In this case, nothing remains to be done. */
232 ret->data = internal_malloc_size (1);
233 return;
234 }
235 else
236 ret->data = internal_malloc_size (sizeof ('rtype_name`) * total);
237 }
238 else
239 {
240 /* We come here because of range checking. */
241 index_type ret_extent;
242
243 ret_extent = ret->dim[0].ubound + 1 - ret->dim[0].lbound;
244 if (total != ret_extent)
245 runtime_error ("Incorrect extent in return value of PACK intrinsic;"
246 " is %ld, should be %ld", (long int) total,
247 (long int) ret_extent);
248 }
249 }
250
251 rstride0 = ret->dim[0].stride;
252 if (rstride0 == 0)
253 rstride0 = 1;
254 sstride0 = sstride[0];
255 mstride0 = mstride[0];
256 rptr = ret->data;
257
258 while (sptr && mptr)
259 {
260 /* Test this element. */
261 if (*mptr)
262 {
263 /* Add it. */
264 *rptr = *sptr;
265 rptr += rstride0;
266 }
267 /* Advance to the next element. */
268 sptr += sstride0;
269 mptr += mstride0;
270 count[0]++;
271 n = 0;
272 while (count[n] == extent[n])
273 {
274 /* When we get to the end of a dimension, reset it and increment
275 the next dimension. */
276 count[n] = 0;
277 /* We could precalculate these products, but this is a less
278 frequently used path so probably not worth it. */
279 sptr -= sstride[n] * extent[n];
280 mptr -= mstride[n] * extent[n];
281 n++;
282 if (n >= dim)
283 {
284 /* Break out of the loop. */
285 sptr = NULL;
286 break;
287 }
288 else
289 {
290 count[n]++;
291 sptr += sstride[n];
292 mptr += mstride[n];
293 }
294 }
295 }
296
297 /* Add any remaining elements from VECTOR. */
298 if (vector)
299 {
300 n = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
301 nelem = ((rptr - ret->data) / rstride0);
302 if (n > nelem)
303 {
304 sstride0 = vector->dim[0].stride;
305 if (sstride0 == 0)
306 sstride0 = 1;
307
308 sptr = vector->data + sstride0 * nelem;
309 n -= nelem;
310 while (n--)
311 {
312 *rptr = *sptr;
313 rptr += rstride0;
314 sptr += sstride0;
315 }
316 }
317 }
318 }
319
320 #endif
321 '