]> git.ipfire.org Git - thirdparty/gcc.git/blob - libiberty/hashtab.c
libiberty.h (ACONCAT): Properly cast value of alloca().
[thirdparty/gcc.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
16
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING.LIB. If
19 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include <sys/types.h>
40
41 #ifdef HAVE_STDLIB_H
42 #include <stdlib.h>
43 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47 #ifdef HAVE_MALLOC_H
48 #include <malloc.h>
49 #endif
50 #ifdef HAVE_LIMITS_H
51 #include <limits.h>
52 #endif
53 #ifdef HAVE_STDINT_H
54 #include <stdint.h>
55 #endif
56
57 #include <stdio.h>
58
59 #include "libiberty.h"
60 #include "ansidecl.h"
61 #include "hashtab.h"
62
63 #ifndef CHAR_BIT
64 #define CHAR_BIT 8
65 #endif
66
67 /* This macro defines reserved value for empty table entry. */
68
69 #define EMPTY_ENTRY ((PTR) 0)
70
71 /* This macro defines reserved value for table entry which contained
72 a deleted element. */
73
74 #define DELETED_ENTRY ((PTR) 1)
75
76 static unsigned int higher_prime_index (unsigned long);
77 static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
78 static hashval_t htab_mod (hashval_t, htab_t);
79 static hashval_t htab_mod_m2 (hashval_t, htab_t);
80 static hashval_t hash_pointer (const void *);
81 static int eq_pointer (const void *, const void *);
82 static int htab_expand (htab_t);
83 static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
84
85 /* At some point, we could make these be NULL, and modify the
86 hash-table routines to handle NULL specially; that would avoid
87 function-call overhead for the common case of hashing pointers. */
88 htab_hash htab_hash_pointer = hash_pointer;
89 htab_eq htab_eq_pointer = eq_pointer;
90
91 /* Table of primes and multiplicative inverses.
92
93 Note that these are not minimally reduced inverses. Unlike when generating
94 code to divide by a constant, we want to be able to use the same algorithm
95 all the time. All of these inverses (are implied to) have bit 32 set.
96
97 For the record, here's the function that computed the table; it's a
98 vastly simplified version of the function of the same name from gcc. */
99
100 #if 0
101 unsigned int
102 ceil_log2 (unsigned int x)
103 {
104 int i;
105 for (i = 31; i >= 0 ; --i)
106 if (x > (1u << i))
107 return i+1;
108 abort ();
109 }
110
111 unsigned int
112 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
113 {
114 unsigned long long mhigh;
115 double nx;
116 int lgup, post_shift;
117 int pow, pow2;
118 int n = 32, precision = 32;
119
120 lgup = ceil_log2 (d);
121 pow = n + lgup;
122 pow2 = n + lgup - precision;
123
124 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
125 mhigh = nx / d;
126
127 *shiftp = lgup - 1;
128 *mlp = mhigh;
129 return mhigh >> 32;
130 }
131 #endif
132
133 struct prime_ent
134 {
135 hashval_t prime;
136 hashval_t inv;
137 hashval_t inv_m2; /* inverse of prime-2 */
138 hashval_t shift;
139 };
140
141 static struct prime_ent const prime_tab[] = {
142 { 7, 0x24924925, 0x9999999b, 2 },
143 { 13, 0x3b13b13c, 0x745d1747, 3 },
144 { 31, 0x08421085, 0x1a7b9612, 4 },
145 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
146 { 127, 0x02040811, 0x0624dd30, 6 },
147 { 251, 0x05197f7e, 0x073260a5, 7 },
148 { 509, 0x01824366, 0x02864fc8, 8 },
149 { 1021, 0x00c0906d, 0x014191f7, 9 },
150 { 2039, 0x0121456f, 0x0161e69e, 10 },
151 { 4093, 0x00300902, 0x00501908, 11 },
152 { 8191, 0x00080041, 0x00180241, 12 },
153 { 16381, 0x000c0091, 0x00140191, 13 },
154 { 32749, 0x002605a5, 0x002a06e6, 14 },
155 { 65521, 0x000f00e2, 0x00110122, 15 },
156 { 131071, 0x00008001, 0x00018003, 16 },
157 { 262139, 0x00014002, 0x0001c004, 17 },
158 { 524287, 0x00002001, 0x00006001, 18 },
159 { 1048573, 0x00003001, 0x00005001, 19 },
160 { 2097143, 0x00004801, 0x00005801, 20 },
161 { 4194301, 0x00000c01, 0x00001401, 21 },
162 { 8388593, 0x00001e01, 0x00002201, 22 },
163 { 16777213, 0x00000301, 0x00000501, 23 },
164 { 33554393, 0x00001381, 0x00001481, 24 },
165 { 67108859, 0x00000141, 0x000001c1, 25 },
166 { 134217689, 0x000004e1, 0x00000521, 26 },
167 { 268435399, 0x00000391, 0x000003b1, 27 },
168 { 536870909, 0x00000019, 0x00000029, 28 },
169 { 1073741789, 0x0000008d, 0x00000095, 29 },
170 { 2147483647, 0x00000003, 0x00000007, 30 },
171 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
172 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
173 };
174
175 /* The following function returns an index into the above table of the
176 nearest prime number which is greater than N, and near a power of two. */
177
178 static unsigned int
179 higher_prime_index (unsigned long n)
180 {
181 unsigned int low = 0;
182 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
183
184 while (low != high)
185 {
186 unsigned int mid = low + (high - low) / 2;
187 if (n > prime_tab[mid].prime)
188 low = mid + 1;
189 else
190 high = mid;
191 }
192
193 /* If we've run out of primes, abort. */
194 if (n > prime_tab[low].prime)
195 {
196 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
197 abort ();
198 }
199
200 return low;
201 }
202
203 /* Returns a hash code for P. */
204
205 static hashval_t
206 hash_pointer (const PTR p)
207 {
208 return (hashval_t) ((long)p >> 3);
209 }
210
211 /* Returns non-zero if P1 and P2 are equal. */
212
213 static int
214 eq_pointer (const PTR p1, const PTR p2)
215 {
216 return p1 == p2;
217 }
218
219
220 /* The parens around the function names in the next two definitions
221 are essential in order to prevent macro expansions of the name.
222 The bodies, however, are expanded as expected, so they are not
223 recursive definitions. */
224
225 /* Return the current size of given hash table. */
226
227 #define htab_size(htab) ((htab)->size)
228
229 size_t
230 (htab_size) (htab_t htab)
231 {
232 return htab_size (htab);
233 }
234
235 /* Return the current number of elements in given hash table. */
236
237 #define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
238
239 size_t
240 (htab_elements) (htab_t htab)
241 {
242 return htab_elements (htab);
243 }
244
245 /* Return X % Y. */
246
247 static inline hashval_t
248 htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
249 {
250 /* The multiplicative inverses computed above are for 32-bit types, and
251 requires that we be able to compute a highpart multiply. */
252 #ifdef UNSIGNED_64BIT_TYPE
253 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
254 if (sizeof (hashval_t) * CHAR_BIT <= 32)
255 {
256 hashval_t t1, t2, t3, t4, q, r;
257
258 t1 = ((ull)x * inv) >> 32;
259 t2 = x - t1;
260 t3 = t2 >> 1;
261 t4 = t1 + t3;
262 q = t4 >> shift;
263 r = x - (q * y);
264
265 return r;
266 }
267 #endif
268
269 /* Otherwise just use the native division routines. */
270 return x % y;
271 }
272
273 /* Compute the primary hash for HASH given HTAB's current size. */
274
275 static inline hashval_t
276 htab_mod (hashval_t hash, htab_t htab)
277 {
278 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
280 }
281
282 /* Compute the secondary hash for HASH given HTAB's current size. */
283
284 static inline hashval_t
285 htab_mod_m2 (hashval_t hash, htab_t htab)
286 {
287 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
288 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
289 }
290
291 /* This function creates table with length slightly longer than given
292 source length. Created hash table is initiated as empty (all the
293 hash table entries are EMPTY_ENTRY). The function returns the
294 created hash table, or NULL if memory allocation fails. */
295
296 htab_t
297 htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
298 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
299 {
300 htab_t result;
301 unsigned int size_prime_index;
302
303 size_prime_index = higher_prime_index (size);
304 size = prime_tab[size_prime_index].prime;
305
306 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
307 if (result == NULL)
308 return NULL;
309 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
310 if (result->entries == NULL)
311 {
312 if (free_f != NULL)
313 (*free_f) (result);
314 return NULL;
315 }
316 result->size = size;
317 result->size_prime_index = size_prime_index;
318 result->hash_f = hash_f;
319 result->eq_f = eq_f;
320 result->del_f = del_f;
321 result->alloc_f = alloc_f;
322 result->free_f = free_f;
323 return result;
324 }
325
326 /* As above, but use the variants of alloc_f and free_f which accept
327 an extra argument. */
328
329 htab_t
330 htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
331 htab_del del_f, void *alloc_arg,
332 htab_alloc_with_arg alloc_f,
333 htab_free_with_arg free_f)
334 {
335 htab_t result;
336 unsigned int size_prime_index;
337
338 size_prime_index = higher_prime_index (size);
339 size = prime_tab[size_prime_index].prime;
340
341 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
342 if (result == NULL)
343 return NULL;
344 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
345 if (result->entries == NULL)
346 {
347 if (free_f != NULL)
348 (*free_f) (alloc_arg, result);
349 return NULL;
350 }
351 result->size = size;
352 result->size_prime_index = size_prime_index;
353 result->hash_f = hash_f;
354 result->eq_f = eq_f;
355 result->del_f = del_f;
356 result->alloc_arg = alloc_arg;
357 result->alloc_with_arg_f = alloc_f;
358 result->free_with_arg_f = free_f;
359 return result;
360 }
361
362 /* Update the function pointers and allocation parameter in the htab_t. */
363
364 void
365 htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
366 htab_del del_f, PTR alloc_arg,
367 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
368 {
369 htab->hash_f = hash_f;
370 htab->eq_f = eq_f;
371 htab->del_f = del_f;
372 htab->alloc_arg = alloc_arg;
373 htab->alloc_with_arg_f = alloc_f;
374 htab->free_with_arg_f = free_f;
375 }
376
377 /* These functions exist solely for backward compatibility. */
378
379 #undef htab_create
380 htab_t
381 htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
382 {
383 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
384 }
385
386 htab_t
387 htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
388 {
389 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
390 }
391
392 /* This function frees all memory allocated for given hash table.
393 Naturally the hash table must already exist. */
394
395 void
396 htab_delete (htab_t htab)
397 {
398 size_t size = htab_size (htab);
399 PTR *entries = htab->entries;
400 int i;
401
402 if (htab->del_f)
403 for (i = size - 1; i >= 0; i--)
404 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
405 (*htab->del_f) (entries[i]);
406
407 if (htab->free_f != NULL)
408 {
409 (*htab->free_f) (entries);
410 (*htab->free_f) (htab);
411 }
412 else if (htab->free_with_arg_f != NULL)
413 {
414 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
415 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
416 }
417 }
418
419 /* This function clears all entries in the given hash table. */
420
421 void
422 htab_empty (htab_t htab)
423 {
424 size_t size = htab_size (htab);
425 PTR *entries = htab->entries;
426 int i;
427
428 if (htab->del_f)
429 for (i = size - 1; i >= 0; i--)
430 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
431 (*htab->del_f) (entries[i]);
432
433 memset (entries, 0, size * sizeof (PTR));
434 }
435
436 /* Similar to htab_find_slot, but without several unwanted side effects:
437 - Does not call htab->eq_f when it finds an existing entry.
438 - Does not change the count of elements/searches/collisions in the
439 hash table.
440 This function also assumes there are no deleted entries in the table.
441 HASH is the hash value for the element to be inserted. */
442
443 static PTR *
444 find_empty_slot_for_expand (htab_t htab, hashval_t hash)
445 {
446 hashval_t index = htab_mod (hash, htab);
447 size_t size = htab_size (htab);
448 PTR *slot = htab->entries + index;
449 hashval_t hash2;
450
451 if (*slot == EMPTY_ENTRY)
452 return slot;
453 else if (*slot == DELETED_ENTRY)
454 abort ();
455
456 hash2 = htab_mod_m2 (hash, htab);
457 for (;;)
458 {
459 index += hash2;
460 if (index >= size)
461 index -= size;
462
463 slot = htab->entries + index;
464 if (*slot == EMPTY_ENTRY)
465 return slot;
466 else if (*slot == DELETED_ENTRY)
467 abort ();
468 }
469 }
470
471 /* The following function changes size of memory allocated for the
472 entries and repeatedly inserts the table elements. The occupancy
473 of the table after the call will be about 50%. Naturally the hash
474 table must already exist. Remember also that the place of the
475 table entries is changed. If memory allocation failures are allowed,
476 this function will return zero, indicating that the table could not be
477 expanded. If all goes well, it will return a non-zero value. */
478
479 static int
480 htab_expand (htab_t htab)
481 {
482 PTR *oentries;
483 PTR *olimit;
484 PTR *p;
485 PTR *nentries;
486 size_t nsize, osize, elts;
487 unsigned int oindex, nindex;
488
489 oentries = htab->entries;
490 oindex = htab->size_prime_index;
491 osize = htab->size;
492 olimit = oentries + osize;
493 elts = htab_elements (htab);
494
495 /* Resize only when table after removal of unused elements is either
496 too full or too empty. */
497 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
498 {
499 nindex = higher_prime_index (elts * 2);
500 nsize = prime_tab[nindex].prime;
501 }
502 else
503 {
504 nindex = oindex;
505 nsize = osize;
506 }
507
508 if (htab->alloc_with_arg_f != NULL)
509 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
510 sizeof (PTR *));
511 else
512 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
513 if (nentries == NULL)
514 return 0;
515 htab->entries = nentries;
516 htab->size = nsize;
517 htab->size_prime_index = nindex;
518 htab->n_elements -= htab->n_deleted;
519 htab->n_deleted = 0;
520
521 p = oentries;
522 do
523 {
524 PTR x = *p;
525
526 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
527 {
528 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
529
530 *q = x;
531 }
532
533 p++;
534 }
535 while (p < olimit);
536
537 if (htab->free_f != NULL)
538 (*htab->free_f) (oentries);
539 else if (htab->free_with_arg_f != NULL)
540 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
541 return 1;
542 }
543
544 /* This function searches for a hash table entry equal to the given
545 element. It cannot be used to insert or delete an element. */
546
547 PTR
548 htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
549 {
550 hashval_t index, hash2;
551 size_t size;
552 PTR entry;
553
554 htab->searches++;
555 size = htab_size (htab);
556 index = htab_mod (hash, htab);
557
558 entry = htab->entries[index];
559 if (entry == EMPTY_ENTRY
560 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
561 return entry;
562
563 hash2 = htab_mod_m2 (hash, htab);
564 for (;;)
565 {
566 htab->collisions++;
567 index += hash2;
568 if (index >= size)
569 index -= size;
570
571 entry = htab->entries[index];
572 if (entry == EMPTY_ENTRY
573 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
574 return entry;
575 }
576 }
577
578 /* Like htab_find_slot_with_hash, but compute the hash value from the
579 element. */
580
581 PTR
582 htab_find (htab_t htab, const PTR element)
583 {
584 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
585 }
586
587 /* This function searches for a hash table slot containing an entry
588 equal to the given element. To delete an entry, call this with
589 insert=NO_INSERT, then call htab_clear_slot on the slot returned
590 (possibly after doing some checks). To insert an entry, call this
591 with insert=INSERT, then write the value you want into the returned
592 slot. When inserting an entry, NULL may be returned if memory
593 allocation fails. */
594
595 PTR *
596 htab_find_slot_with_hash (htab_t htab, const PTR element,
597 hashval_t hash, enum insert_option insert)
598 {
599 PTR *first_deleted_slot;
600 hashval_t index, hash2;
601 size_t size;
602 PTR entry;
603
604 size = htab_size (htab);
605 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
606 {
607 if (htab_expand (htab) == 0)
608 return NULL;
609 size = htab_size (htab);
610 }
611
612 index = htab_mod (hash, htab);
613
614 htab->searches++;
615 first_deleted_slot = NULL;
616
617 entry = htab->entries[index];
618 if (entry == EMPTY_ENTRY)
619 goto empty_entry;
620 else if (entry == DELETED_ENTRY)
621 first_deleted_slot = &htab->entries[index];
622 else if ((*htab->eq_f) (entry, element))
623 return &htab->entries[index];
624
625 hash2 = htab_mod_m2 (hash, htab);
626 for (;;)
627 {
628 htab->collisions++;
629 index += hash2;
630 if (index >= size)
631 index -= size;
632
633 entry = htab->entries[index];
634 if (entry == EMPTY_ENTRY)
635 goto empty_entry;
636 else if (entry == DELETED_ENTRY)
637 {
638 if (!first_deleted_slot)
639 first_deleted_slot = &htab->entries[index];
640 }
641 else if ((*htab->eq_f) (entry, element))
642 return &htab->entries[index];
643 }
644
645 empty_entry:
646 if (insert == NO_INSERT)
647 return NULL;
648
649 if (first_deleted_slot)
650 {
651 htab->n_deleted--;
652 *first_deleted_slot = EMPTY_ENTRY;
653 return first_deleted_slot;
654 }
655
656 htab->n_elements++;
657 return &htab->entries[index];
658 }
659
660 /* Like htab_find_slot_with_hash, but compute the hash value from the
661 element. */
662
663 PTR *
664 htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
665 {
666 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
667 insert);
668 }
669
670 /* This function deletes an element with the given value from hash
671 table (the hash is computed from the element). If there is no matching
672 element in the hash table, this function does nothing. */
673
674 void
675 htab_remove_elt (htab_t htab, PTR element)
676 {
677 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
678 }
679
680
681 /* This function deletes an element with the given value from hash
682 table. If there is no matching element in the hash table, this
683 function does nothing. */
684
685 void
686 htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
687 {
688 PTR *slot;
689
690 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
691 if (*slot == EMPTY_ENTRY)
692 return;
693
694 if (htab->del_f)
695 (*htab->del_f) (*slot);
696
697 *slot = DELETED_ENTRY;
698 htab->n_deleted++;
699 }
700
701 /* This function clears a specified slot in a hash table. It is
702 useful when you've already done the lookup and don't want to do it
703 again. */
704
705 void
706 htab_clear_slot (htab_t htab, PTR *slot)
707 {
708 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
709 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
710 abort ();
711
712 if (htab->del_f)
713 (*htab->del_f) (*slot);
714
715 *slot = DELETED_ENTRY;
716 htab->n_deleted++;
717 }
718
719 /* This function scans over the entire hash table calling
720 CALLBACK for each live entry. If CALLBACK returns false,
721 the iteration stops. INFO is passed as CALLBACK's second
722 argument. */
723
724 void
725 htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
726 {
727 PTR *slot;
728 PTR *limit;
729
730 slot = htab->entries;
731 limit = slot + htab_size (htab);
732
733 do
734 {
735 PTR x = *slot;
736
737 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
738 if (!(*callback) (slot, info))
739 break;
740 }
741 while (++slot < limit);
742 }
743
744 /* Like htab_traverse_noresize, but does resize the table when it is
745 too empty to improve effectivity of subsequent calls. */
746
747 void
748 htab_traverse (htab_t htab, htab_trav callback, PTR info)
749 {
750 if (htab_elements (htab) * 8 < htab_size (htab))
751 htab_expand (htab);
752
753 htab_traverse_noresize (htab, callback, info);
754 }
755
756 /* Return the fraction of fixed collisions during all work with given
757 hash table. */
758
759 double
760 htab_collisions (htab_t htab)
761 {
762 if (htab->searches == 0)
763 return 0.0;
764
765 return (double) htab->collisions / (double) htab->searches;
766 }
767
768 /* Hash P as a null-terminated string.
769
770 Copied from gcc/hashtable.c. Zack had the following to say with respect
771 to applicability, though note that unlike hashtable.c, this hash table
772 implementation re-hashes rather than chain buckets.
773
774 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
775 From: Zack Weinberg <zackw@panix.com>
776 Date: Fri, 17 Aug 2001 02:15:56 -0400
777
778 I got it by extracting all the identifiers from all the source code
779 I had lying around in mid-1999, and testing many recurrences of
780 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
781 prime numbers or the appropriate identity. This was the best one.
782 I don't remember exactly what constituted "best", except I was
783 looking at bucket-length distributions mostly.
784
785 So it should be very good at hashing identifiers, but might not be
786 as good at arbitrary strings.
787
788 I'll add that it thoroughly trounces the hash functions recommended
789 for this use at http://burtleburtle.net/bob/hash/index.html, both
790 on speed and bucket distribution. I haven't tried it against the
791 function they just started using for Perl's hashes. */
792
793 hashval_t
794 htab_hash_string (const PTR p)
795 {
796 const unsigned char *str = (const unsigned char *) p;
797 hashval_t r = 0;
798 unsigned char c;
799
800 while ((c = *str++) != 0)
801 r = r * 67 + c - 113;
802
803 return r;
804 }
805
806 /* DERIVED FROM:
807 --------------------------------------------------------------------
808 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
809 hash(), hash2(), hash3, and mix() are externally useful functions.
810 Routines to test the hash are included if SELF_TEST is defined.
811 You can use this free for any purpose. It has no warranty.
812 --------------------------------------------------------------------
813 */
814
815 /*
816 --------------------------------------------------------------------
817 mix -- mix 3 32-bit values reversibly.
818 For every delta with one or two bit set, and the deltas of all three
819 high bits or all three low bits, whether the original value of a,b,c
820 is almost all zero or is uniformly distributed,
821 * If mix() is run forward or backward, at least 32 bits in a,b,c
822 have at least 1/4 probability of changing.
823 * If mix() is run forward, every bit of c will change between 1/3 and
824 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
825 mix() was built out of 36 single-cycle latency instructions in a
826 structure that could supported 2x parallelism, like so:
827 a -= b;
828 a -= c; x = (c>>13);
829 b -= c; a ^= x;
830 b -= a; x = (a<<8);
831 c -= a; b ^= x;
832 c -= b; x = (b>>13);
833 ...
834 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
835 of that parallelism. They've also turned some of those single-cycle
836 latency instructions into multi-cycle latency instructions. Still,
837 this is the fastest good hash I could find. There were about 2^^68
838 to choose from. I only looked at a billion or so.
839 --------------------------------------------------------------------
840 */
841 /* same, but slower, works on systems that might have 8 byte hashval_t's */
842 #define mix(a,b,c) \
843 { \
844 a -= b; a -= c; a ^= (c>>13); \
845 b -= c; b -= a; b ^= (a<< 8); \
846 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
847 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
848 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
849 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
850 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
851 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
852 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
853 }
854
855 /*
856 --------------------------------------------------------------------
857 hash() -- hash a variable-length key into a 32-bit value
858 k : the key (the unaligned variable-length array of bytes)
859 len : the length of the key, counting by bytes
860 level : can be any 4-byte value
861 Returns a 32-bit value. Every bit of the key affects every bit of
862 the return value. Every 1-bit and 2-bit delta achieves avalanche.
863 About 36+6len instructions.
864
865 The best hash table sizes are powers of 2. There is no need to do
866 mod a prime (mod is sooo slow!). If you need less than 32 bits,
867 use a bitmask. For example, if you need only 10 bits, do
868 h = (h & hashmask(10));
869 In which case, the hash table should have hashsize(10) elements.
870
871 If you are hashing n strings (ub1 **)k, do it like this:
872 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
873
874 By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
875 code any way you wish, private, educational, or commercial. It's free.
876
877 See http://burtleburtle.net/bob/hash/evahash.html
878 Use for hash table lookup, or anything where one collision in 2^32 is
879 acceptable. Do NOT use for cryptographic purposes.
880 --------------------------------------------------------------------
881 */
882
883 hashval_t
884 iterative_hash (const PTR k_in /* the key */,
885 register size_t length /* the length of the key */,
886 register hashval_t initval /* the previous hash, or
887 an arbitrary value */)
888 {
889 register const unsigned char *k = (const unsigned char *)k_in;
890 register hashval_t a,b,c,len;
891
892 /* Set up the internal state */
893 len = length;
894 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
895 c = initval; /* the previous hash value */
896
897 /*---------------------------------------- handle most of the key */
898 #ifndef WORDS_BIGENDIAN
899 /* On a little-endian machine, if the data is 4-byte aligned we can hash
900 by word for better speed. This gives nondeterministic results on
901 big-endian machines. */
902 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
903 while (len >= 12) /* aligned */
904 {
905 a += *(hashval_t *)(k+0);
906 b += *(hashval_t *)(k+4);
907 c += *(hashval_t *)(k+8);
908 mix(a,b,c);
909 k += 12; len -= 12;
910 }
911 else /* unaligned */
912 #endif
913 while (len >= 12)
914 {
915 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
916 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
917 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
918 mix(a,b,c);
919 k += 12; len -= 12;
920 }
921
922 /*------------------------------------- handle the last 11 bytes */
923 c += length;
924 switch(len) /* all the case statements fall through */
925 {
926 case 11: c+=((hashval_t)k[10]<<24);
927 case 10: c+=((hashval_t)k[9]<<16);
928 case 9 : c+=((hashval_t)k[8]<<8);
929 /* the first byte of c is reserved for the length */
930 case 8 : b+=((hashval_t)k[7]<<24);
931 case 7 : b+=((hashval_t)k[6]<<16);
932 case 6 : b+=((hashval_t)k[5]<<8);
933 case 5 : b+=k[4];
934 case 4 : a+=((hashval_t)k[3]<<24);
935 case 3 : a+=((hashval_t)k[2]<<16);
936 case 2 : a+=((hashval_t)k[1]<<8);
937 case 1 : a+=k[0];
938 /* case 0: nothing left to add */
939 }
940 mix(a,b,c);
941 /*-------------------------------------------- report the result */
942 return c;
943 }