]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/bits/hashtable.h
Fix after P0600.
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / hashtable.h
1 // hashtable.h header -*- C++ -*-
2
3 // Copyright (C) 2007-2019 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28 */
29
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32
33 #pragma GCC system_header
34
35 #include <bits/hashtable_policy.h>
36 #if __cplusplus > 201402L
37 # include <bits/node_handle.h>
38 #endif
39
40 namespace std _GLIBCXX_VISIBILITY(default)
41 {
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
43
44 template<typename _Tp, typename _Hash>
45 using __cache_default
46 = __not_<__and_<// Do not cache for fast hasher.
47 __is_fast_hash<_Hash>,
48 // Mandatory to have erase not throwing.
49 __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
50
51 /**
52 * Primary class template _Hashtable.
53 *
54 * @ingroup hashtable-detail
55 *
56 * @tparam _Value CopyConstructible type.
57 *
58 * @tparam _Key CopyConstructible type.
59 *
60 * @tparam _Alloc An allocator type
61 * ([lib.allocator.requirements]) whose _Alloc::value_type is
62 * _Value. As a conforming extension, we allow for
63 * _Alloc::value_type != _Value.
64 *
65 * @tparam _ExtractKey Function object that takes an object of type
66 * _Value and returns a value of type _Key.
67 *
68 * @tparam _Equal Function object that takes two objects of type k
69 * and returns a bool-like value that is true if the two objects
70 * are considered equal.
71 *
72 * @tparam _H1 The hash function. A unary function object with
73 * argument type _Key and result type size_t. Return values should
74 * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
75 *
76 * @tparam _H2 The range-hashing function (in the terminology of
77 * Tavori and Dreizin). A binary function object whose argument
78 * types and result type are all size_t. Given arguments r and N,
79 * the return value is in the range [0, N).
80 *
81 * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
82 * binary function whose argument types are _Key and size_t and
83 * whose result type is size_t. Given arguments k and N, the
84 * return value is in the range [0, N). Default: hash(k, N) =
85 * h2(h1(k), N). If _Hash is anything other than the default, _H1
86 * and _H2 are ignored.
87 *
88 * @tparam _RehashPolicy Policy class with three members, all of
89 * which govern the bucket count. _M_next_bkt(n) returns a bucket
90 * count no smaller than n. _M_bkt_for_elements(n) returns a
91 * bucket count appropriate for an element count of n.
92 * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
93 * current bucket count is n_bkt and the current element count is
94 * n_elt, we need to increase the bucket count. If so, returns
95 * make_pair(true, n), where n is the new bucket count. If not,
96 * returns make_pair(false, <anything>)
97 *
98 * @tparam _Traits Compile-time class with three boolean
99 * std::integral_constant members: __cache_hash_code, __constant_iterators,
100 * __unique_keys.
101 *
102 * Each _Hashtable data structure has:
103 *
104 * - _Bucket[] _M_buckets
105 * - _Hash_node_base _M_before_begin
106 * - size_type _M_bucket_count
107 * - size_type _M_element_count
108 *
109 * with _Bucket being _Hash_node* and _Hash_node containing:
110 *
111 * - _Hash_node* _M_next
112 * - Tp _M_value
113 * - size_t _M_hash_code if cache_hash_code is true
114 *
115 * In terms of Standard containers the hashtable is like the aggregation of:
116 *
117 * - std::forward_list<_Node> containing the elements
118 * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
119 *
120 * The non-empty buckets contain the node before the first node in the
121 * bucket. This design makes it possible to implement something like a
122 * std::forward_list::insert_after on container insertion and
123 * std::forward_list::erase_after on container erase
124 * calls. _M_before_begin is equivalent to
125 * std::forward_list::before_begin. Empty buckets contain
126 * nullptr. Note that one of the non-empty buckets contains
127 * &_M_before_begin which is not a dereferenceable node so the
128 * node pointer in a bucket shall never be dereferenced, only its
129 * next node can be.
130 *
131 * Walking through a bucket's nodes requires a check on the hash code to
132 * see if each node is still in the bucket. Such a design assumes a
133 * quite efficient hash functor and is one of the reasons it is
134 * highly advisable to set __cache_hash_code to true.
135 *
136 * The container iterators are simply built from nodes. This way
137 * incrementing the iterator is perfectly efficient independent of
138 * how many empty buckets there are in the container.
139 *
140 * On insert we compute the element's hash code and use it to find the
141 * bucket index. If the element must be inserted in an empty bucket
142 * we add it at the beginning of the singly linked list and make the
143 * bucket point to _M_before_begin. The bucket that used to point to
144 * _M_before_begin, if any, is updated to point to its new before
145 * begin node.
146 *
147 * On erase, the simple iterator design requires using the hash
148 * functor to get the index of the bucket to update. For this
149 * reason, when __cache_hash_code is set to false the hash functor must
150 * not throw and this is enforced by a static assertion.
151 *
152 * Functionality is implemented by decomposition into base classes,
153 * where the derived _Hashtable class is used in _Map_base,
154 * _Insert, _Rehash_base, and _Equality base classes to access the
155 * "this" pointer. _Hashtable_base is used in the base classes as a
156 * non-recursive, fully-completed-type so that detailed nested type
157 * information, such as iterator type and node type, can be
158 * used. This is similar to the "Curiously Recurring Template
159 * Pattern" (CRTP) technique, but uses a reconstructed, not
160 * explicitly passed, template pattern.
161 *
162 * Base class templates are:
163 * - __detail::_Hashtable_base
164 * - __detail::_Map_base
165 * - __detail::_Insert
166 * - __detail::_Rehash_base
167 * - __detail::_Equality
168 */
169 template<typename _Key, typename _Value, typename _Alloc,
170 typename _ExtractKey, typename _Equal,
171 typename _H1, typename _H2, typename _Hash,
172 typename _RehashPolicy, typename _Traits>
173 class _Hashtable
174 : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
175 _H1, _H2, _Hash, _Traits>,
176 public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
177 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
178 public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
179 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
180 public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
181 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182 public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
183 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
184 private __detail::_Hashtable_alloc<
185 __alloc_rebind<_Alloc,
186 __detail::_Hash_node<_Value,
187 _Traits::__hash_cached::value>>>
188 {
189 static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
190 "unordered container must have a non-const, non-volatile value_type");
191 #ifdef __STRICT_ANSI__
192 static_assert(is_same<typename _Alloc::value_type, _Value>{},
193 "unordered container must have the same value_type as its allocator");
194 #endif
195 static_assert(__is_invocable<const _H1&, const _Key&>{},
196 "hash function must be invocable with an argument of key type");
197 static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
198 "key equality predicate must be invocable with two arguments of "
199 "key type");
200
201 using __traits_type = _Traits;
202 using __hash_cached = typename __traits_type::__hash_cached;
203 using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
204 using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
205
206 using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
207
208 using __value_alloc_traits =
209 typename __hashtable_alloc::__value_alloc_traits;
210 using __node_alloc_traits =
211 typename __hashtable_alloc::__node_alloc_traits;
212 using __node_base = typename __hashtable_alloc::__node_base;
213 using __bucket_type = typename __hashtable_alloc::__bucket_type;
214
215 public:
216 typedef _Key key_type;
217 typedef _Value value_type;
218 typedef _Alloc allocator_type;
219 typedef _Equal key_equal;
220
221 // mapped_type, if present, comes from _Map_base.
222 // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
223 typedef typename __value_alloc_traits::pointer pointer;
224 typedef typename __value_alloc_traits::const_pointer const_pointer;
225 typedef value_type& reference;
226 typedef const value_type& const_reference;
227
228 private:
229 using __rehash_type = _RehashPolicy;
230 using __rehash_state = typename __rehash_type::_State;
231
232 using __constant_iterators = typename __traits_type::__constant_iterators;
233 using __unique_keys = typename __traits_type::__unique_keys;
234
235 using __key_extract = typename std::conditional<
236 __constant_iterators::value,
237 __detail::_Identity,
238 __detail::_Select1st>::type;
239
240 using __hashtable_base = __detail::
241 _Hashtable_base<_Key, _Value, _ExtractKey,
242 _Equal, _H1, _H2, _Hash, _Traits>;
243
244 using __hash_code_base = typename __hashtable_base::__hash_code_base;
245 using __hash_code = typename __hashtable_base::__hash_code;
246 using __ireturn_type = typename __hashtable_base::__ireturn_type;
247
248 using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
249 _Equal, _H1, _H2, _Hash,
250 _RehashPolicy, _Traits>;
251
252 using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
253 _ExtractKey, _Equal,
254 _H1, _H2, _Hash,
255 _RehashPolicy, _Traits>;
256
257 using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
258 _Equal, _H1, _H2, _Hash,
259 _RehashPolicy, _Traits>;
260
261 using __reuse_or_alloc_node_type =
262 __detail::_ReuseOrAllocNode<__node_alloc_type>;
263
264 // Metaprogramming for picking apart hash caching.
265 template<typename _Cond>
266 using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
267
268 template<typename _Cond>
269 using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
270
271 // Compile-time diagnostics.
272
273 // _Hash_code_base has everything protected, so use this derived type to
274 // access it.
275 struct __hash_code_base_access : __hash_code_base
276 { using __hash_code_base::_M_bucket_index; };
277
278 // Getting a bucket index from a node shall not throw because it is used
279 // in methods (erase, swap...) that shall not throw.
280 static_assert(noexcept(declval<const __hash_code_base_access&>()
281 ._M_bucket_index((const __node_type*)nullptr,
282 (std::size_t)0)),
283 "Cache the hash code or qualify your functors involved"
284 " in hash code and bucket index computation with noexcept");
285
286 // Following two static assertions are necessary to guarantee
287 // that local_iterator will be default constructible.
288
289 // When hash codes are cached local iterator inherits from H2 functor
290 // which must then be default constructible.
291 static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
292 "Functor used to map hash code to bucket index"
293 " must be default constructible");
294
295 template<typename _Keya, typename _Valuea, typename _Alloca,
296 typename _ExtractKeya, typename _Equala,
297 typename _H1a, typename _H2a, typename _Hasha,
298 typename _RehashPolicya, typename _Traitsa,
299 bool _Unique_keysa>
300 friend struct __detail::_Map_base;
301
302 template<typename _Keya, typename _Valuea, typename _Alloca,
303 typename _ExtractKeya, typename _Equala,
304 typename _H1a, typename _H2a, typename _Hasha,
305 typename _RehashPolicya, typename _Traitsa>
306 friend struct __detail::_Insert_base;
307
308 template<typename _Keya, typename _Valuea, typename _Alloca,
309 typename _ExtractKeya, typename _Equala,
310 typename _H1a, typename _H2a, typename _Hasha,
311 typename _RehashPolicya, typename _Traitsa,
312 bool _Constant_iteratorsa>
313 friend struct __detail::_Insert;
314
315 public:
316 using size_type = typename __hashtable_base::size_type;
317 using difference_type = typename __hashtable_base::difference_type;
318
319 using iterator = typename __hashtable_base::iterator;
320 using const_iterator = typename __hashtable_base::const_iterator;
321
322 using local_iterator = typename __hashtable_base::local_iterator;
323 using const_local_iterator = typename __hashtable_base::
324 const_local_iterator;
325
326 #if __cplusplus > 201402L
327 using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
328 using insert_return_type = _Node_insert_return<iterator, node_type>;
329 #endif
330
331 private:
332 __bucket_type* _M_buckets = &_M_single_bucket;
333 size_type _M_bucket_count = 1;
334 __node_base _M_before_begin;
335 size_type _M_element_count = 0;
336 _RehashPolicy _M_rehash_policy;
337
338 // A single bucket used when only need for 1 bucket. Especially
339 // interesting in move semantic to leave hashtable with only 1 buckets
340 // which is not allocated so that we can have those operations noexcept
341 // qualified.
342 // Note that we can't leave hashtable with 0 bucket without adding
343 // numerous checks in the code to avoid 0 modulus.
344 __bucket_type _M_single_bucket = nullptr;
345
346 bool
347 _M_uses_single_bucket(__bucket_type* __bkts) const
348 { return __builtin_expect(__bkts == &_M_single_bucket, false); }
349
350 bool
351 _M_uses_single_bucket() const
352 { return _M_uses_single_bucket(_M_buckets); }
353
354 __hashtable_alloc&
355 _M_base_alloc() { return *this; }
356
357 __bucket_type*
358 _M_allocate_buckets(size_type __n)
359 {
360 if (__builtin_expect(__n == 1, false))
361 {
362 _M_single_bucket = nullptr;
363 return &_M_single_bucket;
364 }
365
366 return __hashtable_alloc::_M_allocate_buckets(__n);
367 }
368
369 void
370 _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
371 {
372 if (_M_uses_single_bucket(__bkts))
373 return;
374
375 __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
376 }
377
378 void
379 _M_deallocate_buckets()
380 { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
381
382 // Gets bucket begin, deals with the fact that non-empty buckets contain
383 // their before begin node.
384 __node_type*
385 _M_bucket_begin(size_type __bkt) const;
386
387 __node_type*
388 _M_begin() const
389 { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
390
391 // Assign *this using another _Hashtable instance. Either elements
392 // are copy or move depends on the _NodeGenerator.
393 template<typename _Ht, typename _NodeGenerator>
394 void
395 _M_assign_elements(_Ht&&, const _NodeGenerator&);
396
397 template<typename _NodeGenerator>
398 void
399 _M_assign(const _Hashtable&, const _NodeGenerator&);
400
401 void
402 _M_move_assign(_Hashtable&&, std::true_type);
403
404 void
405 _M_move_assign(_Hashtable&&, std::false_type);
406
407 void
408 _M_reset() noexcept;
409
410 _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
411 const _Equal& __eq, const _ExtractKey& __exk,
412 const allocator_type& __a)
413 : __hashtable_base(__exk, __h1, __h2, __h, __eq),
414 __hashtable_alloc(__node_alloc_type(__a))
415 { }
416
417 public:
418 // Constructor, destructor, assignment, swap
419 _Hashtable() = default;
420 _Hashtable(size_type __bucket_hint,
421 const _H1&, const _H2&, const _Hash&,
422 const _Equal&, const _ExtractKey&,
423 const allocator_type&);
424
425 template<typename _InputIterator>
426 _Hashtable(_InputIterator __first, _InputIterator __last,
427 size_type __bucket_hint,
428 const _H1&, const _H2&, const _Hash&,
429 const _Equal&, const _ExtractKey&,
430 const allocator_type&);
431
432 _Hashtable(const _Hashtable&);
433
434 _Hashtable(_Hashtable&&) noexcept;
435
436 _Hashtable(const _Hashtable&, const allocator_type&);
437
438 _Hashtable(_Hashtable&&, const allocator_type&);
439
440 // Use delegating constructors.
441 explicit
442 _Hashtable(const allocator_type& __a)
443 : __hashtable_alloc(__node_alloc_type(__a))
444 { }
445
446 explicit
447 _Hashtable(size_type __n,
448 const _H1& __hf = _H1(),
449 const key_equal& __eql = key_equal(),
450 const allocator_type& __a = allocator_type())
451 : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
452 __key_extract(), __a)
453 { }
454
455 template<typename _InputIterator>
456 _Hashtable(_InputIterator __f, _InputIterator __l,
457 size_type __n = 0,
458 const _H1& __hf = _H1(),
459 const key_equal& __eql = key_equal(),
460 const allocator_type& __a = allocator_type())
461 : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
462 __key_extract(), __a)
463 { }
464
465 _Hashtable(initializer_list<value_type> __l,
466 size_type __n = 0,
467 const _H1& __hf = _H1(),
468 const key_equal& __eql = key_equal(),
469 const allocator_type& __a = allocator_type())
470 : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
471 __key_extract(), __a)
472 { }
473
474 _Hashtable&
475 operator=(const _Hashtable& __ht);
476
477 _Hashtable&
478 operator=(_Hashtable&& __ht)
479 noexcept(__node_alloc_traits::_S_nothrow_move()
480 && is_nothrow_move_assignable<_H1>::value
481 && is_nothrow_move_assignable<_Equal>::value)
482 {
483 constexpr bool __move_storage =
484 __node_alloc_traits::_S_propagate_on_move_assign()
485 || __node_alloc_traits::_S_always_equal();
486 _M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
487 return *this;
488 }
489
490 _Hashtable&
491 operator=(initializer_list<value_type> __l)
492 {
493 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
494 _M_before_begin._M_nxt = nullptr;
495 clear();
496 this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys());
497 return *this;
498 }
499
500 ~_Hashtable() noexcept;
501
502 void
503 swap(_Hashtable&)
504 noexcept(__and_<__is_nothrow_swappable<_H1>,
505 __is_nothrow_swappable<_Equal>>::value);
506
507 // Basic container operations
508 iterator
509 begin() noexcept
510 { return iterator(_M_begin()); }
511
512 const_iterator
513 begin() const noexcept
514 { return const_iterator(_M_begin()); }
515
516 iterator
517 end() noexcept
518 { return iterator(nullptr); }
519
520 const_iterator
521 end() const noexcept
522 { return const_iterator(nullptr); }
523
524 const_iterator
525 cbegin() const noexcept
526 { return const_iterator(_M_begin()); }
527
528 const_iterator
529 cend() const noexcept
530 { return const_iterator(nullptr); }
531
532 size_type
533 size() const noexcept
534 { return _M_element_count; }
535
536 _GLIBCXX_NODISCARD bool
537 empty() const noexcept
538 { return size() == 0; }
539
540 allocator_type
541 get_allocator() const noexcept
542 { return allocator_type(this->_M_node_allocator()); }
543
544 size_type
545 max_size() const noexcept
546 { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
547
548 // Observers
549 key_equal
550 key_eq() const
551 { return this->_M_eq(); }
552
553 // hash_function, if present, comes from _Hash_code_base.
554
555 // Bucket operations
556 size_type
557 bucket_count() const noexcept
558 { return _M_bucket_count; }
559
560 size_type
561 max_bucket_count() const noexcept
562 { return max_size(); }
563
564 size_type
565 bucket_size(size_type __n) const
566 { return std::distance(begin(__n), end(__n)); }
567
568 size_type
569 bucket(const key_type& __k) const
570 { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
571
572 local_iterator
573 begin(size_type __n)
574 {
575 return local_iterator(*this, _M_bucket_begin(__n),
576 __n, _M_bucket_count);
577 }
578
579 local_iterator
580 end(size_type __n)
581 { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
582
583 const_local_iterator
584 begin(size_type __n) const
585 {
586 return const_local_iterator(*this, _M_bucket_begin(__n),
587 __n, _M_bucket_count);
588 }
589
590 const_local_iterator
591 end(size_type __n) const
592 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
593
594 // DR 691.
595 const_local_iterator
596 cbegin(size_type __n) const
597 {
598 return const_local_iterator(*this, _M_bucket_begin(__n),
599 __n, _M_bucket_count);
600 }
601
602 const_local_iterator
603 cend(size_type __n) const
604 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
605
606 float
607 load_factor() const noexcept
608 {
609 return static_cast<float>(size()) / static_cast<float>(bucket_count());
610 }
611
612 // max_load_factor, if present, comes from _Rehash_base.
613
614 // Generalization of max_load_factor. Extension, not found in
615 // TR1. Only useful if _RehashPolicy is something other than
616 // the default.
617 const _RehashPolicy&
618 __rehash_policy() const
619 { return _M_rehash_policy; }
620
621 void
622 __rehash_policy(const _RehashPolicy& __pol)
623 { _M_rehash_policy = __pol; }
624
625 // Lookup.
626 iterator
627 find(const key_type& __k);
628
629 const_iterator
630 find(const key_type& __k) const;
631
632 size_type
633 count(const key_type& __k) const;
634
635 std::pair<iterator, iterator>
636 equal_range(const key_type& __k);
637
638 std::pair<const_iterator, const_iterator>
639 equal_range(const key_type& __k) const;
640
641 protected:
642 // Bucket index computation helpers.
643 size_type
644 _M_bucket_index(__node_type* __n) const noexcept
645 { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
646
647 size_type
648 _M_bucket_index(const key_type& __k, __hash_code __c) const
649 { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
650
651 // Find and insert helper functions and types
652 // Find the node before the one matching the criteria.
653 __node_base*
654 _M_find_before_node(size_type, const key_type&, __hash_code) const;
655
656 __node_type*
657 _M_find_node(size_type __bkt, const key_type& __key,
658 __hash_code __c) const
659 {
660 __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
661 if (__before_n)
662 return static_cast<__node_type*>(__before_n->_M_nxt);
663 return nullptr;
664 }
665
666 // Insert a node at the beginning of a bucket.
667 void
668 _M_insert_bucket_begin(size_type, __node_type*);
669
670 // Remove the bucket first node
671 void
672 _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
673 size_type __next_bkt);
674
675 // Get the node before __n in the bucket __bkt
676 __node_base*
677 _M_get_previous_node(size_type __bkt, __node_base* __n);
678
679 // Insert node with hash code __code, in bucket bkt if no rehash (assumes
680 // no element with its key already present). Take ownership of the node,
681 // deallocate it on exception.
682 iterator
683 _M_insert_unique_node(size_type __bkt, __hash_code __code,
684 __node_type* __n, size_type __n_elt = 1);
685
686 // Insert node with hash code __code. Take ownership of the node,
687 // deallocate it on exception.
688 iterator
689 _M_insert_multi_node(__node_type* __hint,
690 __hash_code __code, __node_type* __n);
691
692 template<typename... _Args>
693 std::pair<iterator, bool>
694 _M_emplace(std::true_type, _Args&&... __args);
695
696 template<typename... _Args>
697 iterator
698 _M_emplace(std::false_type __uk, _Args&&... __args)
699 { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
700
701 // Emplace with hint, useless when keys are unique.
702 template<typename... _Args>
703 iterator
704 _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
705 { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
706
707 template<typename... _Args>
708 iterator
709 _M_emplace(const_iterator, std::false_type, _Args&&... __args);
710
711 template<typename _Arg, typename _NodeGenerator>
712 std::pair<iterator, bool>
713 _M_insert(_Arg&&, const _NodeGenerator&, true_type, size_type = 1);
714
715 template<typename _Arg, typename _NodeGenerator>
716 iterator
717 _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
718 false_type __uk)
719 {
720 return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
721 __uk);
722 }
723
724 // Insert with hint, not used when keys are unique.
725 template<typename _Arg, typename _NodeGenerator>
726 iterator
727 _M_insert(const_iterator, _Arg&& __arg,
728 const _NodeGenerator& __node_gen, true_type __uk)
729 {
730 return
731 _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
732 }
733
734 // Insert with hint when keys are not unique.
735 template<typename _Arg, typename _NodeGenerator>
736 iterator
737 _M_insert(const_iterator, _Arg&&,
738 const _NodeGenerator&, false_type);
739
740 size_type
741 _M_erase(std::true_type, const key_type&);
742
743 size_type
744 _M_erase(std::false_type, const key_type&);
745
746 iterator
747 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
748
749 public:
750 // Emplace
751 template<typename... _Args>
752 __ireturn_type
753 emplace(_Args&&... __args)
754 { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
755
756 template<typename... _Args>
757 iterator
758 emplace_hint(const_iterator __hint, _Args&&... __args)
759 {
760 return _M_emplace(__hint, __unique_keys(),
761 std::forward<_Args>(__args)...);
762 }
763
764 // Insert member functions via inheritance.
765
766 // Erase
767 iterator
768 erase(const_iterator);
769
770 // LWG 2059.
771 iterator
772 erase(iterator __it)
773 { return erase(const_iterator(__it)); }
774
775 size_type
776 erase(const key_type& __k)
777 { return _M_erase(__unique_keys(), __k); }
778
779 iterator
780 erase(const_iterator, const_iterator);
781
782 void
783 clear() noexcept;
784
785 // Set number of buckets to be appropriate for container of n element.
786 void rehash(size_type __n);
787
788 // DR 1189.
789 // reserve, if present, comes from _Rehash_base.
790
791 #if __cplusplus > 201402L
792 /// Re-insert an extracted node into a container with unique keys.
793 insert_return_type
794 _M_reinsert_node(node_type&& __nh)
795 {
796 insert_return_type __ret;
797 if (__nh.empty())
798 __ret.position = end();
799 else
800 {
801 __glibcxx_assert(get_allocator() == __nh.get_allocator());
802
803 const key_type& __k = __nh._M_key();
804 __hash_code __code = this->_M_hash_code(__k);
805 size_type __bkt = _M_bucket_index(__k, __code);
806 if (__node_type* __n = _M_find_node(__bkt, __k, __code))
807 {
808 __ret.node = std::move(__nh);
809 __ret.position = iterator(__n);
810 __ret.inserted = false;
811 }
812 else
813 {
814 __ret.position
815 = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
816 __nh._M_ptr = nullptr;
817 __ret.inserted = true;
818 }
819 }
820 return __ret;
821 }
822
823 /// Re-insert an extracted node into a container with equivalent keys.
824 iterator
825 _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
826 {
827 iterator __ret;
828 if (__nh.empty())
829 __ret = end();
830 else
831 {
832 __glibcxx_assert(get_allocator() == __nh.get_allocator());
833
834 auto __code = this->_M_hash_code(__nh._M_key());
835 auto __node = std::exchange(__nh._M_ptr, nullptr);
836 // FIXME: this deallocates the node on exception.
837 __ret = _M_insert_multi_node(__hint._M_cur, __code, __node);
838 }
839 return __ret;
840 }
841
842 /// Extract a node.
843 node_type
844 extract(const_iterator __pos)
845 {
846 __node_type* __n = __pos._M_cur;
847 size_t __bkt = _M_bucket_index(__n);
848
849 // Look for previous node to unlink it from the erased one, this
850 // is why we need buckets to contain the before begin to make
851 // this search fast.
852 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
853
854 if (__prev_n == _M_buckets[__bkt])
855 _M_remove_bucket_begin(__bkt, __n->_M_next(),
856 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
857 else if (__n->_M_nxt)
858 {
859 size_type __next_bkt = _M_bucket_index(__n->_M_next());
860 if (__next_bkt != __bkt)
861 _M_buckets[__next_bkt] = __prev_n;
862 }
863
864 __prev_n->_M_nxt = __n->_M_nxt;
865 __n->_M_nxt = nullptr;
866 --_M_element_count;
867 return { __n, this->_M_node_allocator() };
868 }
869
870 /// Extract a node.
871 node_type
872 extract(const _Key& __k)
873 {
874 node_type __nh;
875 auto __pos = find(__k);
876 if (__pos != end())
877 __nh = extract(const_iterator(__pos));
878 return __nh;
879 }
880
881 /// Merge from a compatible container into one with unique keys.
882 template<typename _Compatible_Hashtable>
883 void
884 _M_merge_unique(_Compatible_Hashtable& __src) noexcept
885 {
886 static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
887 node_type>, "Node types are compatible");
888 __glibcxx_assert(get_allocator() == __src.get_allocator());
889
890 auto __n_elt = __src.size();
891 for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
892 {
893 auto __pos = __i++;
894 const key_type& __k = this->_M_extract()(__pos._M_cur->_M_v());
895 __hash_code __code = this->_M_hash_code(__k);
896 size_type __bkt = _M_bucket_index(__k, __code);
897 if (_M_find_node(__bkt, __k, __code) == nullptr)
898 {
899 auto __nh = __src.extract(__pos);
900 _M_insert_unique_node(__bkt, __code, __nh._M_ptr, __n_elt);
901 __nh._M_ptr = nullptr;
902 __n_elt = 1;
903 }
904 else if (__n_elt != 1)
905 --__n_elt;
906 }
907 }
908
909 /// Merge from a compatible container into one with equivalent keys.
910 template<typename _Compatible_Hashtable>
911 void
912 _M_merge_multi(_Compatible_Hashtable& __src) noexcept
913 {
914 static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
915 node_type>, "Node types are compatible");
916 __glibcxx_assert(get_allocator() == __src.get_allocator());
917
918 this->reserve(size() + __src.size());
919 for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
920 _M_reinsert_node_multi(cend(), __src.extract(__i++));
921 }
922 #endif // C++17
923
924 private:
925 // Helper rehash method used when keys are unique.
926 void _M_rehash_aux(size_type __n, std::true_type);
927
928 // Helper rehash method used when keys can be non-unique.
929 void _M_rehash_aux(size_type __n, std::false_type);
930
931 // Unconditionally change size of bucket array to n, restore
932 // hash policy state to __state on exception.
933 void _M_rehash(size_type __n, const __rehash_state& __state);
934 };
935
936
937 // Definitions of class template _Hashtable's out-of-line member functions.
938 template<typename _Key, typename _Value,
939 typename _Alloc, typename _ExtractKey, typename _Equal,
940 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
941 typename _Traits>
942 auto
943 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
944 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
945 _M_bucket_begin(size_type __bkt) const
946 -> __node_type*
947 {
948 __node_base* __n = _M_buckets[__bkt];
949 return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
950 }
951
952 template<typename _Key, typename _Value,
953 typename _Alloc, typename _ExtractKey, typename _Equal,
954 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
955 typename _Traits>
956 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
957 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
958 _Hashtable(size_type __bucket_hint,
959 const _H1& __h1, const _H2& __h2, const _Hash& __h,
960 const _Equal& __eq, const _ExtractKey& __exk,
961 const allocator_type& __a)
962 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
963 {
964 auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
965 if (__bkt > _M_bucket_count)
966 {
967 _M_buckets = _M_allocate_buckets(__bkt);
968 _M_bucket_count = __bkt;
969 }
970 }
971
972 template<typename _Key, typename _Value,
973 typename _Alloc, typename _ExtractKey, typename _Equal,
974 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
975 typename _Traits>
976 template<typename _InputIterator>
977 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
978 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
979 _Hashtable(_InputIterator __f, _InputIterator __l,
980 size_type __bucket_hint,
981 const _H1& __h1, const _H2& __h2, const _Hash& __h,
982 const _Equal& __eq, const _ExtractKey& __exk,
983 const allocator_type& __a)
984 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
985 {
986 auto __nb_elems = __detail::__distance_fw(__f, __l);
987 auto __bkt_count =
988 _M_rehash_policy._M_next_bkt(
989 std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
990 __bucket_hint));
991
992 if (__bkt_count > _M_bucket_count)
993 {
994 _M_buckets = _M_allocate_buckets(__bkt_count);
995 _M_bucket_count = __bkt_count;
996 }
997
998 for (; __f != __l; ++__f)
999 this->insert(*__f);
1000 }
1001
1002 template<typename _Key, typename _Value,
1003 typename _Alloc, typename _ExtractKey, typename _Equal,
1004 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1005 typename _Traits>
1006 auto
1007 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1008 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1009 operator=(const _Hashtable& __ht)
1010 -> _Hashtable&
1011 {
1012 if (&__ht == this)
1013 return *this;
1014
1015 if (__node_alloc_traits::_S_propagate_on_copy_assign())
1016 {
1017 auto& __this_alloc = this->_M_node_allocator();
1018 auto& __that_alloc = __ht._M_node_allocator();
1019 if (!__node_alloc_traits::_S_always_equal()
1020 && __this_alloc != __that_alloc)
1021 {
1022 // Replacement allocator cannot free existing storage.
1023 this->_M_deallocate_nodes(_M_begin());
1024 _M_before_begin._M_nxt = nullptr;
1025 _M_deallocate_buckets();
1026 _M_buckets = nullptr;
1027 std::__alloc_on_copy(__this_alloc, __that_alloc);
1028 __hashtable_base::operator=(__ht);
1029 _M_bucket_count = __ht._M_bucket_count;
1030 _M_element_count = __ht._M_element_count;
1031 _M_rehash_policy = __ht._M_rehash_policy;
1032 __try
1033 {
1034 _M_assign(__ht,
1035 [this](const __node_type* __n)
1036 { return this->_M_allocate_node(__n->_M_v()); });
1037 }
1038 __catch(...)
1039 {
1040 // _M_assign took care of deallocating all memory. Now we
1041 // must make sure this instance remains in a usable state.
1042 _M_reset();
1043 __throw_exception_again;
1044 }
1045 return *this;
1046 }
1047 std::__alloc_on_copy(__this_alloc, __that_alloc);
1048 }
1049
1050 // Reuse allocated buckets and nodes.
1051 _M_assign_elements(__ht,
1052 [](const __reuse_or_alloc_node_type& __roan, const __node_type* __n)
1053 { return __roan(__n->_M_v()); });
1054 return *this;
1055 }
1056
1057 template<typename _Key, typename _Value,
1058 typename _Alloc, typename _ExtractKey, typename _Equal,
1059 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1060 typename _Traits>
1061 template<typename _Ht, typename _NodeGenerator>
1062 void
1063 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1064 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1065 _M_assign_elements(_Ht&& __ht, const _NodeGenerator& __node_gen)
1066 {
1067 __bucket_type* __former_buckets = nullptr;
1068 std::size_t __former_bucket_count = _M_bucket_count;
1069 const __rehash_state& __former_state = _M_rehash_policy._M_state();
1070
1071 if (_M_bucket_count != __ht._M_bucket_count)
1072 {
1073 __former_buckets = _M_buckets;
1074 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1075 _M_bucket_count = __ht._M_bucket_count;
1076 }
1077 else
1078 __builtin_memset(_M_buckets, 0,
1079 _M_bucket_count * sizeof(__bucket_type));
1080
1081 __try
1082 {
1083 __hashtable_base::operator=(std::forward<_Ht>(__ht));
1084 _M_element_count = __ht._M_element_count;
1085 _M_rehash_policy = __ht._M_rehash_policy;
1086 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1087 _M_before_begin._M_nxt = nullptr;
1088 _M_assign(__ht,
1089 [&__node_gen, &__roan](__node_type* __n)
1090 { return __node_gen(__roan, __n); });
1091 if (__former_buckets)
1092 _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1093 }
1094 __catch(...)
1095 {
1096 if (__former_buckets)
1097 {
1098 // Restore previous buckets.
1099 _M_deallocate_buckets();
1100 _M_rehash_policy._M_reset(__former_state);
1101 _M_buckets = __former_buckets;
1102 _M_bucket_count = __former_bucket_count;
1103 }
1104 __builtin_memset(_M_buckets, 0,
1105 _M_bucket_count * sizeof(__bucket_type));
1106 __throw_exception_again;
1107 }
1108 }
1109
1110 template<typename _Key, typename _Value,
1111 typename _Alloc, typename _ExtractKey, typename _Equal,
1112 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1113 typename _Traits>
1114 template<typename _NodeGenerator>
1115 void
1116 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1117 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1118 _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
1119 {
1120 __bucket_type* __buckets = nullptr;
1121 if (!_M_buckets)
1122 _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1123
1124 __try
1125 {
1126 if (!__ht._M_before_begin._M_nxt)
1127 return;
1128
1129 // First deal with the special first node pointed to by
1130 // _M_before_begin.
1131 __node_type* __ht_n = __ht._M_begin();
1132 __node_type* __this_n = __node_gen(__ht_n);
1133 this->_M_copy_code(__this_n, __ht_n);
1134 _M_before_begin._M_nxt = __this_n;
1135 _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
1136
1137 // Then deal with other nodes.
1138 __node_base* __prev_n = __this_n;
1139 for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1140 {
1141 __this_n = __node_gen(__ht_n);
1142 __prev_n->_M_nxt = __this_n;
1143 this->_M_copy_code(__this_n, __ht_n);
1144 size_type __bkt = _M_bucket_index(__this_n);
1145 if (!_M_buckets[__bkt])
1146 _M_buckets[__bkt] = __prev_n;
1147 __prev_n = __this_n;
1148 }
1149 }
1150 __catch(...)
1151 {
1152 clear();
1153 if (__buckets)
1154 _M_deallocate_buckets();
1155 __throw_exception_again;
1156 }
1157 }
1158
1159 template<typename _Key, typename _Value,
1160 typename _Alloc, typename _ExtractKey, typename _Equal,
1161 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1162 typename _Traits>
1163 void
1164 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1165 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1166 _M_reset() noexcept
1167 {
1168 _M_rehash_policy._M_reset();
1169 _M_bucket_count = 1;
1170 _M_single_bucket = nullptr;
1171 _M_buckets = &_M_single_bucket;
1172 _M_before_begin._M_nxt = nullptr;
1173 _M_element_count = 0;
1174 }
1175
1176 template<typename _Key, typename _Value,
1177 typename _Alloc, typename _ExtractKey, typename _Equal,
1178 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1179 typename _Traits>
1180 void
1181 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1182 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1183 _M_move_assign(_Hashtable&& __ht, std::true_type)
1184 {
1185 this->_M_deallocate_nodes(_M_begin());
1186 _M_deallocate_buckets();
1187 __hashtable_base::operator=(std::move(__ht));
1188 _M_rehash_policy = __ht._M_rehash_policy;
1189 if (!__ht._M_uses_single_bucket())
1190 _M_buckets = __ht._M_buckets;
1191 else
1192 {
1193 _M_buckets = &_M_single_bucket;
1194 _M_single_bucket = __ht._M_single_bucket;
1195 }
1196 _M_bucket_count = __ht._M_bucket_count;
1197 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1198 _M_element_count = __ht._M_element_count;
1199 std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1200
1201 // Fix buckets containing the _M_before_begin pointers that can't be
1202 // moved.
1203 if (_M_begin())
1204 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1205 __ht._M_reset();
1206 }
1207
1208 template<typename _Key, typename _Value,
1209 typename _Alloc, typename _ExtractKey, typename _Equal,
1210 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1211 typename _Traits>
1212 void
1213 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1214 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1215 _M_move_assign(_Hashtable&& __ht, std::false_type)
1216 {
1217 if (__ht._M_node_allocator() == this->_M_node_allocator())
1218 _M_move_assign(std::move(__ht), std::true_type());
1219 else
1220 {
1221 // Can't move memory, move elements then.
1222 _M_assign_elements(std::move(__ht),
1223 [](const __reuse_or_alloc_node_type& __roan, __node_type* __n)
1224 { return __roan(std::move_if_noexcept(__n->_M_v())); });
1225 __ht.clear();
1226 }
1227 }
1228
1229 template<typename _Key, typename _Value,
1230 typename _Alloc, typename _ExtractKey, typename _Equal,
1231 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1232 typename _Traits>
1233 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1234 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1235 _Hashtable(const _Hashtable& __ht)
1236 : __hashtable_base(__ht),
1237 __map_base(__ht),
1238 __rehash_base(__ht),
1239 __hashtable_alloc(
1240 __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1241 _M_buckets(nullptr),
1242 _M_bucket_count(__ht._M_bucket_count),
1243 _M_element_count(__ht._M_element_count),
1244 _M_rehash_policy(__ht._M_rehash_policy)
1245 {
1246 _M_assign(__ht,
1247 [this](const __node_type* __n)
1248 { return this->_M_allocate_node(__n->_M_v()); });
1249 }
1250
1251 template<typename _Key, typename _Value,
1252 typename _Alloc, typename _ExtractKey, typename _Equal,
1253 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1254 typename _Traits>
1255 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1256 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1257 _Hashtable(_Hashtable&& __ht) noexcept
1258 : __hashtable_base(__ht),
1259 __map_base(__ht),
1260 __rehash_base(__ht),
1261 __hashtable_alloc(std::move(__ht._M_base_alloc())),
1262 _M_buckets(__ht._M_buckets),
1263 _M_bucket_count(__ht._M_bucket_count),
1264 _M_before_begin(__ht._M_before_begin._M_nxt),
1265 _M_element_count(__ht._M_element_count),
1266 _M_rehash_policy(__ht._M_rehash_policy)
1267 {
1268 // Update, if necessary, buckets if __ht is using its single bucket.
1269 if (__ht._M_uses_single_bucket())
1270 {
1271 _M_buckets = &_M_single_bucket;
1272 _M_single_bucket = __ht._M_single_bucket;
1273 }
1274
1275 // Update, if necessary, bucket pointing to before begin that hasn't
1276 // moved.
1277 if (_M_begin())
1278 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1279
1280 __ht._M_reset();
1281 }
1282
1283 template<typename _Key, typename _Value,
1284 typename _Alloc, typename _ExtractKey, typename _Equal,
1285 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1286 typename _Traits>
1287 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1288 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1289 _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1290 : __hashtable_base(__ht),
1291 __map_base(__ht),
1292 __rehash_base(__ht),
1293 __hashtable_alloc(__node_alloc_type(__a)),
1294 _M_buckets(),
1295 _M_bucket_count(__ht._M_bucket_count),
1296 _M_element_count(__ht._M_element_count),
1297 _M_rehash_policy(__ht._M_rehash_policy)
1298 {
1299 _M_assign(__ht,
1300 [this](const __node_type* __n)
1301 { return this->_M_allocate_node(__n->_M_v()); });
1302 }
1303
1304 template<typename _Key, typename _Value,
1305 typename _Alloc, typename _ExtractKey, typename _Equal,
1306 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1307 typename _Traits>
1308 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1309 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1310 _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1311 : __hashtable_base(__ht),
1312 __map_base(__ht),
1313 __rehash_base(__ht),
1314 __hashtable_alloc(__node_alloc_type(__a)),
1315 _M_buckets(nullptr),
1316 _M_bucket_count(__ht._M_bucket_count),
1317 _M_element_count(__ht._M_element_count),
1318 _M_rehash_policy(__ht._M_rehash_policy)
1319 {
1320 if (__ht._M_node_allocator() == this->_M_node_allocator())
1321 {
1322 if (__ht._M_uses_single_bucket())
1323 {
1324 _M_buckets = &_M_single_bucket;
1325 _M_single_bucket = __ht._M_single_bucket;
1326 }
1327 else
1328 _M_buckets = __ht._M_buckets;
1329
1330 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1331 // Update, if necessary, bucket pointing to before begin that hasn't
1332 // moved.
1333 if (_M_begin())
1334 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1335 __ht._M_reset();
1336 }
1337 else
1338 {
1339 _M_assign(__ht,
1340 [this](__node_type* __n)
1341 {
1342 return this->_M_allocate_node(
1343 std::move_if_noexcept(__n->_M_v()));
1344 });
1345 __ht.clear();
1346 }
1347 }
1348
1349 template<typename _Key, typename _Value,
1350 typename _Alloc, typename _ExtractKey, typename _Equal,
1351 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1352 typename _Traits>
1353 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1354 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1355 ~_Hashtable() noexcept
1356 {
1357 clear();
1358 _M_deallocate_buckets();
1359 }
1360
1361 template<typename _Key, typename _Value,
1362 typename _Alloc, typename _ExtractKey, typename _Equal,
1363 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1364 typename _Traits>
1365 void
1366 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1367 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1368 swap(_Hashtable& __x)
1369 noexcept(__and_<__is_nothrow_swappable<_H1>,
1370 __is_nothrow_swappable<_Equal>>::value)
1371 {
1372 // The only base class with member variables is hash_code_base.
1373 // We define _Hash_code_base::_M_swap because different
1374 // specializations have different members.
1375 this->_M_swap(__x);
1376
1377 std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1378 std::swap(_M_rehash_policy, __x._M_rehash_policy);
1379
1380 // Deal properly with potentially moved instances.
1381 if (this->_M_uses_single_bucket())
1382 {
1383 if (!__x._M_uses_single_bucket())
1384 {
1385 _M_buckets = __x._M_buckets;
1386 __x._M_buckets = &__x._M_single_bucket;
1387 }
1388 }
1389 else if (__x._M_uses_single_bucket())
1390 {
1391 __x._M_buckets = _M_buckets;
1392 _M_buckets = &_M_single_bucket;
1393 }
1394 else
1395 std::swap(_M_buckets, __x._M_buckets);
1396
1397 std::swap(_M_bucket_count, __x._M_bucket_count);
1398 std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1399 std::swap(_M_element_count, __x._M_element_count);
1400 std::swap(_M_single_bucket, __x._M_single_bucket);
1401
1402 // Fix buckets containing the _M_before_begin pointers that can't be
1403 // swapped.
1404 if (_M_begin())
1405 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1406
1407 if (__x._M_begin())
1408 __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1409 = &__x._M_before_begin;
1410 }
1411
1412 template<typename _Key, typename _Value,
1413 typename _Alloc, typename _ExtractKey, typename _Equal,
1414 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1415 typename _Traits>
1416 auto
1417 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1418 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1419 find(const key_type& __k)
1420 -> iterator
1421 {
1422 __hash_code __code = this->_M_hash_code(__k);
1423 std::size_t __n = _M_bucket_index(__k, __code);
1424 __node_type* __p = _M_find_node(__n, __k, __code);
1425 return __p ? iterator(__p) : end();
1426 }
1427
1428 template<typename _Key, typename _Value,
1429 typename _Alloc, typename _ExtractKey, typename _Equal,
1430 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1431 typename _Traits>
1432 auto
1433 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1434 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1435 find(const key_type& __k) const
1436 -> const_iterator
1437 {
1438 __hash_code __code = this->_M_hash_code(__k);
1439 std::size_t __n = _M_bucket_index(__k, __code);
1440 __node_type* __p = _M_find_node(__n, __k, __code);
1441 return __p ? const_iterator(__p) : end();
1442 }
1443
1444 template<typename _Key, typename _Value,
1445 typename _Alloc, typename _ExtractKey, typename _Equal,
1446 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1447 typename _Traits>
1448 auto
1449 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1450 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1451 count(const key_type& __k) const
1452 -> size_type
1453 {
1454 __hash_code __code = this->_M_hash_code(__k);
1455 std::size_t __n = _M_bucket_index(__k, __code);
1456 __node_type* __p = _M_bucket_begin(__n);
1457 if (!__p)
1458 return 0;
1459
1460 std::size_t __result = 0;
1461 for (;; __p = __p->_M_next())
1462 {
1463 if (this->_M_equals(__k, __code, __p))
1464 ++__result;
1465 else if (__result)
1466 // All equivalent values are next to each other, if we
1467 // found a non-equivalent value after an equivalent one it
1468 // means that we won't find any new equivalent value.
1469 break;
1470 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1471 break;
1472 }
1473 return __result;
1474 }
1475
1476 template<typename _Key, typename _Value,
1477 typename _Alloc, typename _ExtractKey, typename _Equal,
1478 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1479 typename _Traits>
1480 auto
1481 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1482 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1483 equal_range(const key_type& __k)
1484 -> pair<iterator, iterator>
1485 {
1486 __hash_code __code = this->_M_hash_code(__k);
1487 std::size_t __n = _M_bucket_index(__k, __code);
1488 __node_type* __p = _M_find_node(__n, __k, __code);
1489
1490 if (__p)
1491 {
1492 __node_type* __p1 = __p->_M_next();
1493 while (__p1 && _M_bucket_index(__p1) == __n
1494 && this->_M_equals(__k, __code, __p1))
1495 __p1 = __p1->_M_next();
1496
1497 return std::make_pair(iterator(__p), iterator(__p1));
1498 }
1499 else
1500 return std::make_pair(end(), end());
1501 }
1502
1503 template<typename _Key, typename _Value,
1504 typename _Alloc, typename _ExtractKey, typename _Equal,
1505 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1506 typename _Traits>
1507 auto
1508 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1509 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1510 equal_range(const key_type& __k) const
1511 -> pair<const_iterator, const_iterator>
1512 {
1513 __hash_code __code = this->_M_hash_code(__k);
1514 std::size_t __n = _M_bucket_index(__k, __code);
1515 __node_type* __p = _M_find_node(__n, __k, __code);
1516
1517 if (__p)
1518 {
1519 __node_type* __p1 = __p->_M_next();
1520 while (__p1 && _M_bucket_index(__p1) == __n
1521 && this->_M_equals(__k, __code, __p1))
1522 __p1 = __p1->_M_next();
1523
1524 return std::make_pair(const_iterator(__p), const_iterator(__p1));
1525 }
1526 else
1527 return std::make_pair(end(), end());
1528 }
1529
1530 // Find the node whose key compares equal to k in the bucket n.
1531 // Return nullptr if no node is found.
1532 template<typename _Key, typename _Value,
1533 typename _Alloc, typename _ExtractKey, typename _Equal,
1534 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1535 typename _Traits>
1536 auto
1537 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1538 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1539 _M_find_before_node(size_type __n, const key_type& __k,
1540 __hash_code __code) const
1541 -> __node_base*
1542 {
1543 __node_base* __prev_p = _M_buckets[__n];
1544 if (!__prev_p)
1545 return nullptr;
1546
1547 for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1548 __p = __p->_M_next())
1549 {
1550 if (this->_M_equals(__k, __code, __p))
1551 return __prev_p;
1552
1553 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1554 break;
1555 __prev_p = __p;
1556 }
1557 return nullptr;
1558 }
1559
1560 template<typename _Key, typename _Value,
1561 typename _Alloc, typename _ExtractKey, typename _Equal,
1562 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1563 typename _Traits>
1564 void
1565 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1566 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1567 _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1568 {
1569 if (_M_buckets[__bkt])
1570 {
1571 // Bucket is not empty, we just need to insert the new node
1572 // after the bucket before begin.
1573 __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1574 _M_buckets[__bkt]->_M_nxt = __node;
1575 }
1576 else
1577 {
1578 // The bucket is empty, the new node is inserted at the
1579 // beginning of the singly-linked list and the bucket will
1580 // contain _M_before_begin pointer.
1581 __node->_M_nxt = _M_before_begin._M_nxt;
1582 _M_before_begin._M_nxt = __node;
1583 if (__node->_M_nxt)
1584 // We must update former begin bucket that is pointing to
1585 // _M_before_begin.
1586 _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1587 _M_buckets[__bkt] = &_M_before_begin;
1588 }
1589 }
1590
1591 template<typename _Key, typename _Value,
1592 typename _Alloc, typename _ExtractKey, typename _Equal,
1593 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1594 typename _Traits>
1595 void
1596 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1597 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1598 _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1599 size_type __next_bkt)
1600 {
1601 if (!__next || __next_bkt != __bkt)
1602 {
1603 // Bucket is now empty
1604 // First update next bucket if any
1605 if (__next)
1606 _M_buckets[__next_bkt] = _M_buckets[__bkt];
1607
1608 // Second update before begin node if necessary
1609 if (&_M_before_begin == _M_buckets[__bkt])
1610 _M_before_begin._M_nxt = __next;
1611 _M_buckets[__bkt] = nullptr;
1612 }
1613 }
1614
1615 template<typename _Key, typename _Value,
1616 typename _Alloc, typename _ExtractKey, typename _Equal,
1617 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1618 typename _Traits>
1619 auto
1620 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1621 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1622 _M_get_previous_node(size_type __bkt, __node_base* __n)
1623 -> __node_base*
1624 {
1625 __node_base* __prev_n = _M_buckets[__bkt];
1626 while (__prev_n->_M_nxt != __n)
1627 __prev_n = __prev_n->_M_nxt;
1628 return __prev_n;
1629 }
1630
1631 template<typename _Key, typename _Value,
1632 typename _Alloc, typename _ExtractKey, typename _Equal,
1633 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1634 typename _Traits>
1635 template<typename... _Args>
1636 auto
1637 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1638 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1639 _M_emplace(std::true_type, _Args&&... __args)
1640 -> pair<iterator, bool>
1641 {
1642 // First build the node to get access to the hash code
1643 __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1644 const key_type& __k = this->_M_extract()(__node->_M_v());
1645 __hash_code __code;
1646 __try
1647 {
1648 __code = this->_M_hash_code(__k);
1649 }
1650 __catch(...)
1651 {
1652 this->_M_deallocate_node(__node);
1653 __throw_exception_again;
1654 }
1655
1656 size_type __bkt = _M_bucket_index(__k, __code);
1657 if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1658 {
1659 // There is already an equivalent node, no insertion
1660 this->_M_deallocate_node(__node);
1661 return std::make_pair(iterator(__p), false);
1662 }
1663
1664 // Insert the node
1665 return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1666 true);
1667 }
1668
1669 template<typename _Key, typename _Value,
1670 typename _Alloc, typename _ExtractKey, typename _Equal,
1671 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1672 typename _Traits>
1673 template<typename... _Args>
1674 auto
1675 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1676 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1677 _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1678 -> iterator
1679 {
1680 // First build the node to get its hash code.
1681 __node_type* __node =
1682 this->_M_allocate_node(std::forward<_Args>(__args)...);
1683
1684 __hash_code __code;
1685 __try
1686 {
1687 __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1688 }
1689 __catch(...)
1690 {
1691 this->_M_deallocate_node(__node);
1692 __throw_exception_again;
1693 }
1694
1695 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1696 }
1697
1698 template<typename _Key, typename _Value,
1699 typename _Alloc, typename _ExtractKey, typename _Equal,
1700 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1701 typename _Traits>
1702 auto
1703 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1704 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1705 _M_insert_unique_node(size_type __bkt, __hash_code __code,
1706 __node_type* __node, size_type __n_elt)
1707 -> iterator
1708 {
1709 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1710 std::pair<bool, std::size_t> __do_rehash
1711 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
1712 __n_elt);
1713
1714 __try
1715 {
1716 if (__do_rehash.first)
1717 {
1718 _M_rehash(__do_rehash.second, __saved_state);
1719 __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1720 }
1721
1722 this->_M_store_code(__node, __code);
1723
1724 // Always insert at the beginning of the bucket.
1725 _M_insert_bucket_begin(__bkt, __node);
1726 ++_M_element_count;
1727 return iterator(__node);
1728 }
1729 __catch(...)
1730 {
1731 this->_M_deallocate_node(__node);
1732 __throw_exception_again;
1733 }
1734 }
1735
1736 // Insert node, in bucket bkt if no rehash (assumes no element with its key
1737 // already present). Take ownership of the node, deallocate it on exception.
1738 template<typename _Key, typename _Value,
1739 typename _Alloc, typename _ExtractKey, typename _Equal,
1740 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1741 typename _Traits>
1742 auto
1743 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1744 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1745 _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1746 __node_type* __node)
1747 -> iterator
1748 {
1749 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1750 std::pair<bool, std::size_t> __do_rehash
1751 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1752
1753 __try
1754 {
1755 if (__do_rehash.first)
1756 _M_rehash(__do_rehash.second, __saved_state);
1757
1758 this->_M_store_code(__node, __code);
1759 const key_type& __k = this->_M_extract()(__node->_M_v());
1760 size_type __bkt = _M_bucket_index(__k, __code);
1761
1762 // Find the node before an equivalent one or use hint if it exists and
1763 // if it is equivalent.
1764 __node_base* __prev
1765 = __builtin_expect(__hint != nullptr, false)
1766 && this->_M_equals(__k, __code, __hint)
1767 ? __hint
1768 : _M_find_before_node(__bkt, __k, __code);
1769 if (__prev)
1770 {
1771 // Insert after the node before the equivalent one.
1772 __node->_M_nxt = __prev->_M_nxt;
1773 __prev->_M_nxt = __node;
1774 if (__builtin_expect(__prev == __hint, false))
1775 // hint might be the last bucket node, in this case we need to
1776 // update next bucket.
1777 if (__node->_M_nxt
1778 && !this->_M_equals(__k, __code, __node->_M_next()))
1779 {
1780 size_type __next_bkt = _M_bucket_index(__node->_M_next());
1781 if (__next_bkt != __bkt)
1782 _M_buckets[__next_bkt] = __node;
1783 }
1784 }
1785 else
1786 // The inserted node has no equivalent in the
1787 // hashtable. We must insert the new node at the
1788 // beginning of the bucket to preserve equivalent
1789 // elements' relative positions.
1790 _M_insert_bucket_begin(__bkt, __node);
1791 ++_M_element_count;
1792 return iterator(__node);
1793 }
1794 __catch(...)
1795 {
1796 this->_M_deallocate_node(__node);
1797 __throw_exception_again;
1798 }
1799 }
1800
1801 // Insert v if no element with its key is already present.
1802 template<typename _Key, typename _Value,
1803 typename _Alloc, typename _ExtractKey, typename _Equal,
1804 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1805 typename _Traits>
1806 template<typename _Arg, typename _NodeGenerator>
1807 auto
1808 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1809 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1810 _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, true_type,
1811 size_type __n_elt)
1812 -> pair<iterator, bool>
1813 {
1814 const key_type& __k = this->_M_extract()(__v);
1815 __hash_code __code = this->_M_hash_code(__k);
1816 size_type __bkt = _M_bucket_index(__k, __code);
1817
1818 __node_type* __n = _M_find_node(__bkt, __k, __code);
1819 if (__n)
1820 return std::make_pair(iterator(__n), false);
1821
1822 __n = __node_gen(std::forward<_Arg>(__v));
1823 return { _M_insert_unique_node(__bkt, __code, __n, __n_elt), true };
1824 }
1825
1826 // Insert v unconditionally.
1827 template<typename _Key, typename _Value,
1828 typename _Alloc, typename _ExtractKey, typename _Equal,
1829 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1830 typename _Traits>
1831 template<typename _Arg, typename _NodeGenerator>
1832 auto
1833 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1834 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1835 _M_insert(const_iterator __hint, _Arg&& __v,
1836 const _NodeGenerator& __node_gen, false_type)
1837 -> iterator
1838 {
1839 // First compute the hash code so that we don't do anything if it
1840 // throws.
1841 __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1842
1843 // Second allocate new node so that we don't rehash if it throws.
1844 __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1845
1846 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1847 }
1848
1849 template<typename _Key, typename _Value,
1850 typename _Alloc, typename _ExtractKey, typename _Equal,
1851 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1852 typename _Traits>
1853 auto
1854 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1855 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1856 erase(const_iterator __it)
1857 -> iterator
1858 {
1859 __node_type* __n = __it._M_cur;
1860 std::size_t __bkt = _M_bucket_index(__n);
1861
1862 // Look for previous node to unlink it from the erased one, this
1863 // is why we need buckets to contain the before begin to make
1864 // this search fast.
1865 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1866 return _M_erase(__bkt, __prev_n, __n);
1867 }
1868
1869 template<typename _Key, typename _Value,
1870 typename _Alloc, typename _ExtractKey, typename _Equal,
1871 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1872 typename _Traits>
1873 auto
1874 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1875 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1876 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1877 -> iterator
1878 {
1879 if (__prev_n == _M_buckets[__bkt])
1880 _M_remove_bucket_begin(__bkt, __n->_M_next(),
1881 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1882 else if (__n->_M_nxt)
1883 {
1884 size_type __next_bkt = _M_bucket_index(__n->_M_next());
1885 if (__next_bkt != __bkt)
1886 _M_buckets[__next_bkt] = __prev_n;
1887 }
1888
1889 __prev_n->_M_nxt = __n->_M_nxt;
1890 iterator __result(__n->_M_next());
1891 this->_M_deallocate_node(__n);
1892 --_M_element_count;
1893
1894 return __result;
1895 }
1896
1897 template<typename _Key, typename _Value,
1898 typename _Alloc, typename _ExtractKey, typename _Equal,
1899 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1900 typename _Traits>
1901 auto
1902 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1903 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1904 _M_erase(std::true_type, const key_type& __k)
1905 -> size_type
1906 {
1907 __hash_code __code = this->_M_hash_code(__k);
1908 std::size_t __bkt = _M_bucket_index(__k, __code);
1909
1910 // Look for the node before the first matching node.
1911 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1912 if (!__prev_n)
1913 return 0;
1914
1915 // We found a matching node, erase it.
1916 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1917 _M_erase(__bkt, __prev_n, __n);
1918 return 1;
1919 }
1920
1921 template<typename _Key, typename _Value,
1922 typename _Alloc, typename _ExtractKey, typename _Equal,
1923 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1924 typename _Traits>
1925 auto
1926 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1927 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1928 _M_erase(std::false_type, const key_type& __k)
1929 -> size_type
1930 {
1931 __hash_code __code = this->_M_hash_code(__k);
1932 std::size_t __bkt = _M_bucket_index(__k, __code);
1933
1934 // Look for the node before the first matching node.
1935 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1936 if (!__prev_n)
1937 return 0;
1938
1939 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1940 // 526. Is it undefined if a function in the standard changes
1941 // in parameters?
1942 // We use one loop to find all matching nodes and another to deallocate
1943 // them so that the key stays valid during the first loop. It might be
1944 // invalidated indirectly when destroying nodes.
1945 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1946 __node_type* __n_last = __n;
1947 std::size_t __n_last_bkt = __bkt;
1948 do
1949 {
1950 __n_last = __n_last->_M_next();
1951 if (!__n_last)
1952 break;
1953 __n_last_bkt = _M_bucket_index(__n_last);
1954 }
1955 while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1956
1957 // Deallocate nodes.
1958 size_type __result = 0;
1959 do
1960 {
1961 __node_type* __p = __n->_M_next();
1962 this->_M_deallocate_node(__n);
1963 __n = __p;
1964 ++__result;
1965 --_M_element_count;
1966 }
1967 while (__n != __n_last);
1968
1969 if (__prev_n == _M_buckets[__bkt])
1970 _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1971 else if (__n_last && __n_last_bkt != __bkt)
1972 _M_buckets[__n_last_bkt] = __prev_n;
1973 __prev_n->_M_nxt = __n_last;
1974 return __result;
1975 }
1976
1977 template<typename _Key, typename _Value,
1978 typename _Alloc, typename _ExtractKey, typename _Equal,
1979 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1980 typename _Traits>
1981 auto
1982 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1983 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1984 erase(const_iterator __first, const_iterator __last)
1985 -> iterator
1986 {
1987 __node_type* __n = __first._M_cur;
1988 __node_type* __last_n = __last._M_cur;
1989 if (__n == __last_n)
1990 return iterator(__n);
1991
1992 std::size_t __bkt = _M_bucket_index(__n);
1993
1994 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1995 bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1996 std::size_t __n_bkt = __bkt;
1997 for (;;)
1998 {
1999 do
2000 {
2001 __node_type* __tmp = __n;
2002 __n = __n->_M_next();
2003 this->_M_deallocate_node(__tmp);
2004 --_M_element_count;
2005 if (!__n)
2006 break;
2007 __n_bkt = _M_bucket_index(__n);
2008 }
2009 while (__n != __last_n && __n_bkt == __bkt);
2010 if (__is_bucket_begin)
2011 _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2012 if (__n == __last_n)
2013 break;
2014 __is_bucket_begin = true;
2015 __bkt = __n_bkt;
2016 }
2017
2018 if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2019 _M_buckets[__n_bkt] = __prev_n;
2020 __prev_n->_M_nxt = __n;
2021 return iterator(__n);
2022 }
2023
2024 template<typename _Key, typename _Value,
2025 typename _Alloc, typename _ExtractKey, typename _Equal,
2026 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2027 typename _Traits>
2028 void
2029 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2030 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2031 clear() noexcept
2032 {
2033 this->_M_deallocate_nodes(_M_begin());
2034 __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
2035 _M_element_count = 0;
2036 _M_before_begin._M_nxt = nullptr;
2037 }
2038
2039 template<typename _Key, typename _Value,
2040 typename _Alloc, typename _ExtractKey, typename _Equal,
2041 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2042 typename _Traits>
2043 void
2044 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2045 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2046 rehash(size_type __n)
2047 {
2048 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2049 std::size_t __buckets
2050 = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2051 __n);
2052 __buckets = _M_rehash_policy._M_next_bkt(__buckets);
2053
2054 if (__buckets != _M_bucket_count)
2055 _M_rehash(__buckets, __saved_state);
2056 else
2057 // No rehash, restore previous state to keep a consistent state.
2058 _M_rehash_policy._M_reset(__saved_state);
2059 }
2060
2061 template<typename _Key, typename _Value,
2062 typename _Alloc, typename _ExtractKey, typename _Equal,
2063 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2064 typename _Traits>
2065 void
2066 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2067 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2068 _M_rehash(size_type __n, const __rehash_state& __state)
2069 {
2070 __try
2071 {
2072 _M_rehash_aux(__n, __unique_keys());
2073 }
2074 __catch(...)
2075 {
2076 // A failure here means that buckets allocation failed. We only
2077 // have to restore hash policy previous state.
2078 _M_rehash_policy._M_reset(__state);
2079 __throw_exception_again;
2080 }
2081 }
2082
2083 // Rehash when there is no equivalent elements.
2084 template<typename _Key, typename _Value,
2085 typename _Alloc, typename _ExtractKey, typename _Equal,
2086 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2087 typename _Traits>
2088 void
2089 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2090 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2091 _M_rehash_aux(size_type __n, std::true_type)
2092 {
2093 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2094 __node_type* __p = _M_begin();
2095 _M_before_begin._M_nxt = nullptr;
2096 std::size_t __bbegin_bkt = 0;
2097 while (__p)
2098 {
2099 __node_type* __next = __p->_M_next();
2100 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2101 if (!__new_buckets[__bkt])
2102 {
2103 __p->_M_nxt = _M_before_begin._M_nxt;
2104 _M_before_begin._M_nxt = __p;
2105 __new_buckets[__bkt] = &_M_before_begin;
2106 if (__p->_M_nxt)
2107 __new_buckets[__bbegin_bkt] = __p;
2108 __bbegin_bkt = __bkt;
2109 }
2110 else
2111 {
2112 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2113 __new_buckets[__bkt]->_M_nxt = __p;
2114 }
2115 __p = __next;
2116 }
2117
2118 _M_deallocate_buckets();
2119 _M_bucket_count = __n;
2120 _M_buckets = __new_buckets;
2121 }
2122
2123 // Rehash when there can be equivalent elements, preserve their relative
2124 // order.
2125 template<typename _Key, typename _Value,
2126 typename _Alloc, typename _ExtractKey, typename _Equal,
2127 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2128 typename _Traits>
2129 void
2130 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2131 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2132 _M_rehash_aux(size_type __n, std::false_type)
2133 {
2134 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2135
2136 __node_type* __p = _M_begin();
2137 _M_before_begin._M_nxt = nullptr;
2138 std::size_t __bbegin_bkt = 0;
2139 std::size_t __prev_bkt = 0;
2140 __node_type* __prev_p = nullptr;
2141 bool __check_bucket = false;
2142
2143 while (__p)
2144 {
2145 __node_type* __next = __p->_M_next();
2146 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2147
2148 if (__prev_p && __prev_bkt == __bkt)
2149 {
2150 // Previous insert was already in this bucket, we insert after
2151 // the previously inserted one to preserve equivalent elements
2152 // relative order.
2153 __p->_M_nxt = __prev_p->_M_nxt;
2154 __prev_p->_M_nxt = __p;
2155
2156 // Inserting after a node in a bucket require to check that we
2157 // haven't change the bucket last node, in this case next
2158 // bucket containing its before begin node must be updated. We
2159 // schedule a check as soon as we move out of the sequence of
2160 // equivalent nodes to limit the number of checks.
2161 __check_bucket = true;
2162 }
2163 else
2164 {
2165 if (__check_bucket)
2166 {
2167 // Check if we shall update the next bucket because of
2168 // insertions into __prev_bkt bucket.
2169 if (__prev_p->_M_nxt)
2170 {
2171 std::size_t __next_bkt
2172 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2173 __n);
2174 if (__next_bkt != __prev_bkt)
2175 __new_buckets[__next_bkt] = __prev_p;
2176 }
2177 __check_bucket = false;
2178 }
2179
2180 if (!__new_buckets[__bkt])
2181 {
2182 __p->_M_nxt = _M_before_begin._M_nxt;
2183 _M_before_begin._M_nxt = __p;
2184 __new_buckets[__bkt] = &_M_before_begin;
2185 if (__p->_M_nxt)
2186 __new_buckets[__bbegin_bkt] = __p;
2187 __bbegin_bkt = __bkt;
2188 }
2189 else
2190 {
2191 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2192 __new_buckets[__bkt]->_M_nxt = __p;
2193 }
2194 }
2195 __prev_p = __p;
2196 __prev_bkt = __bkt;
2197 __p = __next;
2198 }
2199
2200 if (__check_bucket && __prev_p->_M_nxt)
2201 {
2202 std::size_t __next_bkt
2203 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2204 if (__next_bkt != __prev_bkt)
2205 __new_buckets[__next_bkt] = __prev_p;
2206 }
2207
2208 _M_deallocate_buckets();
2209 _M_bucket_count = __n;
2210 _M_buckets = __new_buckets;
2211 }
2212
2213 #if __cplusplus > 201402L
2214 template<typename, typename, typename> class _Hash_merge_helper { };
2215 #endif // C++17
2216
2217 _GLIBCXX_END_NAMESPACE_VERSION
2218 } // namespace std
2219
2220 #endif // _HASHTABLE_H