]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgo/runtime/malloc.h
libgo: Merge from revision 18783:00cce3a34d7e of master library.
[thirdparty/gcc.git] / libgo / runtime / malloc.h
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Memory allocator, based on tcmalloc.
6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
7
8 // The main allocator works in runs of pages.
9 // Small allocation sizes (up to and including 32 kB) are
10 // rounded to one of about 100 size classes, each of which
11 // has its own free list of objects of exactly that size.
12 // Any free page of memory can be split into a set of objects
13 // of one size class, which are then managed using free list
14 // allocators.
15 //
16 // The allocator's data structures are:
17 //
18 // FixAlloc: a free-list allocator for fixed-size objects,
19 // used to manage storage used by the allocator.
20 // MHeap: the malloc heap, managed at page (4096-byte) granularity.
21 // MSpan: a run of pages managed by the MHeap.
22 // MCentral: a shared free list for a given size class.
23 // MCache: a per-thread (in Go, per-M) cache for small objects.
24 // MStats: allocation statistics.
25 //
26 // Allocating a small object proceeds up a hierarchy of caches:
27 //
28 // 1. Round the size up to one of the small size classes
29 // and look in the corresponding MCache free list.
30 // If the list is not empty, allocate an object from it.
31 // This can all be done without acquiring a lock.
32 //
33 // 2. If the MCache free list is empty, replenish it by
34 // taking a bunch of objects from the MCentral free list.
35 // Moving a bunch amortizes the cost of acquiring the MCentral lock.
36 //
37 // 3. If the MCentral free list is empty, replenish it by
38 // allocating a run of pages from the MHeap and then
39 // chopping that memory into a objects of the given size.
40 // Allocating many objects amortizes the cost of locking
41 // the heap.
42 //
43 // 4. If the MHeap is empty or has no page runs large enough,
44 // allocate a new group of pages (at least 1MB) from the
45 // operating system. Allocating a large run of pages
46 // amortizes the cost of talking to the operating system.
47 //
48 // Freeing a small object proceeds up the same hierarchy:
49 //
50 // 1. Look up the size class for the object and add it to
51 // the MCache free list.
52 //
53 // 2. If the MCache free list is too long or the MCache has
54 // too much memory, return some to the MCentral free lists.
55 //
56 // 3. If all the objects in a given span have returned to
57 // the MCentral list, return that span to the page heap.
58 //
59 // 4. If the heap has too much memory, return some to the
60 // operating system.
61 //
62 // TODO(rsc): Step 4 is not implemented.
63 //
64 // Allocating and freeing a large object uses the page heap
65 // directly, bypassing the MCache and MCentral free lists.
66 //
67 // The small objects on the MCache and MCentral free lists
68 // may or may not be zeroed. They are zeroed if and only if
69 // the second word of the object is zero. The spans in the
70 // page heap are always zeroed. When a span full of objects
71 // is returned to the page heap, the objects that need to be
72 // are zeroed first. There are two main benefits to delaying the
73 // zeroing this way:
74 //
75 // 1. stack frames allocated from the small object lists
76 // can avoid zeroing altogether.
77 // 2. the cost of zeroing when reusing a small object is
78 // charged to the mutator, not the garbage collector.
79 //
80 // This C code was written with an eye toward translating to Go
81 // in the future. Methods have the form Type_Method(Type *t, ...).
82
83 typedef struct MCentral MCentral;
84 typedef struct MHeap MHeap;
85 typedef struct MSpan MSpan;
86 typedef struct MStats MStats;
87 typedef struct MLink MLink;
88 typedef struct MTypes MTypes;
89 typedef struct GCStats GCStats;
90
91 enum
92 {
93 PageShift = 12,
94 PageSize = 1<<PageShift,
95 PageMask = PageSize - 1,
96 };
97 typedef uintptr PageID; // address >> PageShift
98
99 enum
100 {
101 // Computed constant. The definition of MaxSmallSize and the
102 // algorithm in msize.c produce some number of different allocation
103 // size classes. NumSizeClasses is that number. It's needed here
104 // because there are static arrays of this length; when msize runs its
105 // size choosing algorithm it double-checks that NumSizeClasses agrees.
106 NumSizeClasses = 61,
107
108 // Tunable constants.
109 MaxSmallSize = 32<<10,
110
111 FixAllocChunk = 16<<10, // Chunk size for FixAlloc
112 MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
113 HeapAllocChunk = 1<<20, // Chunk size for heap growth
114
115 // Number of bits in page to span calculations (4k pages).
116 // On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
117 // On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
118 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
119 #if __SIZEOF_POINTER__ == 8
120 #ifdef GOOS_windows
121 // Windows counts memory used by page table into committed memory
122 // of the process, so we can't reserve too much memory.
123 // See http://golang.org/issue/5402 and http://golang.org/issue/5236.
124 MHeapMap_Bits = 35 - PageShift,
125 #else
126 MHeapMap_Bits = 37 - PageShift,
127 #endif
128 #else
129 MHeapMap_Bits = 32 - PageShift,
130 #endif
131
132 // Max number of threads to run garbage collection.
133 // 2, 3, and 4 are all plausible maximums depending
134 // on the hardware details of the machine. The garbage
135 // collector scales well to 8 cpus.
136 MaxGcproc = 8,
137 };
138
139 // Maximum memory allocation size, a hint for callers.
140 // This must be a #define instead of an enum because it
141 // is so large.
142 #if __SIZEOF_POINTER__ == 8
143 #define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
144 #else
145 #define MaxMem ((uintptr)-1)
146 #endif
147
148 // A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).)
149 struct MLink
150 {
151 MLink *next;
152 };
153
154 // SysAlloc obtains a large chunk of zeroed memory from the
155 // operating system, typically on the order of a hundred kilobytes
156 // or a megabyte.
157 //
158 // SysUnused notifies the operating system that the contents
159 // of the memory region are no longer needed and can be reused
160 // for other purposes.
161 // SysUsed notifies the operating system that the contents
162 // of the memory region are needed again.
163 //
164 // SysFree returns it unconditionally; this is only used if
165 // an out-of-memory error has been detected midway through
166 // an allocation. It is okay if SysFree is a no-op.
167 //
168 // SysReserve reserves address space without allocating memory.
169 // If the pointer passed to it is non-nil, the caller wants the
170 // reservation there, but SysReserve can still choose another
171 // location if that one is unavailable.
172 //
173 // SysMap maps previously reserved address space for use.
174
175 void* runtime_SysAlloc(uintptr nbytes, uint64 *stat);
176 void runtime_SysFree(void *v, uintptr nbytes, uint64 *stat);
177 void runtime_SysUnused(void *v, uintptr nbytes);
178 void runtime_SysUsed(void *v, uintptr nbytes);
179 void runtime_SysMap(void *v, uintptr nbytes, uint64 *stat);
180 void* runtime_SysReserve(void *v, uintptr nbytes);
181
182 // FixAlloc is a simple free-list allocator for fixed size objects.
183 // Malloc uses a FixAlloc wrapped around SysAlloc to manages its
184 // MCache and MSpan objects.
185 //
186 // Memory returned by FixAlloc_Alloc is not zeroed.
187 // The caller is responsible for locking around FixAlloc calls.
188 // Callers can keep state in the object but the first word is
189 // smashed by freeing and reallocating.
190 struct FixAlloc
191 {
192 uintptr size;
193 void (*first)(void *arg, byte *p); // called first time p is returned
194 void* arg;
195 MLink* list;
196 byte* chunk;
197 uint32 nchunk;
198 uintptr inuse; // in-use bytes now
199 uint64* stat;
200 };
201
202 void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
203 void* runtime_FixAlloc_Alloc(FixAlloc *f);
204 void runtime_FixAlloc_Free(FixAlloc *f, void *p);
205
206
207 // Statistics.
208 // Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
209 struct MStats
210 {
211 // General statistics.
212 uint64 alloc; // bytes allocated and still in use
213 uint64 total_alloc; // bytes allocated (even if freed)
214 uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
215 uint64 nlookup; // number of pointer lookups
216 uint64 nmalloc; // number of mallocs
217 uint64 nfree; // number of frees
218
219 // Statistics about malloc heap.
220 // protected by mheap.Lock
221 uint64 heap_alloc; // bytes allocated and still in use
222 uint64 heap_sys; // bytes obtained from system
223 uint64 heap_idle; // bytes in idle spans
224 uint64 heap_inuse; // bytes in non-idle spans
225 uint64 heap_released; // bytes released to the OS
226 uint64 heap_objects; // total number of allocated objects
227
228 // Statistics about allocation of low-level fixed-size structures.
229 // Protected by FixAlloc locks.
230 uint64 stacks_inuse; // bootstrap stacks
231 uint64 stacks_sys;
232 uint64 mspan_inuse; // MSpan structures
233 uint64 mspan_sys;
234 uint64 mcache_inuse; // MCache structures
235 uint64 mcache_sys;
236 uint64 buckhash_sys; // profiling bucket hash table
237 uint64 gc_sys;
238 uint64 other_sys;
239
240 // Statistics about garbage collector.
241 // Protected by mheap or stopping the world during GC.
242 uint64 next_gc; // next GC (in heap_alloc time)
243 uint64 last_gc; // last GC (in absolute time)
244 uint64 pause_total_ns;
245 uint64 pause_ns[256];
246 uint32 numgc;
247 bool enablegc;
248 bool debuggc;
249
250 // Statistics about allocation size classes.
251 struct {
252 uint32 size;
253 uint64 nmalloc;
254 uint64 nfree;
255 } by_size[NumSizeClasses];
256 };
257
258 extern MStats mstats
259 __asm__ (GOSYM_PREFIX "runtime.VmemStats");
260
261 // Size classes. Computed and initialized by InitSizes.
262 //
263 // SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
264 // 1 <= sizeclass < NumSizeClasses, for n.
265 // Size class 0 is reserved to mean "not small".
266 //
267 // class_to_size[i] = largest size in class i
268 // class_to_allocnpages[i] = number of pages to allocate when
269 // making new objects in class i
270
271 int32 runtime_SizeToClass(int32);
272 extern int32 runtime_class_to_size[NumSizeClasses];
273 extern int32 runtime_class_to_allocnpages[NumSizeClasses];
274 extern int8 runtime_size_to_class8[1024/8 + 1];
275 extern int8 runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1];
276 extern void runtime_InitSizes(void);
277
278
279 // Per-thread (in Go, per-M) cache for small objects.
280 // No locking needed because it is per-thread (per-M).
281 typedef struct MCacheList MCacheList;
282 struct MCacheList
283 {
284 MLink *list;
285 uint32 nlist;
286 };
287
288 struct MCache
289 {
290 // The following members are accessed on every malloc,
291 // so they are grouped here for better caching.
292 int32 next_sample; // trigger heap sample after allocating this many bytes
293 intptr local_cachealloc; // bytes allocated (or freed) from cache since last lock of heap
294 // The rest is not accessed on every malloc.
295 MCacheList list[NumSizeClasses];
296 // Local allocator stats, flushed during GC.
297 uintptr local_nlookup; // number of pointer lookups
298 uintptr local_largefree; // bytes freed for large objects (>MaxSmallSize)
299 uintptr local_nlargefree; // number of frees for large objects (>MaxSmallSize)
300 uintptr local_nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
301 };
302
303 void runtime_MCache_Refill(MCache *c, int32 sizeclass);
304 void runtime_MCache_Free(MCache *c, void *p, int32 sizeclass, uintptr size);
305 void runtime_MCache_ReleaseAll(MCache *c);
306
307 // MTypes describes the types of blocks allocated within a span.
308 // The compression field describes the layout of the data.
309 //
310 // MTypes_Empty:
311 // All blocks are free, or no type information is available for
312 // allocated blocks.
313 // The data field has no meaning.
314 // MTypes_Single:
315 // The span contains just one block.
316 // The data field holds the type information.
317 // The sysalloc field has no meaning.
318 // MTypes_Words:
319 // The span contains multiple blocks.
320 // The data field points to an array of type [NumBlocks]uintptr,
321 // and each element of the array holds the type of the corresponding
322 // block.
323 // MTypes_Bytes:
324 // The span contains at most seven different types of blocks.
325 // The data field points to the following structure:
326 // struct {
327 // type [8]uintptr // type[0] is always 0
328 // index [NumBlocks]byte
329 // }
330 // The type of the i-th block is: data.type[data.index[i]]
331 enum
332 {
333 MTypes_Empty = 0,
334 MTypes_Single = 1,
335 MTypes_Words = 2,
336 MTypes_Bytes = 3,
337 };
338 struct MTypes
339 {
340 byte compression; // one of MTypes_*
341 uintptr data;
342 };
343
344 // An MSpan is a run of pages.
345 enum
346 {
347 MSpanInUse = 0,
348 MSpanFree,
349 MSpanListHead,
350 MSpanDead,
351 };
352 struct MSpan
353 {
354 MSpan *next; // in a span linked list
355 MSpan *prev; // in a span linked list
356 PageID start; // starting page number
357 uintptr npages; // number of pages in span
358 MLink *freelist; // list of free objects
359 uint32 ref; // number of allocated objects in this span
360 int32 sizeclass; // size class
361 uintptr elemsize; // computed from sizeclass or from npages
362 uint32 state; // MSpanInUse etc
363 int64 unusedsince; // First time spotted by GC in MSpanFree state
364 uintptr npreleased; // number of pages released to the OS
365 byte *limit; // end of data in span
366 MTypes types; // types of allocated objects in this span
367 };
368
369 void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
370
371 // Every MSpan is in one doubly-linked list,
372 // either one of the MHeap's free lists or one of the
373 // MCentral's span lists. We use empty MSpan structures as list heads.
374 void runtime_MSpanList_Init(MSpan *list);
375 bool runtime_MSpanList_IsEmpty(MSpan *list);
376 void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
377 void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
378
379
380 // Central list of free objects of a given size.
381 struct MCentral
382 {
383 Lock;
384 int32 sizeclass;
385 MSpan nonempty;
386 MSpan empty;
387 int32 nfree;
388 };
389
390 void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
391 int32 runtime_MCentral_AllocList(MCentral *c, MLink **first);
392 void runtime_MCentral_FreeList(MCentral *c, MLink *first);
393 void runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
394
395 // Main malloc heap.
396 // The heap itself is the "free[]" and "large" arrays,
397 // but all the other global data is here too.
398 struct MHeap
399 {
400 Lock;
401 MSpan free[MaxMHeapList]; // free lists of given length
402 MSpan large; // free lists length >= MaxMHeapList
403 MSpan **allspans;
404 uint32 nspan;
405 uint32 nspancap;
406
407 // span lookup
408 MSpan** spans;
409 uintptr spans_mapped;
410
411 // range of addresses we might see in the heap
412 byte *bitmap;
413 uintptr bitmap_mapped;
414 byte *arena_start;
415 byte *arena_used;
416 byte *arena_end;
417
418 // central free lists for small size classes.
419 // the padding makes sure that the MCentrals are
420 // spaced CacheLineSize bytes apart, so that each MCentral.Lock
421 // gets its own cache line.
422 struct {
423 MCentral;
424 byte pad[64];
425 } central[NumSizeClasses];
426
427 FixAlloc spanalloc; // allocator for Span*
428 FixAlloc cachealloc; // allocator for MCache*
429
430 // Malloc stats.
431 uint64 largefree; // bytes freed for large objects (>MaxSmallSize)
432 uint64 nlargefree; // number of frees for large objects (>MaxSmallSize)
433 uint64 nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
434 };
435 extern MHeap runtime_mheap;
436
437 void runtime_MHeap_Init(MHeap *h);
438 MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct, int32 zeroed);
439 void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
440 MSpan* runtime_MHeap_Lookup(MHeap *h, void *v);
441 MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v);
442 void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
443 void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
444 void runtime_MHeap_MapBits(MHeap *h);
445 void runtime_MHeap_MapSpans(MHeap *h);
446 void runtime_MHeap_Scavenger(void*);
447
448 void* runtime_mallocgc(uintptr size, uintptr typ, uint32 flag);
449 void* runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat);
450 int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
451 void runtime_gc(int32 force);
452 void runtime_markscan(void *v);
453 void runtime_marknogc(void *v);
454 void runtime_checkallocated(void *v, uintptr n);
455 void runtime_markfreed(void *v, uintptr n);
456 void runtime_checkfreed(void *v, uintptr n);
457 extern int32 runtime_checking;
458 void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
459 void runtime_unmarkspan(void *v, uintptr size);
460 bool runtime_blockspecial(void*);
461 void runtime_setblockspecial(void*, bool);
462 void runtime_purgecachedstats(MCache*);
463 void* runtime_cnew(const Type*);
464 void* runtime_cnewarray(const Type*, intgo);
465
466 void runtime_settype_flush(M*);
467 void runtime_settype_sysfree(MSpan*);
468 uintptr runtime_gettype(void*);
469
470 enum
471 {
472 // flags to malloc
473 FlagNoScan = 1<<0, // GC doesn't have to scan object
474 FlagNoProfiling = 1<<1, // must not profile
475 FlagNoGC = 1<<2, // must not free or scan for pointers
476 FlagNoZero = 1<<3, // don't zero memory
477 FlagNoInvokeGC = 1<<4, // don't invoke GC
478 };
479
480 typedef struct Obj Obj;
481 struct Obj
482 {
483 byte *p; // data pointer
484 uintptr n; // size of data in bytes
485 uintptr ti; // type info
486 };
487
488 void runtime_MProf_Malloc(void*, uintptr, uintptr);
489 void runtime_MProf_Free(void*, uintptr);
490 void runtime_MProf_GC(void);
491 void runtime_MProf_Mark(void (*addroot)(Obj));
492 int32 runtime_gcprocs(void);
493 void runtime_helpgc(int32 nproc);
494 void runtime_gchelper(void);
495
496 struct __go_func_type;
497 struct __go_ptr_type;
498 bool runtime_getfinalizer(void *p, bool del, FuncVal **fn, const struct __go_func_type **ft, const struct __go_ptr_type **ot);
499 void runtime_walkfintab(void (*fn)(void*), void (*scan)(Obj));
500
501 enum
502 {
503 TypeInfo_SingleObject = 0,
504 TypeInfo_Array = 1,
505 TypeInfo_Chan = 2,
506
507 // Enables type information at the end of blocks allocated from heap
508 DebugTypeAtBlockEnd = 0,
509 };
510
511 // defined in mgc0.go
512 void runtime_gc_m_ptr(Eface*);
513 void runtime_gc_itab_ptr(Eface*);
514
515 void runtime_memorydump(void);
516
517 void runtime_proc_scan(void (*)(Obj));
518 void runtime_time_scan(void (*)(Obj));
519 void runtime_netpoll_scan(void (*)(Obj));