]> git.ipfire.org Git - thirdparty/gcc.git/blob - libiberty/hashtab.c
pex-common.c: New file.
[thirdparty/gcc.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
16
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING.LIB. If
19 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include <sys/types.h>
40
41 #ifdef HAVE_STDLIB_H
42 #include <stdlib.h>
43 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47 #ifdef HAVE_MALLOC_H
48 #include <malloc.h>
49 #endif
50 #ifdef HAVE_LIMITS_H
51 #include <limits.h>
52 #endif
53 #ifdef HAVE_STDINT_H
54 #include <stdint.h>
55 #endif
56
57 #include <stdio.h>
58
59 #include "libiberty.h"
60 #include "ansidecl.h"
61 #include "hashtab.h"
62
63 #ifndef CHAR_BIT
64 #define CHAR_BIT 8
65 #endif
66
67 /* This macro defines reserved value for empty table entry. */
68
69 #define EMPTY_ENTRY ((PTR) 0)
70
71 /* This macro defines reserved value for table entry which contained
72 a deleted element. */
73
74 #define DELETED_ENTRY ((PTR) 1)
75
76 static unsigned int higher_prime_index (unsigned long);
77 static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
78 static hashval_t htab_mod (hashval_t, htab_t);
79 static hashval_t htab_mod_m2 (hashval_t, htab_t);
80 static hashval_t hash_pointer (const void *);
81 static int eq_pointer (const void *, const void *);
82 static int htab_expand (htab_t);
83 static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
84
85 /* At some point, we could make these be NULL, and modify the
86 hash-table routines to handle NULL specially; that would avoid
87 function-call overhead for the common case of hashing pointers. */
88 htab_hash htab_hash_pointer = hash_pointer;
89 htab_eq htab_eq_pointer = eq_pointer;
90
91 /* Table of primes and multiplicative inverses.
92
93 Note that these are not minimally reduced inverses. Unlike when generating
94 code to divide by a constant, we want to be able to use the same algorithm
95 all the time. All of these inverses (are implied to) have bit 32 set.
96
97 For the record, here's the function that computed the table; it's a
98 vastly simplified version of the function of the same name from gcc. */
99
100 #if 0
101 unsigned int
102 ceil_log2 (unsigned int x)
103 {
104 int i;
105 for (i = 31; i >= 0 ; --i)
106 if (x > (1u << i))
107 return i+1;
108 abort ();
109 }
110
111 unsigned int
112 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
113 {
114 unsigned long long mhigh;
115 double nx;
116 int lgup, post_shift;
117 int pow, pow2;
118 int n = 32, precision = 32;
119
120 lgup = ceil_log2 (d);
121 pow = n + lgup;
122 pow2 = n + lgup - precision;
123
124 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
125 mhigh = nx / d;
126
127 *shiftp = lgup - 1;
128 *mlp = mhigh;
129 return mhigh >> 32;
130 }
131 #endif
132
133 struct prime_ent
134 {
135 hashval_t prime;
136 hashval_t inv;
137 hashval_t inv_m2; /* inverse of prime-2 */
138 hashval_t shift;
139 };
140
141 static struct prime_ent const prime_tab[] = {
142 { 7, 0x24924925, 0x9999999b, 2 },
143 { 13, 0x3b13b13c, 0x745d1747, 3 },
144 { 31, 0x08421085, 0x1a7b9612, 4 },
145 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
146 { 127, 0x02040811, 0x0624dd30, 6 },
147 { 251, 0x05197f7e, 0x073260a5, 7 },
148 { 509, 0x01824366, 0x02864fc8, 8 },
149 { 1021, 0x00c0906d, 0x014191f7, 9 },
150 { 2039, 0x0121456f, 0x0161e69e, 10 },
151 { 4093, 0x00300902, 0x00501908, 11 },
152 { 8191, 0x00080041, 0x00180241, 12 },
153 { 16381, 0x000c0091, 0x00140191, 13 },
154 { 32749, 0x002605a5, 0x002a06e6, 14 },
155 { 65521, 0x000f00e2, 0x00110122, 15 },
156 { 131071, 0x00008001, 0x00018003, 16 },
157 { 262139, 0x00014002, 0x0001c004, 17 },
158 { 524287, 0x00002001, 0x00006001, 18 },
159 { 1048573, 0x00003001, 0x00005001, 19 },
160 { 2097143, 0x00004801, 0x00005801, 20 },
161 { 4194301, 0x00000c01, 0x00001401, 21 },
162 { 8388593, 0x00001e01, 0x00002201, 22 },
163 { 16777213, 0x00000301, 0x00000501, 23 },
164 { 33554393, 0x00001381, 0x00001481, 24 },
165 { 67108859, 0x00000141, 0x000001c1, 25 },
166 { 134217689, 0x000004e1, 0x00000521, 26 },
167 { 268435399, 0x00000391, 0x000003b1, 27 },
168 { 536870909, 0x00000019, 0x00000029, 28 },
169 { 1073741789, 0x0000008d, 0x00000095, 29 },
170 { 2147483647, 0x00000003, 0x00000007, 30 },
171 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
172 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
173 };
174
175 /* The following function returns an index into the above table of the
176 nearest prime number which is greater than N, and near a power of two. */
177
178 static unsigned int
179 higher_prime_index (unsigned long n)
180 {
181 unsigned int low = 0;
182 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
183
184 while (low != high)
185 {
186 unsigned int mid = low + (high - low) / 2;
187 if (n > prime_tab[mid].prime)
188 low = mid + 1;
189 else
190 high = mid;
191 }
192
193 /* If we've run out of primes, abort. */
194 if (n > prime_tab[low].prime)
195 {
196 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
197 abort ();
198 }
199
200 return low;
201 }
202
203 /* Returns a hash code for P. */
204
205 static hashval_t
206 hash_pointer (const PTR p)
207 {
208 return (hashval_t) ((long)p >> 3);
209 }
210
211 /* Returns non-zero if P1 and P2 are equal. */
212
213 static int
214 eq_pointer (const PTR p1, const PTR p2)
215 {
216 return p1 == p2;
217 }
218
219 /* Return the current size of given hash table. */
220
221 inline size_t
222 htab_size (htab_t htab)
223 {
224 return htab->size;
225 }
226
227 /* Return the current number of elements in given hash table. */
228
229 inline size_t
230 htab_elements (htab_t htab)
231 {
232 return htab->n_elements - htab->n_deleted;
233 }
234
235 /* Return X % Y. */
236
237 static inline hashval_t
238 htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
239 {
240 /* The multiplicative inverses computed above are for 32-bit types, and
241 requires that we be able to compute a highpart multiply. */
242 #ifdef UNSIGNED_64BIT_TYPE
243 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
244 if (sizeof (hashval_t) * CHAR_BIT <= 32)
245 {
246 hashval_t t1, t2, t3, t4, q, r;
247
248 t1 = ((ull)x * inv) >> 32;
249 t2 = x - t1;
250 t3 = t2 >> 1;
251 t4 = t1 + t3;
252 q = t4 >> shift;
253 r = x - (q * y);
254
255 return r;
256 }
257 #endif
258
259 /* Otherwise just use the native division routines. */
260 return x % y;
261 }
262
263 /* Compute the primary hash for HASH given HTAB's current size. */
264
265 static inline hashval_t
266 htab_mod (hashval_t hash, htab_t htab)
267 {
268 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
269 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
270 }
271
272 /* Compute the secondary hash for HASH given HTAB's current size. */
273
274 static inline hashval_t
275 htab_mod_m2 (hashval_t hash, htab_t htab)
276 {
277 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
278 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
279 }
280
281 /* This function creates table with length slightly longer than given
282 source length. Created hash table is initiated as empty (all the
283 hash table entries are EMPTY_ENTRY). The function returns the
284 created hash table, or NULL if memory allocation fails. */
285
286 htab_t
287 htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
288 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
289 {
290 htab_t result;
291 unsigned int size_prime_index;
292
293 size_prime_index = higher_prime_index (size);
294 size = prime_tab[size_prime_index].prime;
295
296 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
297 if (result == NULL)
298 return NULL;
299 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
300 if (result->entries == NULL)
301 {
302 if (free_f != NULL)
303 (*free_f) (result);
304 return NULL;
305 }
306 result->size = size;
307 result->size_prime_index = size_prime_index;
308 result->hash_f = hash_f;
309 result->eq_f = eq_f;
310 result->del_f = del_f;
311 result->alloc_f = alloc_f;
312 result->free_f = free_f;
313 return result;
314 }
315
316 /* As above, but use the variants of alloc_f and free_f which accept
317 an extra argument. */
318
319 htab_t
320 htab_create_alloc_ex (size, hash_f, eq_f, del_f, alloc_arg, alloc_f,
321 free_f)
322 size_t size;
323 htab_hash hash_f;
324 htab_eq eq_f;
325 htab_del del_f;
326 PTR alloc_arg;
327 htab_alloc_with_arg alloc_f;
328 htab_free_with_arg free_f;
329 {
330 htab_t result;
331 unsigned int size_prime_index;
332
333 size_prime_index = higher_prime_index (size);
334 size = prime_tab[size_prime_index].prime;
335
336 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
337 if (result == NULL)
338 return NULL;
339 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
340 if (result->entries == NULL)
341 {
342 if (free_f != NULL)
343 (*free_f) (alloc_arg, result);
344 return NULL;
345 }
346 result->size = size;
347 result->size_prime_index = size_prime_index;
348 result->hash_f = hash_f;
349 result->eq_f = eq_f;
350 result->del_f = del_f;
351 result->alloc_arg = alloc_arg;
352 result->alloc_with_arg_f = alloc_f;
353 result->free_with_arg_f = free_f;
354 return result;
355 }
356
357 /* Update the function pointers and allocation parameter in the htab_t. */
358
359 void
360 htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
361 htab_del del_f, PTR alloc_arg,
362 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
363 {
364 htab->hash_f = hash_f;
365 htab->eq_f = eq_f;
366 htab->del_f = del_f;
367 htab->alloc_arg = alloc_arg;
368 htab->alloc_with_arg_f = alloc_f;
369 htab->free_with_arg_f = free_f;
370 }
371
372 /* These functions exist solely for backward compatibility. */
373
374 #undef htab_create
375 htab_t
376 htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
377 {
378 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
379 }
380
381 htab_t
382 htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
383 {
384 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
385 }
386
387 /* This function frees all memory allocated for given hash table.
388 Naturally the hash table must already exist. */
389
390 void
391 htab_delete (htab_t htab)
392 {
393 size_t size = htab_size (htab);
394 PTR *entries = htab->entries;
395 int i;
396
397 if (htab->del_f)
398 for (i = size - 1; i >= 0; i--)
399 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
400 (*htab->del_f) (entries[i]);
401
402 if (htab->free_f != NULL)
403 {
404 (*htab->free_f) (entries);
405 (*htab->free_f) (htab);
406 }
407 else if (htab->free_with_arg_f != NULL)
408 {
409 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
410 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
411 }
412 }
413
414 /* This function clears all entries in the given hash table. */
415
416 void
417 htab_empty (htab_t htab)
418 {
419 size_t size = htab_size (htab);
420 PTR *entries = htab->entries;
421 int i;
422
423 if (htab->del_f)
424 for (i = size - 1; i >= 0; i--)
425 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
426 (*htab->del_f) (entries[i]);
427
428 memset (entries, 0, size * sizeof (PTR));
429 }
430
431 /* Similar to htab_find_slot, but without several unwanted side effects:
432 - Does not call htab->eq_f when it finds an existing entry.
433 - Does not change the count of elements/searches/collisions in the
434 hash table.
435 This function also assumes there are no deleted entries in the table.
436 HASH is the hash value for the element to be inserted. */
437
438 static PTR *
439 find_empty_slot_for_expand (htab_t htab, hashval_t hash)
440 {
441 hashval_t index = htab_mod (hash, htab);
442 size_t size = htab_size (htab);
443 PTR *slot = htab->entries + index;
444 hashval_t hash2;
445
446 if (*slot == EMPTY_ENTRY)
447 return slot;
448 else if (*slot == DELETED_ENTRY)
449 abort ();
450
451 hash2 = htab_mod_m2 (hash, htab);
452 for (;;)
453 {
454 index += hash2;
455 if (index >= size)
456 index -= size;
457
458 slot = htab->entries + index;
459 if (*slot == EMPTY_ENTRY)
460 return slot;
461 else if (*slot == DELETED_ENTRY)
462 abort ();
463 }
464 }
465
466 /* The following function changes size of memory allocated for the
467 entries and repeatedly inserts the table elements. The occupancy
468 of the table after the call will be about 50%. Naturally the hash
469 table must already exist. Remember also that the place of the
470 table entries is changed. If memory allocation failures are allowed,
471 this function will return zero, indicating that the table could not be
472 expanded. If all goes well, it will return a non-zero value. */
473
474 static int
475 htab_expand (htab_t htab)
476 {
477 PTR *oentries;
478 PTR *olimit;
479 PTR *p;
480 PTR *nentries;
481 size_t nsize, osize, elts;
482 unsigned int oindex, nindex;
483
484 oentries = htab->entries;
485 oindex = htab->size_prime_index;
486 osize = htab->size;
487 olimit = oentries + osize;
488 elts = htab_elements (htab);
489
490 /* Resize only when table after removal of unused elements is either
491 too full or too empty. */
492 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
493 {
494 nindex = higher_prime_index (elts * 2);
495 nsize = prime_tab[nindex].prime;
496 }
497 else
498 {
499 nindex = oindex;
500 nsize = osize;
501 }
502
503 if (htab->alloc_with_arg_f != NULL)
504 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
505 sizeof (PTR *));
506 else
507 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
508 if (nentries == NULL)
509 return 0;
510 htab->entries = nentries;
511 htab->size = nsize;
512 htab->size_prime_index = nindex;
513 htab->n_elements -= htab->n_deleted;
514 htab->n_deleted = 0;
515
516 p = oentries;
517 do
518 {
519 PTR x = *p;
520
521 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
522 {
523 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
524
525 *q = x;
526 }
527
528 p++;
529 }
530 while (p < olimit);
531
532 if (htab->free_f != NULL)
533 (*htab->free_f) (oentries);
534 else if (htab->free_with_arg_f != NULL)
535 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
536 return 1;
537 }
538
539 /* This function searches for a hash table entry equal to the given
540 element. It cannot be used to insert or delete an element. */
541
542 PTR
543 htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
544 {
545 hashval_t index, hash2;
546 size_t size;
547 PTR entry;
548
549 htab->searches++;
550 size = htab_size (htab);
551 index = htab_mod (hash, htab);
552
553 entry = htab->entries[index];
554 if (entry == EMPTY_ENTRY
555 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
556 return entry;
557
558 hash2 = htab_mod_m2 (hash, htab);
559 for (;;)
560 {
561 htab->collisions++;
562 index += hash2;
563 if (index >= size)
564 index -= size;
565
566 entry = htab->entries[index];
567 if (entry == EMPTY_ENTRY
568 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
569 return entry;
570 }
571 }
572
573 /* Like htab_find_slot_with_hash, but compute the hash value from the
574 element. */
575
576 PTR
577 htab_find (htab_t htab, const PTR element)
578 {
579 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
580 }
581
582 /* This function searches for a hash table slot containing an entry
583 equal to the given element. To delete an entry, call this with
584 insert=NO_INSERT, then call htab_clear_slot on the slot returned
585 (possibly after doing some checks). To insert an entry, call this
586 with insert=INSERT, then write the value you want into the returned
587 slot. When inserting an entry, NULL may be returned if memory
588 allocation fails. */
589
590 PTR *
591 htab_find_slot_with_hash (htab_t htab, const PTR element,
592 hashval_t hash, enum insert_option insert)
593 {
594 PTR *first_deleted_slot;
595 hashval_t index, hash2;
596 size_t size;
597 PTR entry;
598
599 size = htab_size (htab);
600 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
601 {
602 if (htab_expand (htab) == 0)
603 return NULL;
604 size = htab_size (htab);
605 }
606
607 index = htab_mod (hash, htab);
608
609 htab->searches++;
610 first_deleted_slot = NULL;
611
612 entry = htab->entries[index];
613 if (entry == EMPTY_ENTRY)
614 goto empty_entry;
615 else if (entry == DELETED_ENTRY)
616 first_deleted_slot = &htab->entries[index];
617 else if ((*htab->eq_f) (entry, element))
618 return &htab->entries[index];
619
620 hash2 = htab_mod_m2 (hash, htab);
621 for (;;)
622 {
623 htab->collisions++;
624 index += hash2;
625 if (index >= size)
626 index -= size;
627
628 entry = htab->entries[index];
629 if (entry == EMPTY_ENTRY)
630 goto empty_entry;
631 else if (entry == DELETED_ENTRY)
632 {
633 if (!first_deleted_slot)
634 first_deleted_slot = &htab->entries[index];
635 }
636 else if ((*htab->eq_f) (entry, element))
637 return &htab->entries[index];
638 }
639
640 empty_entry:
641 if (insert == NO_INSERT)
642 return NULL;
643
644 if (first_deleted_slot)
645 {
646 htab->n_deleted--;
647 *first_deleted_slot = EMPTY_ENTRY;
648 return first_deleted_slot;
649 }
650
651 htab->n_elements++;
652 return &htab->entries[index];
653 }
654
655 /* Like htab_find_slot_with_hash, but compute the hash value from the
656 element. */
657
658 PTR *
659 htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
660 {
661 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
662 insert);
663 }
664
665 /* This function deletes an element with the given value from hash
666 table (the hash is computed from the element). If there is no matching
667 element in the hash table, this function does nothing. */
668
669 void
670 htab_remove_elt (htab_t htab, PTR element)
671 {
672 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
673 }
674
675
676 /* This function deletes an element with the given value from hash
677 table. If there is no matching element in the hash table, this
678 function does nothing. */
679
680 void
681 htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
682 {
683 PTR *slot;
684
685 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
686 if (*slot == EMPTY_ENTRY)
687 return;
688
689 if (htab->del_f)
690 (*htab->del_f) (*slot);
691
692 *slot = DELETED_ENTRY;
693 htab->n_deleted++;
694 }
695
696 /* This function clears a specified slot in a hash table. It is
697 useful when you've already done the lookup and don't want to do it
698 again. */
699
700 void
701 htab_clear_slot (htab_t htab, PTR *slot)
702 {
703 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
704 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
705 abort ();
706
707 if (htab->del_f)
708 (*htab->del_f) (*slot);
709
710 *slot = DELETED_ENTRY;
711 htab->n_deleted++;
712 }
713
714 /* This function scans over the entire hash table calling
715 CALLBACK for each live entry. If CALLBACK returns false,
716 the iteration stops. INFO is passed as CALLBACK's second
717 argument. */
718
719 void
720 htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
721 {
722 PTR *slot;
723 PTR *limit;
724
725 slot = htab->entries;
726 limit = slot + htab_size (htab);
727
728 do
729 {
730 PTR x = *slot;
731
732 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
733 if (!(*callback) (slot, info))
734 break;
735 }
736 while (++slot < limit);
737 }
738
739 /* Like htab_traverse_noresize, but does resize the table when it is
740 too empty to improve effectivity of subsequent calls. */
741
742 void
743 htab_traverse (htab_t htab, htab_trav callback, PTR info)
744 {
745 if (htab_elements (htab) * 8 < htab_size (htab))
746 htab_expand (htab);
747
748 htab_traverse_noresize (htab, callback, info);
749 }
750
751 /* Return the fraction of fixed collisions during all work with given
752 hash table. */
753
754 double
755 htab_collisions (htab_t htab)
756 {
757 if (htab->searches == 0)
758 return 0.0;
759
760 return (double) htab->collisions / (double) htab->searches;
761 }
762
763 /* Hash P as a null-terminated string.
764
765 Copied from gcc/hashtable.c. Zack had the following to say with respect
766 to applicability, though note that unlike hashtable.c, this hash table
767 implementation re-hashes rather than chain buckets.
768
769 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
770 From: Zack Weinberg <zackw@panix.com>
771 Date: Fri, 17 Aug 2001 02:15:56 -0400
772
773 I got it by extracting all the identifiers from all the source code
774 I had lying around in mid-1999, and testing many recurrences of
775 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
776 prime numbers or the appropriate identity. This was the best one.
777 I don't remember exactly what constituted "best", except I was
778 looking at bucket-length distributions mostly.
779
780 So it should be very good at hashing identifiers, but might not be
781 as good at arbitrary strings.
782
783 I'll add that it thoroughly trounces the hash functions recommended
784 for this use at http://burtleburtle.net/bob/hash/index.html, both
785 on speed and bucket distribution. I haven't tried it against the
786 function they just started using for Perl's hashes. */
787
788 hashval_t
789 htab_hash_string (const PTR p)
790 {
791 const unsigned char *str = (const unsigned char *) p;
792 hashval_t r = 0;
793 unsigned char c;
794
795 while ((c = *str++) != 0)
796 r = r * 67 + c - 113;
797
798 return r;
799 }
800
801 /* DERIVED FROM:
802 --------------------------------------------------------------------
803 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
804 hash(), hash2(), hash3, and mix() are externally useful functions.
805 Routines to test the hash are included if SELF_TEST is defined.
806 You can use this free for any purpose. It has no warranty.
807 --------------------------------------------------------------------
808 */
809
810 /*
811 --------------------------------------------------------------------
812 mix -- mix 3 32-bit values reversibly.
813 For every delta with one or two bit set, and the deltas of all three
814 high bits or all three low bits, whether the original value of a,b,c
815 is almost all zero or is uniformly distributed,
816 * If mix() is run forward or backward, at least 32 bits in a,b,c
817 have at least 1/4 probability of changing.
818 * If mix() is run forward, every bit of c will change between 1/3 and
819 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
820 mix() was built out of 36 single-cycle latency instructions in a
821 structure that could supported 2x parallelism, like so:
822 a -= b;
823 a -= c; x = (c>>13);
824 b -= c; a ^= x;
825 b -= a; x = (a<<8);
826 c -= a; b ^= x;
827 c -= b; x = (b>>13);
828 ...
829 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
830 of that parallelism. They've also turned some of those single-cycle
831 latency instructions into multi-cycle latency instructions. Still,
832 this is the fastest good hash I could find. There were about 2^^68
833 to choose from. I only looked at a billion or so.
834 --------------------------------------------------------------------
835 */
836 /* same, but slower, works on systems that might have 8 byte hashval_t's */
837 #define mix(a,b,c) \
838 { \
839 a -= b; a -= c; a ^= (c>>13); \
840 b -= c; b -= a; b ^= (a<< 8); \
841 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
842 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
843 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
844 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
845 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
846 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
847 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
848 }
849
850 /*
851 --------------------------------------------------------------------
852 hash() -- hash a variable-length key into a 32-bit value
853 k : the key (the unaligned variable-length array of bytes)
854 len : the length of the key, counting by bytes
855 level : can be any 4-byte value
856 Returns a 32-bit value. Every bit of the key affects every bit of
857 the return value. Every 1-bit and 2-bit delta achieves avalanche.
858 About 36+6len instructions.
859
860 The best hash table sizes are powers of 2. There is no need to do
861 mod a prime (mod is sooo slow!). If you need less than 32 bits,
862 use a bitmask. For example, if you need only 10 bits, do
863 h = (h & hashmask(10));
864 In which case, the hash table should have hashsize(10) elements.
865
866 If you are hashing n strings (ub1 **)k, do it like this:
867 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
868
869 By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
870 code any way you wish, private, educational, or commercial. It's free.
871
872 See http://burtleburtle.net/bob/hash/evahash.html
873 Use for hash table lookup, or anything where one collision in 2^32 is
874 acceptable. Do NOT use for cryptographic purposes.
875 --------------------------------------------------------------------
876 */
877
878 hashval_t
879 iterative_hash (const PTR k_in /* the key */,
880 register size_t length /* the length of the key */,
881 register hashval_t initval /* the previous hash, or
882 an arbitrary value */)
883 {
884 register const unsigned char *k = (const unsigned char *)k_in;
885 register hashval_t a,b,c,len;
886
887 /* Set up the internal state */
888 len = length;
889 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
890 c = initval; /* the previous hash value */
891
892 /*---------------------------------------- handle most of the key */
893 #ifndef WORDS_BIGENDIAN
894 /* On a little-endian machine, if the data is 4-byte aligned we can hash
895 by word for better speed. This gives nondeterministic results on
896 big-endian machines. */
897 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
898 while (len >= 12) /* aligned */
899 {
900 a += *(hashval_t *)(k+0);
901 b += *(hashval_t *)(k+4);
902 c += *(hashval_t *)(k+8);
903 mix(a,b,c);
904 k += 12; len -= 12;
905 }
906 else /* unaligned */
907 #endif
908 while (len >= 12)
909 {
910 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
911 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
912 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
913 mix(a,b,c);
914 k += 12; len -= 12;
915 }
916
917 /*------------------------------------- handle the last 11 bytes */
918 c += length;
919 switch(len) /* all the case statements fall through */
920 {
921 case 11: c+=((hashval_t)k[10]<<24);
922 case 10: c+=((hashval_t)k[9]<<16);
923 case 9 : c+=((hashval_t)k[8]<<8);
924 /* the first byte of c is reserved for the length */
925 case 8 : b+=((hashval_t)k[7]<<24);
926 case 7 : b+=((hashval_t)k[6]<<16);
927 case 6 : b+=((hashval_t)k[5]<<8);
928 case 5 : b+=k[4];
929 case 4 : a+=((hashval_t)k[3]<<24);
930 case 3 : a+=((hashval_t)k[2]<<16);
931 case 2 : a+=((hashval_t)k[1]<<8);
932 case 1 : a+=k[0];
933 /* case 0: nothing left to add */
934 }
935 mix(a,b,c);
936 /*-------------------------------------------- report the result */
937 return c;
938 }