]> git.ipfire.org Git - thirdparty/gcc.git/blob - libsanitizer/sanitizer_common/sanitizer_allocator_local_cache.h
[Ada] Sem_Ch13: fix uninitialized parameter static analysis warning
[thirdparty/gcc.git] / libsanitizer / sanitizer_common / sanitizer_allocator_local_cache.h
1 //===-- sanitizer_allocator_local_cache.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the Sanitizer Allocator.
10 //
11 //===----------------------------------------------------------------------===//
12 #ifndef SANITIZER_ALLOCATOR_H
13 #error This file must be included inside sanitizer_allocator.h
14 #endif
15
16 // Cache used by SizeClassAllocator64.
17 template <class SizeClassAllocator>
18 struct SizeClassAllocator64LocalCache {
19 typedef SizeClassAllocator Allocator;
20
21 void Init(AllocatorGlobalStats *s) {
22 stats_.Init();
23 if (s)
24 s->Register(&stats_);
25 }
26
27 void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
28 Drain(allocator);
29 if (s)
30 s->Unregister(&stats_);
31 }
32
33 void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
34 CHECK_NE(class_id, 0UL);
35 CHECK_LT(class_id, kNumClasses);
36 PerClass *c = &per_class_[class_id];
37 if (UNLIKELY(c->count == 0)) {
38 if (UNLIKELY(!Refill(c, allocator, class_id)))
39 return nullptr;
40 DCHECK_GT(c->count, 0);
41 }
42 CompactPtrT chunk = c->chunks[--c->count];
43 stats_.Add(AllocatorStatAllocated, c->class_size);
44 return reinterpret_cast<void *>(allocator->CompactPtrToPointer(
45 allocator->GetRegionBeginBySizeClass(class_id), chunk));
46 }
47
48 void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
49 CHECK_NE(class_id, 0UL);
50 CHECK_LT(class_id, kNumClasses);
51 // If the first allocator call on a new thread is a deallocation, then
52 // max_count will be zero, leading to check failure.
53 PerClass *c = &per_class_[class_id];
54 InitCache(c);
55 if (UNLIKELY(c->count == c->max_count))
56 Drain(c, allocator, class_id, c->max_count / 2);
57 CompactPtrT chunk = allocator->PointerToCompactPtr(
58 allocator->GetRegionBeginBySizeClass(class_id),
59 reinterpret_cast<uptr>(p));
60 c->chunks[c->count++] = chunk;
61 stats_.Sub(AllocatorStatAllocated, c->class_size);
62 }
63
64 void Drain(SizeClassAllocator *allocator) {
65 for (uptr i = 1; i < kNumClasses; i++) {
66 PerClass *c = &per_class_[i];
67 while (c->count > 0)
68 Drain(c, allocator, i, c->count);
69 }
70 }
71
72 private:
73 typedef typename Allocator::SizeClassMapT SizeClassMap;
74 static const uptr kNumClasses = SizeClassMap::kNumClasses;
75 typedef typename Allocator::CompactPtrT CompactPtrT;
76
77 struct PerClass {
78 u32 count;
79 u32 max_count;
80 uptr class_size;
81 CompactPtrT chunks[2 * SizeClassMap::kMaxNumCachedHint];
82 };
83 PerClass per_class_[kNumClasses];
84 AllocatorStats stats_;
85
86 void InitCache(PerClass *c) {
87 if (LIKELY(c->max_count))
88 return;
89 for (uptr i = 1; i < kNumClasses; i++) {
90 PerClass *c = &per_class_[i];
91 const uptr size = Allocator::ClassIdToSize(i);
92 c->max_count = 2 * SizeClassMap::MaxCachedHint(size);
93 c->class_size = size;
94 }
95 DCHECK_NE(c->max_count, 0UL);
96 }
97
98 NOINLINE bool Refill(PerClass *c, SizeClassAllocator *allocator,
99 uptr class_id) {
100 InitCache(c);
101 const uptr num_requested_chunks = c->max_count / 2;
102 if (UNLIKELY(!allocator->GetFromAllocator(&stats_, class_id, c->chunks,
103 num_requested_chunks)))
104 return false;
105 c->count = num_requested_chunks;
106 return true;
107 }
108
109 NOINLINE void Drain(PerClass *c, SizeClassAllocator *allocator, uptr class_id,
110 uptr count) {
111 CHECK_GE(c->count, count);
112 const uptr first_idx_to_drain = c->count - count;
113 c->count -= count;
114 allocator->ReturnToAllocator(&stats_, class_id,
115 &c->chunks[first_idx_to_drain], count);
116 }
117 };
118
119 // Cache used by SizeClassAllocator32.
120 template <class SizeClassAllocator>
121 struct SizeClassAllocator32LocalCache {
122 typedef SizeClassAllocator Allocator;
123 typedef typename Allocator::TransferBatch TransferBatch;
124
125 void Init(AllocatorGlobalStats *s) {
126 stats_.Init();
127 if (s)
128 s->Register(&stats_);
129 }
130
131 // Returns a TransferBatch suitable for class_id.
132 TransferBatch *CreateBatch(uptr class_id, SizeClassAllocator *allocator,
133 TransferBatch *b) {
134 if (uptr batch_class_id = per_class_[class_id].batch_class_id)
135 return (TransferBatch*)Allocate(allocator, batch_class_id);
136 return b;
137 }
138
139 // Destroys TransferBatch b.
140 void DestroyBatch(uptr class_id, SizeClassAllocator *allocator,
141 TransferBatch *b) {
142 if (uptr batch_class_id = per_class_[class_id].batch_class_id)
143 Deallocate(allocator, batch_class_id, b);
144 }
145
146 void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
147 Drain(allocator);
148 if (s)
149 s->Unregister(&stats_);
150 }
151
152 void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
153 CHECK_NE(class_id, 0UL);
154 CHECK_LT(class_id, kNumClasses);
155 PerClass *c = &per_class_[class_id];
156 if (UNLIKELY(c->count == 0)) {
157 if (UNLIKELY(!Refill(c, allocator, class_id)))
158 return nullptr;
159 DCHECK_GT(c->count, 0);
160 }
161 void *res = c->batch[--c->count];
162 PREFETCH(c->batch[c->count - 1]);
163 stats_.Add(AllocatorStatAllocated, c->class_size);
164 return res;
165 }
166
167 void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
168 CHECK_NE(class_id, 0UL);
169 CHECK_LT(class_id, kNumClasses);
170 // If the first allocator call on a new thread is a deallocation, then
171 // max_count will be zero, leading to check failure.
172 PerClass *c = &per_class_[class_id];
173 InitCache(c);
174 if (UNLIKELY(c->count == c->max_count))
175 Drain(c, allocator, class_id);
176 c->batch[c->count++] = p;
177 stats_.Sub(AllocatorStatAllocated, c->class_size);
178 }
179
180 void Drain(SizeClassAllocator *allocator) {
181 for (uptr i = 1; i < kNumClasses; i++) {
182 PerClass *c = &per_class_[i];
183 while (c->count > 0)
184 Drain(c, allocator, i);
185 }
186 }
187
188 private:
189 typedef typename Allocator::SizeClassMapT SizeClassMap;
190 static const uptr kBatchClassID = SizeClassMap::kBatchClassID;
191 static const uptr kNumClasses = SizeClassMap::kNumClasses;
192 // If kUseSeparateSizeClassForBatch is true, all TransferBatch objects are
193 // allocated from kBatchClassID size class (except for those that are needed
194 // for kBatchClassID itself). The goal is to have TransferBatches in a totally
195 // different region of RAM to improve security.
196 static const bool kUseSeparateSizeClassForBatch =
197 Allocator::kUseSeparateSizeClassForBatch;
198
199 struct PerClass {
200 uptr count;
201 uptr max_count;
202 uptr class_size;
203 uptr batch_class_id;
204 void *batch[2 * TransferBatch::kMaxNumCached];
205 };
206 PerClass per_class_[kNumClasses];
207 AllocatorStats stats_;
208
209 void InitCache(PerClass *c) {
210 if (LIKELY(c->max_count))
211 return;
212 const uptr batch_class_id = SizeClassMap::ClassID(sizeof(TransferBatch));
213 for (uptr i = 1; i < kNumClasses; i++) {
214 PerClass *c = &per_class_[i];
215 const uptr size = Allocator::ClassIdToSize(i);
216 const uptr max_cached = TransferBatch::MaxCached(size);
217 c->max_count = 2 * max_cached;
218 c->class_size = size;
219 // Precompute the class id to use to store batches for the current class
220 // id. 0 means the class size is large enough to store a batch within one
221 // of the chunks. If using a separate size class, it will always be
222 // kBatchClassID, except for kBatchClassID itself.
223 if (kUseSeparateSizeClassForBatch) {
224 c->batch_class_id = (i == kBatchClassID) ? 0 : kBatchClassID;
225 } else {
226 c->batch_class_id = (size <
227 TransferBatch::AllocationSizeRequiredForNElements(max_cached)) ?
228 batch_class_id : 0;
229 }
230 }
231 DCHECK_NE(c->max_count, 0UL);
232 }
233
234 NOINLINE bool Refill(PerClass *c, SizeClassAllocator *allocator,
235 uptr class_id) {
236 InitCache(c);
237 TransferBatch *b = allocator->AllocateBatch(&stats_, this, class_id);
238 if (UNLIKELY(!b))
239 return false;
240 CHECK_GT(b->Count(), 0);
241 b->CopyToArray(c->batch);
242 c->count = b->Count();
243 DestroyBatch(class_id, allocator, b);
244 return true;
245 }
246
247 NOINLINE void Drain(PerClass *c, SizeClassAllocator *allocator,
248 uptr class_id) {
249 const uptr count = Min(c->max_count / 2, c->count);
250 const uptr first_idx_to_drain = c->count - count;
251 TransferBatch *b = CreateBatch(
252 class_id, allocator, (TransferBatch *)c->batch[first_idx_to_drain]);
253 // Failure to allocate a batch while releasing memory is non recoverable.
254 // TODO(alekseys): Figure out how to do it without allocating a new batch.
255 if (UNLIKELY(!b)) {
256 Report("FATAL: Internal error: %s's allocator failed to allocate a "
257 "transfer batch.\n", SanitizerToolName);
258 Die();
259 }
260 b->SetFromArray(&c->batch[first_idx_to_drain], count);
261 c->count -= count;
262 allocator->DeallocateBatch(&stats_, class_id, b);
263 }
264 };