]> git.ipfire.org Git - thirdparty/gcc.git/blob - libitm/beginend.cc
Merge from transactional-memory branch.
[thirdparty/gcc.git] / libitm / beginend.cc
1 /* Copyright (C) 2008, 2009, 2011 Free Software Foundation, Inc.
2 Contributed by Richard Henderson <rth@redhat.com>.
3
4 This file is part of the GNU Transactional Memory Library (libitm).
5
6 Libitm is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 Libitm is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
13 FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
24
25 #include "libitm_i.h"
26 #include <pthread.h>
27
28
29 using namespace GTM;
30
31 #if !defined(HAVE_ARCH_GTM_THREAD) || !defined(HAVE_ARCH_GTM_THREAD_DISP)
32 extern __thread gtm_thread_tls _gtm_thr_tls;
33 #endif
34
35 gtm_rwlock GTM::gtm_thread::serial_lock;
36 gtm_thread *GTM::gtm_thread::list_of_threads = 0;
37 unsigned GTM::gtm_thread::number_of_threads = 0;
38
39 gtm_stmlock GTM::gtm_stmlock_array[LOCK_ARRAY_SIZE];
40 gtm_version GTM::gtm_clock;
41
42 /* ??? Move elsewhere when we figure out library initialization. */
43 uint64_t GTM::gtm_spin_count_var = 1000;
44
45 static _ITM_transactionId_t global_tid;
46
47 // Provides a on-thread-exit callback used to release per-thread data.
48 static pthread_key_t thr_release_key;
49 static pthread_once_t thr_release_once = PTHREAD_ONCE_INIT;
50
51
52 /* Allocate a transaction structure. */
53 void *
54 GTM::gtm_thread::operator new (size_t s)
55 {
56 void *tx;
57
58 assert(s == sizeof(gtm_thread));
59
60 tx = xmalloc (sizeof (gtm_thread), true);
61 memset (tx, 0, sizeof (gtm_thread));
62
63 return tx;
64 }
65
66 /* Free the given transaction. Raises an error if the transaction is still
67 in use. */
68 void
69 GTM::gtm_thread::operator delete(void *tx)
70 {
71 free(tx);
72 }
73
74 static void
75 thread_exit_handler(void *)
76 {
77 gtm_thread *thr = gtm_thr();
78 if (thr)
79 delete thr;
80 set_gtm_thr(0);
81 }
82
83 static void
84 thread_exit_init()
85 {
86 if (pthread_key_create(&thr_release_key, thread_exit_handler))
87 GTM_fatal("Creating thread release TLS key failed.");
88 }
89
90
91 GTM::gtm_thread::~gtm_thread()
92 {
93 if (nesting > 0)
94 GTM_fatal("Thread exit while a transaction is still active.");
95
96 // Deregister this transaction.
97 serial_lock.write_lock ();
98 gtm_thread **prev = &list_of_threads;
99 for (; *prev; prev = &(*prev)->next_thread)
100 {
101 if (*prev == this)
102 {
103 *prev = (*prev)->next_thread;
104 break;
105 }
106 }
107 number_of_threads--;
108 number_of_threads_changed(number_of_threads + 1, number_of_threads);
109 serial_lock.write_unlock ();
110 }
111
112 GTM::gtm_thread::gtm_thread ()
113 {
114 // This object's memory has been set to zero by operator new, so no need
115 // to initialize any of the other primitive-type members that do not have
116 // constructors.
117 shared_state = ~(typeof shared_state)0;
118
119 // Register this transaction with the list of all threads' transactions.
120 serial_lock.write_lock ();
121 next_thread = list_of_threads;
122 list_of_threads = this;
123 number_of_threads++;
124 number_of_threads_changed(number_of_threads - 1, number_of_threads);
125 serial_lock.write_unlock ();
126
127 if (pthread_once(&thr_release_once, thread_exit_init))
128 GTM_fatal("Initializing thread release TLS key failed.");
129 // Any non-null value is sufficient to trigger destruction of this
130 // transaction when the current thread terminates.
131 if (pthread_setspecific(thr_release_key, this))
132 GTM_fatal("Setting thread release TLS key failed.");
133 }
134
135
136
137 #ifndef HAVE_64BIT_SYNC_BUILTINS
138 static pthread_mutex_t global_tid_lock = PTHREAD_MUTEX_INITIALIZER;
139 #endif
140
141 static inline uint32_t choose_code_path(uint32_t prop, abi_dispatch *disp)
142 {
143 if ((prop & pr_uninstrumentedCode) && disp->can_run_uninstrumented_code())
144 return a_runUninstrumentedCode;
145 else
146 return a_runInstrumentedCode;
147 }
148
149 uint32_t
150 GTM::gtm_thread::begin_transaction (uint32_t prop, const gtm_jmpbuf *jb)
151 {
152 static const _ITM_transactionId_t tid_block_size = 1 << 16;
153
154 gtm_thread *tx;
155 abi_dispatch *disp;
156 uint32_t ret;
157
158 // ??? pr_undoLogCode is not properly defined in the ABI. Are barriers
159 // omitted because they are not necessary (e.g., a transaction on thread-
160 // local data) or because the compiler thinks that some kind of global
161 // synchronization might perform better?
162 if (unlikely(prop & pr_undoLogCode))
163 GTM_fatal("pr_undoLogCode not supported");
164
165 tx = gtm_thr();
166 if (unlikely(tx == NULL))
167 {
168 // Create the thread object. The constructor will also set up automatic
169 // deletion on thread termination.
170 tx = new gtm_thread();
171 set_gtm_thr(tx);
172 }
173
174 if (tx->nesting > 0)
175 {
176 // This is a nested transaction.
177 // Check prop compatibility:
178 // The ABI requires pr_hasNoFloatUpdate, pr_hasNoVectorUpdate,
179 // pr_hasNoIrrevocable, pr_aWBarriersOmitted, pr_RaRBarriersOmitted, and
180 // pr_hasNoSimpleReads to hold for the full dynamic scope of a
181 // transaction. We could check that these are set for the nested
182 // transaction if they are also set for the parent transaction, but the
183 // ABI does not require these flags to be set if they could be set,
184 // so the check could be too strict.
185 // ??? For pr_readOnly, lexical or dynamic scope is unspecified.
186
187 if (prop & pr_hasNoAbort)
188 {
189 // We can use flat nesting, so elide this transaction.
190 if (!(prop & pr_instrumentedCode))
191 {
192 if (!(tx->state & STATE_SERIAL) ||
193 !(tx->state & STATE_IRREVOCABLE))
194 tx->serialirr_mode();
195 }
196 // Increment nesting level after checking that we have a method that
197 // allows us to continue.
198 tx->nesting++;
199 return choose_code_path(prop, abi_disp());
200 }
201
202 // The transaction might abort, so use closed nesting if possible.
203 // pr_hasNoAbort has lexical scope, so the compiler should really have
204 // generated an instrumented code path.
205 assert(prop & pr_instrumentedCode);
206
207 // Create a checkpoint of the current transaction.
208 gtm_transaction_cp *cp = tx->parent_txns.push();
209 cp->save(tx);
210 new (&tx->alloc_actions) aa_tree<uintptr_t, gtm_alloc_action>();
211
212 // Check whether the current method actually supports closed nesting.
213 // If we can switch to another one, do so.
214 // If not, we assume that actual aborts are infrequent, and rather
215 // restart in _ITM_abortTransaction when we really have to.
216 disp = abi_disp();
217 if (!disp->closed_nesting())
218 {
219 // ??? Should we elide the transaction if there is no alternative
220 // method that supports closed nesting? If we do, we need to set
221 // some flag to prevent _ITM_abortTransaction from aborting the
222 // wrong transaction (i.e., some parent transaction).
223 abi_dispatch *cn_disp = disp->closed_nesting_alternative();
224 if (cn_disp)
225 {
226 disp = cn_disp;
227 set_abi_disp(disp);
228 }
229 }
230 }
231 else
232 {
233 // Outermost transaction
234 disp = tx->decide_begin_dispatch (prop);
235 if (disp == dispatch_serialirr() || disp == dispatch_serial())
236 {
237 tx->state = STATE_SERIAL;
238 if (disp == dispatch_serialirr())
239 tx->state |= STATE_IRREVOCABLE;
240 serial_lock.write_lock ();
241 }
242 else
243 serial_lock.read_lock (tx);
244
245 set_abi_disp (disp);
246 }
247
248 // Initialization that is common for outermost and nested transactions.
249 tx->prop = prop;
250 tx->nesting++;
251
252 tx->jb = *jb;
253
254 // As long as we have not exhausted a previously allocated block of TIDs,
255 // we can avoid an atomic operation on a shared cacheline.
256 if (tx->local_tid & (tid_block_size - 1))
257 tx->id = tx->local_tid++;
258 else
259 {
260 #ifdef HAVE_64BIT_SYNC_BUILTINS
261 tx->id = __sync_add_and_fetch (&global_tid, tid_block_size);
262 tx->local_tid = tx->id + 1;
263 #else
264 pthread_mutex_lock (&global_tid_lock);
265 global_tid += tid_block_size;
266 tx->id = global_tid;
267 tx->local_tid = tx->id + 1;
268 pthread_mutex_unlock (&global_tid_lock);
269 #endif
270 }
271
272 // Run dispatch-specific restart code. Retry until we succeed.
273 GTM::gtm_restart_reason rr;
274 while ((rr = disp->begin_or_restart()) != NO_RESTART)
275 {
276 tx->decide_retry_strategy(rr);
277 disp = abi_disp();
278 }
279
280 // Determine the code path to run. Only irrevocable transactions cannot be
281 // restarted, so all other transactions need to save live variables.
282 ret = choose_code_path(prop, disp);
283 if (!(tx->state & STATE_IRREVOCABLE))
284 ret |= a_saveLiveVariables;
285 return ret;
286 }
287
288
289 void
290 GTM::gtm_transaction_cp::save(gtm_thread* tx)
291 {
292 // Save everything that we might have to restore on restarts or aborts.
293 jb = tx->jb;
294 undolog_size = tx->undolog.size();
295 memcpy(&alloc_actions, &tx->alloc_actions, sizeof(alloc_actions));
296 user_actions_size = tx->user_actions.size();
297 id = tx->id;
298 prop = tx->prop;
299 cxa_catch_count = tx->cxa_catch_count;
300 cxa_unthrown = tx->cxa_unthrown;
301 disp = abi_disp();
302 nesting = tx->nesting;
303 }
304
305 void
306 GTM::gtm_transaction_cp::commit(gtm_thread* tx)
307 {
308 // Restore state that is not persistent across commits. Exception handling,
309 // information, nesting level, and any logs do not need to be restored on
310 // commits of nested transactions. Allocation actions must be committed
311 // before committing the snapshot.
312 tx->jb = jb;
313 memcpy(&tx->alloc_actions, &alloc_actions, sizeof(alloc_actions));
314 tx->id = id;
315 tx->prop = prop;
316 }
317
318
319 void
320 GTM::gtm_thread::rollback (gtm_transaction_cp *cp, bool aborting)
321 {
322 // The undo log is special in that it used for both thread-local and shared
323 // data. Because of the latter, we have to roll it back before any
324 // dispatch-specific rollback (which handles synchronization with other
325 // transactions).
326 rollback_undolog (cp ? cp->undolog_size : 0);
327
328 // Perform dispatch-specific rollback.
329 abi_disp()->rollback (cp);
330
331 // Roll back all actions that are supposed to happen around the transaction.
332 rollback_user_actions (cp ? cp->user_actions_size : 0);
333 commit_allocations (true, (cp ? &cp->alloc_actions : 0));
334 revert_cpp_exceptions (cp);
335
336 if (cp)
337 {
338 // We do not yet handle restarts of nested transactions. To do that, we
339 // would have to restore some state (jb, id, prop, nesting) not to the
340 // checkpoint but to the transaction that was started from this
341 // checkpoint (e.g., nesting = cp->nesting + 1);
342 assert(aborting);
343 // Roll back the rest of the state to the checkpoint.
344 jb = cp->jb;
345 id = cp->id;
346 prop = cp->prop;
347 if (cp->disp != abi_disp())
348 set_abi_disp(cp->disp);
349 memcpy(&alloc_actions, &cp->alloc_actions, sizeof(alloc_actions));
350 nesting = cp->nesting;
351 }
352 else
353 {
354 // Roll back to the outermost transaction.
355 // Restore the jump buffer and transaction properties, which we will
356 // need for the longjmp used to restart or abort the transaction.
357 if (parent_txns.size() > 0)
358 {
359 jb = parent_txns[0].jb;
360 id = parent_txns[0].id;
361 prop = parent_txns[0].prop;
362 }
363 // Reset the transaction. Do not reset this->state, which is handled by
364 // the callers. Note that if we are not aborting, we reset the
365 // transaction to the point after having executed begin_transaction
366 // (we will return from it), so the nesting level must be one, not zero.
367 nesting = (aborting ? 0 : 1);
368 parent_txns.clear();
369 }
370
371 if (this->eh_in_flight)
372 {
373 _Unwind_DeleteException ((_Unwind_Exception *) this->eh_in_flight);
374 this->eh_in_flight = NULL;
375 }
376 }
377
378 void ITM_REGPARM
379 _ITM_abortTransaction (_ITM_abortReason reason)
380 {
381 gtm_thread *tx = gtm_thr();
382
383 assert (reason == userAbort || reason == (userAbort | outerAbort));
384 assert ((tx->prop & pr_hasNoAbort) == 0);
385
386 if (tx->state & gtm_thread::STATE_IRREVOCABLE)
387 abort ();
388
389 // Roll back to innermost transaction.
390 if (tx->parent_txns.size() > 0 && !(reason & outerAbort))
391 {
392 // If the current method does not support closed nesting but we are
393 // nested and must only roll back the innermost transaction, then
394 // restart with a method that supports closed nesting.
395 abi_dispatch *disp = abi_disp();
396 if (!disp->closed_nesting())
397 tx->restart(RESTART_CLOSED_NESTING);
398
399 // The innermost transaction is a closed nested transaction.
400 gtm_transaction_cp *cp = tx->parent_txns.pop();
401 uint32_t longjmp_prop = tx->prop;
402 gtm_jmpbuf longjmp_jb = tx->jb;
403
404 tx->rollback (cp, true);
405
406 // Jump to nested transaction (use the saved jump buffer).
407 GTM_longjmp (&longjmp_jb, a_abortTransaction | a_restoreLiveVariables,
408 longjmp_prop);
409 }
410 else
411 {
412 // There is no nested transaction or an abort of the outermost
413 // transaction was requested, so roll back to the outermost transaction.
414 tx->rollback (0, true);
415
416 // Aborting an outermost transaction finishes execution of the whole
417 // transaction. Therefore, reset transaction state.
418 if (tx->state & gtm_thread::STATE_SERIAL)
419 gtm_thread::serial_lock.write_unlock ();
420 else
421 gtm_thread::serial_lock.read_unlock (tx);
422 tx->state = 0;
423
424 GTM_longjmp (&tx->jb, a_abortTransaction | a_restoreLiveVariables,
425 tx->prop);
426 }
427 }
428
429 bool
430 GTM::gtm_thread::trycommit ()
431 {
432 nesting--;
433
434 // Skip any real commit for elided transactions.
435 if (nesting > 0 && (parent_txns.size() == 0 ||
436 nesting > parent_txns[parent_txns.size() - 1].nesting))
437 return true;
438
439 if (nesting > 0)
440 {
441 // Commit of a closed-nested transaction. Remove one checkpoint and add
442 // any effects of this transaction to the parent transaction.
443 gtm_transaction_cp *cp = parent_txns.pop();
444 commit_allocations(false, &cp->alloc_actions);
445 cp->commit(this);
446 return true;
447 }
448
449 // Commit of an outermost transaction.
450 gtm_word priv_time = 0;
451 if (abi_disp()->trycommit (priv_time))
452 {
453 // The transaction is now inactive. Everything that we still have to do
454 // will not synchronize with other transactions anymore.
455 if (state & gtm_thread::STATE_SERIAL)
456 gtm_thread::serial_lock.write_unlock ();
457 else
458 gtm_thread::serial_lock.read_unlock (this);
459 state = 0;
460
461 // We can commit the undo log after dispatch-specific commit and after
462 // making the transaction inactive because we only have to reset
463 // gtm_thread state.
464 commit_undolog ();
465 // Reset further transaction state.
466 cxa_catch_count = 0;
467 cxa_unthrown = NULL;
468 restart_total = 0;
469
470 // Ensure privatization safety, if necessary.
471 if (priv_time)
472 {
473 // TODO Don't just spin but also block using cond vars / futexes
474 // here. Should probably be integrated with the serial lock code.
475 // TODO For C++0x atomics, the loads of other threads' shared_state
476 // should have acquire semantics (together with releases for the
477 // respective updates). But is this unnecessary overhead because
478 // weaker barriers are sufficient?
479 for (gtm_thread *it = gtm_thread::list_of_threads; it != 0;
480 it = it->next_thread)
481 {
482 if (it == this) continue;
483 while (it->shared_state < priv_time)
484 cpu_relax();
485 }
486 }
487
488 // After ensuring privatization safety, we execute potentially
489 // privatizing actions (e.g., calling free()). User actions are first.
490 commit_user_actions ();
491 commit_allocations (false, 0);
492
493 return true;
494 }
495 return false;
496 }
497
498 void ITM_NORETURN
499 GTM::gtm_thread::restart (gtm_restart_reason r)
500 {
501 // Roll back to outermost transaction. Do not reset transaction state because
502 // we will continue executing this transaction.
503 rollback ();
504 decide_retry_strategy (r);
505
506 // Run dispatch-specific restart code. Retry until we succeed.
507 abi_dispatch* disp = abi_disp();
508 GTM::gtm_restart_reason rr;
509 while ((rr = disp->begin_or_restart()) != NO_RESTART)
510 {
511 decide_retry_strategy(rr);
512 disp = abi_disp();
513 }
514
515 GTM_longjmp (&jb,
516 choose_code_path(prop, disp) | a_restoreLiveVariables, prop);
517 }
518
519 void ITM_REGPARM
520 _ITM_commitTransaction(void)
521 {
522 gtm_thread *tx = gtm_thr();
523 if (!tx->trycommit ())
524 tx->restart (RESTART_VALIDATE_COMMIT);
525 }
526
527 void ITM_REGPARM
528 _ITM_commitTransactionEH(void *exc_ptr)
529 {
530 gtm_thread *tx = gtm_thr();
531 if (!tx->trycommit ())
532 {
533 tx->eh_in_flight = exc_ptr;
534 tx->restart (RESTART_VALIDATE_COMMIT);
535 }
536 }