]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/m4/unpack.m4
Update copyright years.
[thirdparty/gcc.git] / libgfortran / m4 / unpack.m4
1 `/* Specific implementation of the UNPACK intrinsic
2 Copyright (C) 2008-2017 Free Software Foundation, Inc.
3 Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
4 unpack_generic.c by Paul Brook <paul@nowt.org>.
5
6 This file is part of the GNU Fortran runtime library (libgfortran).
7
8 Libgfortran is free software; you can redistribute it and/or
9 modify it under the terms of the GNU General Public
10 License as published by the Free Software Foundation; either
11 version 3 of the License, or (at your option) any later version.
12
13 Ligbfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 #include "libgfortran.h"
28 #include <string.h>'
29
30 include(iparm.m4)dnl
31
32 `#if defined (HAVE_'rtype_name`)
33
34 void
35 unpack0_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
36 const gfc_array_l1 *mask, const 'rtype_name` *fptr)
37 {
38 /* r.* indicates the return array. */
39 index_type rstride[GFC_MAX_DIMENSIONS];
40 index_type rstride0;
41 index_type rs;
42 'rtype_name` * restrict rptr;
43 /* v.* indicates the vector array. */
44 index_type vstride0;
45 'rtype_name` *vptr;
46 /* Value for field, this is constant. */
47 const 'rtype_name` fval = *fptr;
48 /* m.* indicates the mask array. */
49 index_type mstride[GFC_MAX_DIMENSIONS];
50 index_type mstride0;
51 const GFC_LOGICAL_1 *mptr;
52
53 index_type count[GFC_MAX_DIMENSIONS];
54 index_type extent[GFC_MAX_DIMENSIONS];
55 index_type n;
56 index_type dim;
57
58 int empty;
59 int mask_kind;
60
61 empty = 0;
62
63 mptr = mask->base_addr;
64
65 /* Use the same loop for all logical types, by using GFC_LOGICAL_1
66 and using shifting to address size and endian issues. */
67
68 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
69
70 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
71 #ifdef HAVE_GFC_LOGICAL_16
72 || mask_kind == 16
73 #endif
74 )
75 {
76 /* Do not convert a NULL pointer as we use test for NULL below. */
77 if (mptr)
78 mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
79 }
80 else
81 runtime_error ("Funny sized logical array");
82
83 if (ret->base_addr == NULL)
84 {
85 /* The front end has signalled that we need to populate the
86 return array descriptor. */
87 dim = GFC_DESCRIPTOR_RANK (mask);
88 rs = 1;
89 for (n = 0; n < dim; n++)
90 {
91 count[n] = 0;
92 GFC_DIMENSION_SET(ret->dim[n], 0,
93 GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
94 extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
95 empty = empty || extent[n] <= 0;
96 rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
97 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
98 rs *= extent[n];
99 }
100 ret->offset = 0;
101 ret->base_addr = xmallocarray (rs, sizeof ('rtype_name`));
102 }
103 else
104 {
105 dim = GFC_DESCRIPTOR_RANK (ret);
106 /* Initialize to avoid -Wmaybe-uninitialized complaints. */
107 rstride[0] = 1;
108 for (n = 0; n < dim; n++)
109 {
110 count[n] = 0;
111 extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
112 empty = empty || extent[n] <= 0;
113 rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
114 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
115 }
116 if (rstride[0] == 0)
117 rstride[0] = 1;
118 }
119
120 if (empty)
121 return;
122
123 if (mstride[0] == 0)
124 mstride[0] = 1;
125
126 vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
127 if (vstride0 == 0)
128 vstride0 = 1;
129 rstride0 = rstride[0];
130 mstride0 = mstride[0];
131 rptr = ret->base_addr;
132 vptr = vector->base_addr;
133
134 while (rptr)
135 {
136 if (*mptr)
137 {
138 /* From vector. */
139 *rptr = *vptr;
140 vptr += vstride0;
141 }
142 else
143 {
144 /* From field. */
145 *rptr = fval;
146 }
147 /* Advance to the next element. */
148 rptr += rstride0;
149 mptr += mstride0;
150 count[0]++;
151 n = 0;
152 while (count[n] == extent[n])
153 {
154 /* When we get to the end of a dimension, reset it and increment
155 the next dimension. */
156 count[n] = 0;
157 /* We could precalculate these products, but this is a less
158 frequently used path so probably not worth it. */
159 rptr -= rstride[n] * extent[n];
160 mptr -= mstride[n] * extent[n];
161 n++;
162 if (n >= dim)
163 {
164 /* Break out of the loop. */
165 rptr = NULL;
166 break;
167 }
168 else
169 {
170 count[n]++;
171 rptr += rstride[n];
172 mptr += mstride[n];
173 }
174 }
175 }
176 }
177
178 void
179 unpack1_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
180 const gfc_array_l1 *mask, const 'rtype` *field)
181 {
182 /* r.* indicates the return array. */
183 index_type rstride[GFC_MAX_DIMENSIONS];
184 index_type rstride0;
185 index_type rs;
186 'rtype_name` * restrict rptr;
187 /* v.* indicates the vector array. */
188 index_type vstride0;
189 'rtype_name` *vptr;
190 /* f.* indicates the field array. */
191 index_type fstride[GFC_MAX_DIMENSIONS];
192 index_type fstride0;
193 const 'rtype_name` *fptr;
194 /* m.* indicates the mask array. */
195 index_type mstride[GFC_MAX_DIMENSIONS];
196 index_type mstride0;
197 const GFC_LOGICAL_1 *mptr;
198
199 index_type count[GFC_MAX_DIMENSIONS];
200 index_type extent[GFC_MAX_DIMENSIONS];
201 index_type n;
202 index_type dim;
203
204 int empty;
205 int mask_kind;
206
207 empty = 0;
208
209 mptr = mask->base_addr;
210
211 /* Use the same loop for all logical types, by using GFC_LOGICAL_1
212 and using shifting to address size and endian issues. */
213
214 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
215
216 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
217 #ifdef HAVE_GFC_LOGICAL_16
218 || mask_kind == 16
219 #endif
220 )
221 {
222 /* Do not convert a NULL pointer as we use test for NULL below. */
223 if (mptr)
224 mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
225 }
226 else
227 runtime_error ("Funny sized logical array");
228
229 if (ret->base_addr == NULL)
230 {
231 /* The front end has signalled that we need to populate the
232 return array descriptor. */
233 dim = GFC_DESCRIPTOR_RANK (mask);
234 rs = 1;
235 for (n = 0; n < dim; n++)
236 {
237 count[n] = 0;
238 GFC_DIMENSION_SET(ret->dim[n], 0,
239 GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
240 extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
241 empty = empty || extent[n] <= 0;
242 rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
243 fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n);
244 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
245 rs *= extent[n];
246 }
247 ret->offset = 0;
248 ret->base_addr = xmallocarray (rs, sizeof ('rtype_name`));
249 }
250 else
251 {
252 dim = GFC_DESCRIPTOR_RANK (ret);
253 /* Initialize to avoid -Wmaybe-uninitialized complaints. */
254 rstride[0] = 1;
255 for (n = 0; n < dim; n++)
256 {
257 count[n] = 0;
258 extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
259 empty = empty || extent[n] <= 0;
260 rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
261 fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n);
262 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
263 }
264 if (rstride[0] == 0)
265 rstride[0] = 1;
266 }
267
268 if (empty)
269 return;
270
271 if (fstride[0] == 0)
272 fstride[0] = 1;
273 if (mstride[0] == 0)
274 mstride[0] = 1;
275
276 vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
277 if (vstride0 == 0)
278 vstride0 = 1;
279 rstride0 = rstride[0];
280 fstride0 = fstride[0];
281 mstride0 = mstride[0];
282 rptr = ret->base_addr;
283 fptr = field->base_addr;
284 vptr = vector->base_addr;
285
286 while (rptr)
287 {
288 if (*mptr)
289 {
290 /* From vector. */
291 *rptr = *vptr;
292 vptr += vstride0;
293 }
294 else
295 {
296 /* From field. */
297 *rptr = *fptr;
298 }
299 /* Advance to the next element. */
300 rptr += rstride0;
301 fptr += fstride0;
302 mptr += mstride0;
303 count[0]++;
304 n = 0;
305 while (count[n] == extent[n])
306 {
307 /* When we get to the end of a dimension, reset it and increment
308 the next dimension. */
309 count[n] = 0;
310 /* We could precalculate these products, but this is a less
311 frequently used path so probably not worth it. */
312 rptr -= rstride[n] * extent[n];
313 fptr -= fstride[n] * extent[n];
314 mptr -= mstride[n] * extent[n];
315 n++;
316 if (n >= dim)
317 {
318 /* Break out of the loop. */
319 rptr = NULL;
320 break;
321 }
322 else
323 {
324 count[n]++;
325 rptr += rstride[n];
326 fptr += fstride[n];
327 mptr += mstride[n];
328 }
329 }
330 }
331 }
332
333 #endif
334 '