]> git.ipfire.org Git - thirdparty/gcc.git/blob - libiberty/hashtab.c
* hashtab.c (htab_expand): Fix allocation of new entries.
[thirdparty/gcc.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <sys/types.h>
39
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
43
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47
48 #include <stdio.h>
49
50 #include "libiberty.h"
51 #include "hashtab.h"
52
53 /* This macro defines reserved value for empty table entry. */
54
55 #define EMPTY_ENTRY ((PTR) 0)
56
57 /* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
60 #define DELETED_ENTRY ((PTR) 1)
61
62 static unsigned long higher_prime_number PARAMS ((unsigned long));
63 static hashval_t hash_pointer PARAMS ((const void *));
64 static int eq_pointer PARAMS ((const void *, const void *));
65 static int htab_expand PARAMS ((htab_t));
66 static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
67
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer = hash_pointer;
72 htab_eq htab_eq_pointer = eq_pointer;
73
74 /* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
76
77 static unsigned long
78 higher_prime_number (n)
79 unsigned long n;
80 {
81 /* These are primes that are near, but slightly smaller than, a
82 power of two. */
83 static const unsigned long primes[] = {
84 (unsigned long) 7,
85 (unsigned long) 13,
86 (unsigned long) 31,
87 (unsigned long) 61,
88 (unsigned long) 127,
89 (unsigned long) 251,
90 (unsigned long) 509,
91 (unsigned long) 1021,
92 (unsigned long) 2039,
93 (unsigned long) 4093,
94 (unsigned long) 8191,
95 (unsigned long) 16381,
96 (unsigned long) 32749,
97 (unsigned long) 65521,
98 (unsigned long) 131071,
99 (unsigned long) 262139,
100 (unsigned long) 524287,
101 (unsigned long) 1048573,
102 (unsigned long) 2097143,
103 (unsigned long) 4194301,
104 (unsigned long) 8388593,
105 (unsigned long) 16777213,
106 (unsigned long) 33554393,
107 (unsigned long) 67108859,
108 (unsigned long) 134217689,
109 (unsigned long) 268435399,
110 (unsigned long) 536870909,
111 (unsigned long) 1073741789,
112 (unsigned long) 2147483647,
113 /* 4294967291L */
114 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
115 };
116
117 const unsigned long *low = &primes[0];
118 const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])];
119
120 while (low != high)
121 {
122 const unsigned long *mid = low + (high - low) / 2;
123 if (n > *mid)
124 low = mid + 1;
125 else
126 high = mid;
127 }
128
129 /* If we've run out of primes, abort. */
130 if (n > *low)
131 {
132 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
133 abort ();
134 }
135
136 return *low;
137 }
138
139 /* Returns a hash code for P. */
140
141 static hashval_t
142 hash_pointer (p)
143 const PTR p;
144 {
145 return (hashval_t) ((long)p >> 3);
146 }
147
148 /* Returns non-zero if P1 and P2 are equal. */
149
150 static int
151 eq_pointer (p1, p2)
152 const PTR p1;
153 const PTR p2;
154 {
155 return p1 == p2;
156 }
157
158 /* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
161 created hash table, or NULL if memory allocation fails. */
162
163 htab_t
164 htab_create_alloc (size, hash_f, eq_f, del_f, alloc_f, free_f)
165 size_t size;
166 htab_hash hash_f;
167 htab_eq eq_f;
168 htab_del del_f;
169 htab_alloc alloc_f;
170 htab_free free_f;
171 {
172 htab_t result;
173
174 size = higher_prime_number (size);
175 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
176 if (result == NULL)
177 return NULL;
178 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
179 if (result->entries == NULL)
180 {
181 if (free_f != NULL)
182 (*free_f) (result);
183 return NULL;
184 }
185 result->size = size;
186 result->hash_f = hash_f;
187 result->eq_f = eq_f;
188 result->del_f = del_f;
189 result->alloc_f = alloc_f;
190 result->free_f = free_f;
191 return result;
192 }
193
194 /* These functions exist solely for backward compatibility. */
195
196 #undef htab_create
197 htab_t
198 htab_create (size, hash_f, eq_f, del_f)
199 size_t size;
200 htab_hash hash_f;
201 htab_eq eq_f;
202 htab_del del_f;
203 {
204 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
205 }
206
207 htab_t
208 htab_try_create (size, hash_f, eq_f, del_f)
209 size_t size;
210 htab_hash hash_f;
211 htab_eq eq_f;
212 htab_del del_f;
213 {
214 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
215 }
216
217 /* This function frees all memory allocated for given hash table.
218 Naturally the hash table must already exist. */
219
220 void
221 htab_delete (htab)
222 htab_t htab;
223 {
224 int i;
225
226 if (htab->del_f)
227 for (i = htab->size - 1; i >= 0; i--)
228 if (htab->entries[i] != EMPTY_ENTRY
229 && htab->entries[i] != DELETED_ENTRY)
230 (*htab->del_f) (htab->entries[i]);
231
232 if (htab->free_f != NULL)
233 {
234 (*htab->free_f) (htab->entries);
235 (*htab->free_f) (htab);
236 }
237 }
238
239 /* This function clears all entries in the given hash table. */
240
241 void
242 htab_empty (htab)
243 htab_t htab;
244 {
245 int i;
246
247 if (htab->del_f)
248 for (i = htab->size - 1; i >= 0; i--)
249 if (htab->entries[i] != EMPTY_ENTRY
250 && htab->entries[i] != DELETED_ENTRY)
251 (*htab->del_f) (htab->entries[i]);
252
253 memset (htab->entries, 0, htab->size * sizeof (PTR));
254 }
255
256 /* Similar to htab_find_slot, but without several unwanted side effects:
257 - Does not call htab->eq_f when it finds an existing entry.
258 - Does not change the count of elements/searches/collisions in the
259 hash table.
260 This function also assumes there are no deleted entries in the table.
261 HASH is the hash value for the element to be inserted. */
262
263 static PTR *
264 find_empty_slot_for_expand (htab, hash)
265 htab_t htab;
266 hashval_t hash;
267 {
268 size_t size = htab->size;
269 unsigned int index = hash % size;
270 PTR *slot = htab->entries + index;
271 hashval_t hash2;
272
273 if (*slot == EMPTY_ENTRY)
274 return slot;
275 else if (*slot == DELETED_ENTRY)
276 abort ();
277
278 hash2 = 1 + hash % (size - 2);
279 for (;;)
280 {
281 index += hash2;
282 if (index >= size)
283 index -= size;
284
285 slot = htab->entries + index;
286 if (*slot == EMPTY_ENTRY)
287 return slot;
288 else if (*slot == DELETED_ENTRY)
289 abort ();
290 }
291 }
292
293 /* The following function changes size of memory allocated for the
294 entries and repeatedly inserts the table elements. The occupancy
295 of the table after the call will be about 50%. Naturally the hash
296 table must already exist. Remember also that the place of the
297 table entries is changed. If memory allocation failures are allowed,
298 this function will return zero, indicating that the table could not be
299 expanded. If all goes well, it will return a non-zero value. */
300
301 static int
302 htab_expand (htab)
303 htab_t htab;
304 {
305 PTR *oentries;
306 PTR *olimit;
307 PTR *p;
308 PTR *nentries;
309 size_t nsize;
310
311 oentries = htab->entries;
312 olimit = oentries + htab->size;
313
314 nsize = higher_prime_number (htab->size * 2);
315
316 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR));
317 if (nentries == NULL)
318 return 0;
319 htab->entries = nentries;
320 htab->size = nsize;
321
322 htab->n_elements -= htab->n_deleted;
323 htab->n_deleted = 0;
324
325 p = oentries;
326 do
327 {
328 PTR x = *p;
329
330 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
331 {
332 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
333
334 *q = x;
335 }
336
337 p++;
338 }
339 while (p < olimit);
340
341 if (htab->free_f != NULL)
342 (*htab->free_f) (oentries);
343 return 1;
344 }
345
346 /* This function searches for a hash table entry equal to the given
347 element. It cannot be used to insert or delete an element. */
348
349 PTR
350 htab_find_with_hash (htab, element, hash)
351 htab_t htab;
352 const PTR element;
353 hashval_t hash;
354 {
355 unsigned int index;
356 hashval_t hash2;
357 size_t size;
358 PTR entry;
359
360 htab->searches++;
361 size = htab->size;
362 index = hash % size;
363
364 entry = htab->entries[index];
365 if (entry == EMPTY_ENTRY
366 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
367 return entry;
368
369 hash2 = 1 + hash % (size - 2);
370
371 for (;;)
372 {
373 htab->collisions++;
374 index += hash2;
375 if (index >= size)
376 index -= size;
377
378 entry = htab->entries[index];
379 if (entry == EMPTY_ENTRY
380 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
381 return entry;
382 }
383 }
384
385 /* Like htab_find_slot_with_hash, but compute the hash value from the
386 element. */
387
388 PTR
389 htab_find (htab, element)
390 htab_t htab;
391 const PTR element;
392 {
393 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
394 }
395
396 /* This function searches for a hash table slot containing an entry
397 equal to the given element. To delete an entry, call this with
398 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
399 after doing some checks). To insert an entry, call this with
400 INSERT = 1, then write the value you want into the returned slot.
401 When inserting an entry, NULL may be returned if memory allocation
402 fails. */
403
404 PTR *
405 htab_find_slot_with_hash (htab, element, hash, insert)
406 htab_t htab;
407 const PTR element;
408 hashval_t hash;
409 enum insert_option insert;
410 {
411 PTR *first_deleted_slot;
412 unsigned int index;
413 hashval_t hash2;
414 size_t size;
415 PTR entry;
416
417 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
418 && htab_expand (htab) == 0)
419 return NULL;
420
421 size = htab->size;
422 index = hash % size;
423
424 htab->searches++;
425 first_deleted_slot = NULL;
426
427 entry = htab->entries[index];
428 if (entry == EMPTY_ENTRY)
429 goto empty_entry;
430 else if (entry == DELETED_ENTRY)
431 first_deleted_slot = &htab->entries[index];
432 else if ((*htab->eq_f) (entry, element))
433 return &htab->entries[index];
434
435 hash2 = 1 + hash % (size - 2);
436 for (;;)
437 {
438 htab->collisions++;
439 index += hash2;
440 if (index >= size)
441 index -= size;
442
443 entry = htab->entries[index];
444 if (entry == EMPTY_ENTRY)
445 goto empty_entry;
446 else if (entry == DELETED_ENTRY)
447 {
448 if (!first_deleted_slot)
449 first_deleted_slot = &htab->entries[index];
450 }
451 else if ((*htab->eq_f) (entry, element))
452 return &htab->entries[index];
453 }
454
455 empty_entry:
456 if (insert == NO_INSERT)
457 return NULL;
458
459 htab->n_elements++;
460
461 if (first_deleted_slot)
462 {
463 *first_deleted_slot = EMPTY_ENTRY;
464 return first_deleted_slot;
465 }
466
467 return &htab->entries[index];
468 }
469
470 /* Like htab_find_slot_with_hash, but compute the hash value from the
471 element. */
472
473 PTR *
474 htab_find_slot (htab, element, insert)
475 htab_t htab;
476 const PTR element;
477 enum insert_option insert;
478 {
479 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
480 insert);
481 }
482
483 /* This function deletes an element with the given value from hash
484 table. If there is no matching element in the hash table, this
485 function does nothing. */
486
487 void
488 htab_remove_elt (htab, element)
489 htab_t htab;
490 PTR element;
491 {
492 PTR *slot;
493
494 slot = htab_find_slot (htab, element, NO_INSERT);
495 if (*slot == EMPTY_ENTRY)
496 return;
497
498 if (htab->del_f)
499 (*htab->del_f) (*slot);
500
501 *slot = DELETED_ENTRY;
502 htab->n_deleted++;
503 }
504
505 /* This function clears a specified slot in a hash table. It is
506 useful when you've already done the lookup and don't want to do it
507 again. */
508
509 void
510 htab_clear_slot (htab, slot)
511 htab_t htab;
512 PTR *slot;
513 {
514 if (slot < htab->entries || slot >= htab->entries + htab->size
515 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
516 abort ();
517
518 if (htab->del_f)
519 (*htab->del_f) (*slot);
520
521 *slot = DELETED_ENTRY;
522 htab->n_deleted++;
523 }
524
525 /* This function scans over the entire hash table calling
526 CALLBACK for each live entry. If CALLBACK returns false,
527 the iteration stops. INFO is passed as CALLBACK's second
528 argument. */
529
530 void
531 htab_traverse (htab, callback, info)
532 htab_t htab;
533 htab_trav callback;
534 PTR info;
535 {
536 PTR *slot = htab->entries;
537 PTR *limit = slot + htab->size;
538
539 do
540 {
541 PTR x = *slot;
542
543 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
544 if (!(*callback) (slot, info))
545 break;
546 }
547 while (++slot < limit);
548 }
549
550 /* Return the current size of given hash table. */
551
552 size_t
553 htab_size (htab)
554 htab_t htab;
555 {
556 return htab->size;
557 }
558
559 /* Return the current number of elements in given hash table. */
560
561 size_t
562 htab_elements (htab)
563 htab_t htab;
564 {
565 return htab->n_elements - htab->n_deleted;
566 }
567
568 /* Return the fraction of fixed collisions during all work with given
569 hash table. */
570
571 double
572 htab_collisions (htab)
573 htab_t htab;
574 {
575 if (htab->searches == 0)
576 return 0.0;
577
578 return (double) htab->collisions / (double) htab->searches;
579 }
580
581 /* Hash P as a null-terminated string.
582
583 Copied from gcc/hashtable.c. Zack had the following to say with respect
584 to applicability, though note that unlike hashtable.c, this hash table
585 implementation re-hashes rather than chain buckets.
586
587 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
588 From: Zack Weinberg <zackw@panix.com>
589 Date: Fri, 17 Aug 2001 02:15:56 -0400
590
591 I got it by extracting all the identifiers from all the source code
592 I had lying around in mid-1999, and testing many recurrences of
593 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
594 prime numbers or the appropriate identity. This was the best one.
595 I don't remember exactly what constituted "best", except I was
596 looking at bucket-length distributions mostly.
597
598 So it should be very good at hashing identifiers, but might not be
599 as good at arbitrary strings.
600
601 I'll add that it thoroughly trounces the hash functions recommended
602 for this use at http://burtleburtle.net/bob/hash/index.html, both
603 on speed and bucket distribution. I haven't tried it against the
604 function they just started using for Perl's hashes. */
605
606 hashval_t
607 htab_hash_string (p)
608 const PTR p;
609 {
610 const unsigned char *str = (const unsigned char *) p;
611 hashval_t r = 0;
612 unsigned char c;
613
614 while ((c = *str++) != 0)
615 r = r * 67 + c - 113;
616
617 return r;
618 }