]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/bits/random.tcc
2009-06-29 Paolo Carlini <paolo.carlini@oracle.com>
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / random.tcc
1 // random number generation (out of line) -*- C++ -*-
2
3 // Copyright (C) 2009 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/random.tcc
26 * This is an internal header file, included by other library headers.
27 * You should not attempt to use it directly.
28 */
29
30 #include <numeric>
31 #include <algorithm>
32
33 namespace std
34 {
35 /*
36 * (Further) implementation-space details.
37 */
38 namespace __detail
39 {
40 // General case for x = (ax + c) mod m -- use Schrage's algorithm to
41 // avoid integer overflow.
42 //
43 // Because a and c are compile-time integral constants the compiler
44 // kindly elides any unreachable paths.
45 //
46 // Preconditions: a > 0, m > 0.
47 //
48 template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool>
49 struct _Mod
50 {
51 static _Tp
52 __calc(_Tp __x)
53 {
54 if (__a == 1)
55 __x %= __m;
56 else
57 {
58 static const _Tp __q = __m / __a;
59 static const _Tp __r = __m % __a;
60
61 _Tp __t1 = __a * (__x % __q);
62 _Tp __t2 = __r * (__x / __q);
63 if (__t1 >= __t2)
64 __x = __t1 - __t2;
65 else
66 __x = __m - __t2 + __t1;
67 }
68
69 if (__c != 0)
70 {
71 const _Tp __d = __m - __x;
72 if (__d > __c)
73 __x += __c;
74 else
75 __x = __c - __d;
76 }
77 return __x;
78 }
79 };
80
81 // Special case for m == 0 -- use unsigned integer overflow as modulo
82 // operator.
83 template<typename _Tp, _Tp __m, _Tp __a, _Tp __c>
84 struct _Mod<_Tp, __m, __a, __c, true>
85 {
86 static _Tp
87 __calc(_Tp __x)
88 { return __a * __x + __c; }
89 };
90 } // namespace __detail
91
92 /**
93 * Seeds the LCR with integral value @p __s, adjusted so that the
94 * ring identity is never a member of the convergence set.
95 */
96 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
97 void
98 linear_congruential_engine<_UIntType, __a, __c, __m>::
99 seed(result_type __s)
100 {
101 if ((__detail::__mod<_UIntType, __m>(__c) == 0)
102 && (__detail::__mod<_UIntType, __m>(__s) == 0))
103 _M_x = 1;
104 else
105 _M_x = __detail::__mod<_UIntType, __m>(__s);
106 }
107
108 /**
109 * Seeds the LCR engine with a value generated by @p __q.
110 */
111 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
112 void
113 linear_congruential_engine<_UIntType, __a, __c, __m>::
114 seed(seed_seq& __q)
115 {
116 const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits
117 : std::__lg(__m);
118 const _UIntType __k = (__k0 + 31) / 32;
119 uint_least32_t __arr[__k + 3];
120 __q.generate(__arr + 0, __arr + __k + 3);
121 _UIntType __factor = 1u;
122 _UIntType __sum = 0u;
123 for (size_t __j = 0; __j < __k; ++__j)
124 {
125 __sum += __arr[__j + 3] * __factor;
126 __factor *= __detail::_Shift<_UIntType, 32>::__value;
127 }
128 seed(__sum);
129 }
130
131 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
132 typename _CharT, typename _Traits>
133 std::basic_ostream<_CharT, _Traits>&
134 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
135 const linear_congruential_engine<_UIntType,
136 __a, __c, __m>& __lcr)
137 {
138 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
139 typedef typename __ostream_type::ios_base __ios_base;
140
141 const typename __ios_base::fmtflags __flags = __os.flags();
142 const _CharT __fill = __os.fill();
143 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
144 __os.fill(__os.widen(' '));
145
146 __os << __lcr._M_x;
147
148 __os.flags(__flags);
149 __os.fill(__fill);
150 return __os;
151 }
152
153 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
154 typename _CharT, typename _Traits>
155 std::basic_istream<_CharT, _Traits>&
156 operator>>(std::basic_istream<_CharT, _Traits>& __is,
157 linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr)
158 {
159 typedef std::basic_istream<_CharT, _Traits> __istream_type;
160 typedef typename __istream_type::ios_base __ios_base;
161
162 const typename __ios_base::fmtflags __flags = __is.flags();
163 __is.flags(__ios_base::dec);
164
165 __is >> __lcr._M_x;
166
167 __is.flags(__flags);
168 return __is;
169 }
170
171
172 template<typename _UIntType,
173 size_t __w, size_t __n, size_t __m, size_t __r,
174 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
175 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
176 _UIntType __f>
177 void
178 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
179 __s, __b, __t, __c, __l, __f>::
180 seed(result_type __sd)
181 {
182 _M_x[0] = __detail::__mod<_UIntType,
183 __detail::_Shift<_UIntType, __w>::__value>(__sd);
184
185 for (size_t __i = 1; __i < state_size; ++__i)
186 {
187 _UIntType __x = _M_x[__i - 1];
188 __x ^= __x >> (__w - 2);
189 __x *= __f;
190 __x += __detail::__mod<_UIntType, __n>(__i);
191 _M_x[__i] = __detail::__mod<_UIntType,
192 __detail::_Shift<_UIntType, __w>::__value>(__x);
193 }
194 _M_p = state_size;
195 }
196
197 template<typename _UIntType,
198 size_t __w, size_t __n, size_t __m, size_t __r,
199 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
200 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
201 _UIntType __f>
202 void
203 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
204 __s, __b, __t, __c, __l, __f>::
205 seed(seed_seq& __q)
206 {
207 const _UIntType __upper_mask = (~_UIntType()) << __r;
208 const size_t __k = (__w + 31) / 32;
209 uint_least32_t __arr[__n * __k];
210 __q.generate(__arr + 0, __arr + __n * __k);
211
212 bool __zero = true;
213 for (size_t __i = 0; __i < state_size; ++__i)
214 {
215 _UIntType __factor = 1u;
216 _UIntType __sum = 0u;
217 for (size_t __j = 0; __j < __k; ++__j)
218 {
219 __sum += __arr[__k * __i + __j] * __factor;
220 __factor *= __detail::_Shift<_UIntType, 32>::__value;
221 }
222 _M_x[__i] = __detail::__mod<_UIntType,
223 __detail::_Shift<_UIntType, __w>::__value>(__sum);
224
225 if (__zero)
226 {
227 if (__i == 0)
228 {
229 if ((_M_x[0] & __upper_mask) != 0u)
230 __zero = false;
231 }
232 else if (_M_x[__i] != 0u)
233 __zero = false;
234 }
235 }
236 if (__zero)
237 _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value;
238 }
239
240 template<typename _UIntType, size_t __w,
241 size_t __n, size_t __m, size_t __r,
242 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
243 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
244 _UIntType __f>
245 typename
246 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
247 __s, __b, __t, __c, __l, __f>::result_type
248 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
249 __s, __b, __t, __c, __l, __f>::
250 operator()()
251 {
252 // Reload the vector - cost is O(n) amortized over n calls.
253 if (_M_p >= state_size)
254 {
255 const _UIntType __upper_mask = (~_UIntType()) << __r;
256 const _UIntType __lower_mask = ~__upper_mask;
257
258 for (size_t __k = 0; __k < (__n - __m); ++__k)
259 {
260 _UIntType __y = ((_M_x[__k] & __upper_mask)
261 | (_M_x[__k + 1] & __lower_mask));
262 _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
263 ^ ((__y & 0x01) ? __a : 0));
264 }
265
266 for (size_t __k = (__n - __m); __k < (__n - 1); ++__k)
267 {
268 _UIntType __y = ((_M_x[__k] & __upper_mask)
269 | (_M_x[__k + 1] & __lower_mask));
270 _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
271 ^ ((__y & 0x01) ? __a : 0));
272 }
273
274 _UIntType __y = ((_M_x[__n - 1] & __upper_mask)
275 | (_M_x[0] & __lower_mask));
276 _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
277 ^ ((__y & 0x01) ? __a : 0));
278 _M_p = 0;
279 }
280
281 // Calculate o(x(i)).
282 result_type __z = _M_x[_M_p++];
283 __z ^= (__z >> __u) & __d;
284 __z ^= (__z << __s) & __b;
285 __z ^= (__z << __t) & __c;
286 __z ^= (__z >> __l);
287
288 return __z;
289 }
290
291 template<typename _UIntType, size_t __w,
292 size_t __n, size_t __m, size_t __r,
293 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
294 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
295 _UIntType __f, typename _CharT, typename _Traits>
296 std::basic_ostream<_CharT, _Traits>&
297 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
298 const mersenne_twister_engine<_UIntType, __w, __n, __m,
299 __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
300 {
301 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
302 typedef typename __ostream_type::ios_base __ios_base;
303
304 const typename __ios_base::fmtflags __flags = __os.flags();
305 const _CharT __fill = __os.fill();
306 const _CharT __space = __os.widen(' ');
307 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
308 __os.fill(__space);
309
310 for (size_t __i = 0; __i < __n - 1; ++__i)
311 __os << __x._M_x[__i] << __space;
312 __os << __x._M_x[__n - 1];
313
314 __os.flags(__flags);
315 __os.fill(__fill);
316 return __os;
317 }
318
319 template<typename _UIntType, size_t __w,
320 size_t __n, size_t __m, size_t __r,
321 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
322 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
323 _UIntType __f, typename _CharT, typename _Traits>
324 std::basic_istream<_CharT, _Traits>&
325 operator>>(std::basic_istream<_CharT, _Traits>& __is,
326 mersenne_twister_engine<_UIntType, __w, __n, __m,
327 __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
328 {
329 typedef std::basic_istream<_CharT, _Traits> __istream_type;
330 typedef typename __istream_type::ios_base __ios_base;
331
332 const typename __ios_base::fmtflags __flags = __is.flags();
333 __is.flags(__ios_base::dec | __ios_base::skipws);
334
335 for (size_t __i = 0; __i < __n; ++__i)
336 __is >> __x._M_x[__i];
337
338 __is.flags(__flags);
339 return __is;
340 }
341
342
343 template<typename _UIntType, size_t __w, size_t __s, size_t __r>
344 void
345 subtract_with_carry_engine<_UIntType, __w, __s, __r>::
346 seed(result_type __value)
347 {
348 std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u>
349 __lcg(__value == 0u ? default_seed : __value);
350
351 const size_t __n = (__w + 31) / 32;
352
353 for (size_t __i = 0; __i < long_lag; ++__i)
354 {
355 _UIntType __sum = 0u;
356 _UIntType __factor = 1u;
357 for (size_t __j = 0; __j < __n; ++__j)
358 {
359 __sum += __detail::__mod<uint_least32_t,
360 __detail::_Shift<uint_least32_t, 32>::__value>
361 (__lcg()) * __factor;
362 __factor *= __detail::_Shift<_UIntType, 32>::__value;
363 }
364 _M_x[__i] = __detail::__mod<_UIntType,
365 __detail::_Shift<_UIntType, __w>::__value>(__sum);
366 }
367 _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
368 _M_p = 0;
369 }
370
371 template<typename _UIntType, size_t __w, size_t __s, size_t __r>
372 void
373 subtract_with_carry_engine<_UIntType, __w, __s, __r>::
374 seed(seed_seq& __q)
375 {
376 const size_t __k = (__w + 31) / 32;
377 uint_least32_t __arr[__r * __k];
378 __q.generate(__arr + 0, __arr + __r * __k);
379
380 for (size_t __i = 0; __i < long_lag; ++__i)
381 {
382 _UIntType __sum = 0u;
383 _UIntType __factor = 1u;
384 for (size_t __j = 0; __j < __k; ++__j)
385 {
386 __sum += __arr[__k * __i + __j] * __factor;
387 __factor *= __detail::_Shift<_UIntType, 32>::__value;
388 }
389 _M_x[__i] = __detail::__mod<_UIntType,
390 __detail::_Shift<_UIntType, __w>::__value>(__sum);
391 }
392 _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
393 _M_p = 0;
394 }
395
396 template<typename _UIntType, size_t __w, size_t __s, size_t __r>
397 typename subtract_with_carry_engine<_UIntType, __w, __s, __r>::
398 result_type
399 subtract_with_carry_engine<_UIntType, __w, __s, __r>::
400 operator()()
401 {
402 // Derive short lag index from current index.
403 long __ps = _M_p - short_lag;
404 if (__ps < 0)
405 __ps += long_lag;
406
407 // Calculate new x(i) without overflow or division.
408 // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry
409 // cannot overflow.
410 _UIntType __xi;
411 if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
412 {
413 __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
414 _M_carry = 0;
415 }
416 else
417 {
418 __xi = (__detail::_Shift<_UIntType, __w>::__value
419 - _M_x[_M_p] - _M_carry + _M_x[__ps]);
420 _M_carry = 1;
421 }
422 _M_x[_M_p] = __xi;
423
424 // Adjust current index to loop around in ring buffer.
425 if (++_M_p >= long_lag)
426 _M_p = 0;
427
428 return __xi;
429 }
430
431 template<typename _UIntType, size_t __w, size_t __s, size_t __r,
432 typename _CharT, typename _Traits>
433 std::basic_ostream<_CharT, _Traits>&
434 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
435 const subtract_with_carry_engine<_UIntType,
436 __w, __s, __r>& __x)
437 {
438 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
439 typedef typename __ostream_type::ios_base __ios_base;
440
441 const typename __ios_base::fmtflags __flags = __os.flags();
442 const _CharT __fill = __os.fill();
443 const _CharT __space = __os.widen(' ');
444 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
445 __os.fill(__space);
446
447 for (size_t __i = 0; __i < __r; ++__i)
448 __os << __x._M_x[__i] << __space;
449 __os << __x._M_carry;
450
451 __os.flags(__flags);
452 __os.fill(__fill);
453 return __os;
454 }
455
456 template<typename _UIntType, size_t __w, size_t __s, size_t __r,
457 typename _CharT, typename _Traits>
458 std::basic_istream<_CharT, _Traits>&
459 operator>>(std::basic_istream<_CharT, _Traits>& __is,
460 subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x)
461 {
462 typedef std::basic_ostream<_CharT, _Traits> __istream_type;
463 typedef typename __istream_type::ios_base __ios_base;
464
465 const typename __ios_base::fmtflags __flags = __is.flags();
466 __is.flags(__ios_base::dec | __ios_base::skipws);
467
468 for (size_t __i = 0; __i < __r; ++__i)
469 __is >> __x._M_x[__i];
470 __is >> __x._M_carry;
471
472 __is.flags(__flags);
473 return __is;
474 }
475
476
477 template<typename _RandomNumberEngine, size_t __p, size_t __r>
478 typename discard_block_engine<_RandomNumberEngine,
479 __p, __r>::result_type
480 discard_block_engine<_RandomNumberEngine, __p, __r>::
481 operator()()
482 {
483 if (_M_n >= used_block)
484 {
485 _M_b.discard(block_size - _M_n);
486 _M_n = 0;
487 }
488 ++_M_n;
489 return _M_b();
490 }
491
492 template<typename _RandomNumberEngine, size_t __p, size_t __r,
493 typename _CharT, typename _Traits>
494 std::basic_ostream<_CharT, _Traits>&
495 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
496 const discard_block_engine<_RandomNumberEngine,
497 __p, __r>& __x)
498 {
499 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
500 typedef typename __ostream_type::ios_base __ios_base;
501
502 const typename __ios_base::fmtflags __flags = __os.flags();
503 const _CharT __fill = __os.fill();
504 const _CharT __space = __os.widen(' ');
505 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
506 __os.fill(__space);
507
508 __os << __x.base() << __space << __x._M_n;
509
510 __os.flags(__flags);
511 __os.fill(__fill);
512 return __os;
513 }
514
515 template<typename _RandomNumberEngine, size_t __p, size_t __r,
516 typename _CharT, typename _Traits>
517 std::basic_istream<_CharT, _Traits>&
518 operator>>(std::basic_istream<_CharT, _Traits>& __is,
519 discard_block_engine<_RandomNumberEngine, __p, __r>& __x)
520 {
521 typedef std::basic_istream<_CharT, _Traits> __istream_type;
522 typedef typename __istream_type::ios_base __ios_base;
523
524 const typename __ios_base::fmtflags __flags = __is.flags();
525 __is.flags(__ios_base::dec | __ios_base::skipws);
526
527 __is >> __x._M_b >> __x._M_n;
528
529 __is.flags(__flags);
530 return __is;
531 }
532
533
534 template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
535 typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
536 result_type
537 independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
538 operator()()
539 {
540 const long double __r = static_cast<long double>(_M_b.max())
541 - static_cast<long double>(_M_b.min()) + 1.0L;
542 const result_type __m = std::log(__r) / std::log(2.0L);
543 result_type __n, __n0, __y0, __y1, __s0, __s1;
544 for (size_t __i = 0; __i < 2; ++__i)
545 {
546 __n = (__w + __m - 1) / __m + __i;
547 __n0 = __n - __w % __n;
548 const result_type __w0 = __w / __n;
549 const result_type __w1 = __w0 + 1;
550 __s0 = result_type(1) << __w0;
551 __s1 = result_type(1) << __w1;
552 __y0 = __s0 * (__r / __s0);
553 __y1 = __s1 * (__r / __s1);
554 if (__r - __y0 <= __y0 / __n)
555 break;
556 }
557
558 result_type __sum = 0;
559 for (size_t __k = 0; __k < __n0; ++__k)
560 {
561 result_type __u;
562 do
563 __u = _M_b() - _M_b.min();
564 while (__u >= __y0);
565 __sum = __s0 * __sum + __u % __s0;
566 }
567 for (size_t __k = __n0; __k < __n; ++__k)
568 {
569 result_type __u;
570 do
571 __u = _M_b() - _M_b.min();
572 while (__u >= __y1);
573 __sum = __s1 * __sum + __u % __s1;
574 }
575 return __sum;
576 }
577
578
579 template<typename _RandomNumberEngine, size_t __k>
580 typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type
581 shuffle_order_engine<_RandomNumberEngine, __k>::
582 operator()()
583 {
584 size_t __j = __k * ((_M_y - _M_b.min())
585 / (_M_b.max() - _M_b.min() + 1.0L));
586 _M_y = _M_v[__j];
587 _M_v[__j] = _M_b();
588
589 return _M_y;
590 }
591
592 template<typename _RandomNumberEngine, size_t __k,
593 typename _CharT, typename _Traits>
594 std::basic_ostream<_CharT, _Traits>&
595 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
596 const shuffle_order_engine<_RandomNumberEngine, __k>& __x)
597 {
598 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
599 typedef typename __ostream_type::ios_base __ios_base;
600
601 const typename __ios_base::fmtflags __flags = __os.flags();
602 const _CharT __fill = __os.fill();
603 const _CharT __space = __os.widen(' ');
604 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
605 __os.fill(__space);
606
607 __os << __x.base();
608 for (size_t __i = 0; __i < __k; ++__i)
609 __os << __space << __x._M_v[__i];
610 __os << __space << __x._M_y;
611
612 __os.flags(__flags);
613 __os.fill(__fill);
614 return __os;
615 }
616
617 template<typename _RandomNumberEngine, size_t __k,
618 typename _CharT, typename _Traits>
619 std::basic_istream<_CharT, _Traits>&
620 operator>>(std::basic_istream<_CharT, _Traits>& __is,
621 shuffle_order_engine<_RandomNumberEngine, __k>& __x)
622 {
623 typedef std::basic_istream<_CharT, _Traits> __istream_type;
624 typedef typename __istream_type::ios_base __ios_base;
625
626 const typename __ios_base::fmtflags __flags = __is.flags();
627 __is.flags(__ios_base::dec | __ios_base::skipws);
628
629 __is >> __x._M_b;
630 for (size_t __i = 0; __i < __k; ++__i)
631 __is >> __x._M_v[__i];
632 __is >> __x._M_y;
633
634 __is.flags(__flags);
635 return __is;
636 }
637
638
639 template<typename _IntType>
640 template<typename _UniformRandomNumberGenerator>
641 typename uniform_int_distribution<_IntType>::result_type
642 uniform_int_distribution<_IntType>::
643 operator()(_UniformRandomNumberGenerator& __urng,
644 const param_type& __param)
645 {
646 // XXX Must be fixed to work well for *arbitrary* __urng.max(),
647 // __urng.min(), __param.b(), __param.a(). Currently works fine only
648 // in the most common case __urng.max() - __urng.min() >=
649 // __param.b() - __param.a(), with __urng.max() > __urng.min() >= 0.
650 typedef typename __gnu_cxx::__add_unsigned<typename
651 _UniformRandomNumberGenerator::result_type>::__type __urntype;
652 typedef typename __gnu_cxx::__add_unsigned<result_type>::__type
653 __utype;
654 typedef typename __gnu_cxx::__conditional_type<(sizeof(__urntype)
655 > sizeof(__utype)),
656 __urntype, __utype>::__type __uctype;
657
658 result_type __ret;
659
660 const __urntype __urnmin = __urng.min();
661 const __urntype __urnmax = __urng.max();
662 const __urntype __urnrange = __urnmax - __urnmin;
663 const __uctype __urange = __param.b() - __param.a();
664 const __uctype __udenom = (__urnrange <= __urange
665 ? 1 : __urnrange / (__urange + 1));
666 do
667 __ret = (__urntype(__urng()) - __urnmin) / __udenom;
668 while (__ret > __param.b() - __param.a());
669
670 return __ret + __param.a();
671 }
672
673 template<typename _IntType, typename _CharT, typename _Traits>
674 std::basic_ostream<_CharT, _Traits>&
675 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
676 const uniform_int_distribution<_IntType>& __x)
677 {
678 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
679 typedef typename __ostream_type::ios_base __ios_base;
680
681 const typename __ios_base::fmtflags __flags = __os.flags();
682 const _CharT __fill = __os.fill();
683 const _CharT __space = __os.widen(' ');
684 __os.flags(__ios_base::scientific | __ios_base::left);
685 __os.fill(__space);
686
687 __os << __x.a() << __space << __x.b();
688
689 __os.flags(__flags);
690 __os.fill(__fill);
691 return __os;
692 }
693
694 template<typename _IntType, typename _CharT, typename _Traits>
695 std::basic_istream<_CharT, _Traits>&
696 operator>>(std::basic_istream<_CharT, _Traits>& __is,
697 uniform_int_distribution<_IntType>& __x)
698 {
699 typedef std::basic_istream<_CharT, _Traits> __istream_type;
700 typedef typename __istream_type::ios_base __ios_base;
701
702 const typename __ios_base::fmtflags __flags = __is.flags();
703 __is.flags(__ios_base::dec | __ios_base::skipws);
704
705 _IntType __a, __b;
706 __is >> __a >> __b;
707 __x.param(typename uniform_int_distribution<_IntType>::
708 param_type(__a, __b));
709
710 __is.flags(__flags);
711 return __is;
712 }
713
714
715 template<typename _RealType, typename _CharT, typename _Traits>
716 std::basic_ostream<_CharT, _Traits>&
717 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
718 const uniform_real_distribution<_RealType>& __x)
719 {
720 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
721 typedef typename __ostream_type::ios_base __ios_base;
722
723 const typename __ios_base::fmtflags __flags = __os.flags();
724 const _CharT __fill = __os.fill();
725 const std::streamsize __precision = __os.precision();
726 const _CharT __space = __os.widen(' ');
727 __os.flags(__ios_base::scientific | __ios_base::left);
728 __os.fill(__space);
729 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
730
731 __os << __x.a() << __space << __x.b();
732
733 __os.flags(__flags);
734 __os.fill(__fill);
735 __os.precision(__precision);
736 return __os;
737 }
738
739 template<typename _RealType, typename _CharT, typename _Traits>
740 std::basic_istream<_CharT, _Traits>&
741 operator>>(std::basic_istream<_CharT, _Traits>& __is,
742 uniform_real_distribution<_RealType>& __x)
743 {
744 typedef std::basic_istream<_CharT, _Traits> __istream_type;
745 typedef typename __istream_type::ios_base __ios_base;
746
747 const typename __ios_base::fmtflags __flags = __is.flags();
748 __is.flags(__ios_base::skipws);
749
750 _RealType __a, __b;
751 __is >> __a >> __b;
752 __x.param(typename uniform_real_distribution<_RealType>::
753 param_type(__a, __b));
754
755 __is.flags(__flags);
756 return __is;
757 }
758
759
760 template<typename _CharT, typename _Traits>
761 std::basic_ostream<_CharT, _Traits>&
762 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
763 const bernoulli_distribution& __x)
764 {
765 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
766 typedef typename __ostream_type::ios_base __ios_base;
767
768 const typename __ios_base::fmtflags __flags = __os.flags();
769 const _CharT __fill = __os.fill();
770 const std::streamsize __precision = __os.precision();
771 __os.flags(__ios_base::scientific | __ios_base::left);
772 __os.fill(__os.widen(' '));
773 __os.precision(std::numeric_limits<double>::digits10 + 1);
774
775 __os << __x.p();
776
777 __os.flags(__flags);
778 __os.fill(__fill);
779 __os.precision(__precision);
780 return __os;
781 }
782
783
784 template<typename _IntType>
785 template<typename _UniformRandomNumberGenerator>
786 typename geometric_distribution<_IntType>::result_type
787 geometric_distribution<_IntType>::
788 operator()(_UniformRandomNumberGenerator& __urng,
789 const param_type& __param)
790 {
791 // About the epsilon thing see this thread:
792 // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
793 const double __naf =
794 (1 - std::numeric_limits<double>::epsilon()) / 2;
795 // The largest _RealType convertible to _IntType.
796 const double __thr =
797 std::numeric_limits<_IntType>::max() + __naf;
798 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
799 __aurng(__urng);
800
801 double __cand;
802 do
803 __cand = std::ceil(std::log(__aurng()) / __param._M_log_p);
804 while (__cand >= __thr);
805
806 return result_type(__cand + __naf);
807 }
808
809 template<typename _IntType,
810 typename _CharT, typename _Traits>
811 std::basic_ostream<_CharT, _Traits>&
812 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
813 const geometric_distribution<_IntType>& __x)
814 {
815 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
816 typedef typename __ostream_type::ios_base __ios_base;
817
818 const typename __ios_base::fmtflags __flags = __os.flags();
819 const _CharT __fill = __os.fill();
820 const std::streamsize __precision = __os.precision();
821 __os.flags(__ios_base::scientific | __ios_base::left);
822 __os.fill(__os.widen(' '));
823 __os.precision(std::numeric_limits<double>::digits10 + 1);
824
825 __os << __x.p();
826
827 __os.flags(__flags);
828 __os.fill(__fill);
829 __os.precision(__precision);
830 return __os;
831 }
832
833 template<typename _IntType,
834 typename _CharT, typename _Traits>
835 std::basic_istream<_CharT, _Traits>&
836 operator>>(std::basic_istream<_CharT, _Traits>& __is,
837 geometric_distribution<_IntType>& __x)
838 {
839 typedef std::basic_istream<_CharT, _Traits> __istream_type;
840 typedef typename __istream_type::ios_base __ios_base;
841
842 const typename __ios_base::fmtflags __flags = __is.flags();
843 __is.flags(__ios_base::skipws);
844
845 double __p;
846 __is >> __p;
847 __x.param(typename geometric_distribution<_IntType>::param_type(__p));
848
849 __is.flags(__flags);
850 return __is;
851 }
852
853
854 template<typename _IntType>
855 template<typename _UniformRandomNumberGenerator>
856 typename negative_binomial_distribution<_IntType>::result_type
857 negative_binomial_distribution<_IntType>::
858 operator()(_UniformRandomNumberGenerator& __urng)
859 {
860 const double __y = _M_gd(__urng);
861
862 // XXX Is the constructor too slow?
863 std::poisson_distribution<result_type> __poisson(__y);
864 return __poisson(__urng);
865 }
866
867 template<typename _IntType>
868 template<typename _UniformRandomNumberGenerator>
869 typename negative_binomial_distribution<_IntType>::result_type
870 negative_binomial_distribution<_IntType>::
871 operator()(_UniformRandomNumberGenerator& __urng,
872 const param_type& __p)
873 {
874 typedef typename std::gamma_distribution<result_type>::param_type
875 param_type;
876
877 const double __y =
878 _M_gd(__urng, param_type(__p.k(), __p.p() / (1.0 - __p.p())));
879
880 std::poisson_distribution<result_type> __poisson(__y);
881 return __poisson(__urng);
882 }
883
884 template<typename _IntType, typename _CharT, typename _Traits>
885 std::basic_ostream<_CharT, _Traits>&
886 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
887 const negative_binomial_distribution<_IntType>& __x)
888 {
889 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
890 typedef typename __ostream_type::ios_base __ios_base;
891
892 const typename __ios_base::fmtflags __flags = __os.flags();
893 const _CharT __fill = __os.fill();
894 const std::streamsize __precision = __os.precision();
895 const _CharT __space = __os.widen(' ');
896 __os.flags(__ios_base::scientific | __ios_base::left);
897 __os.fill(__os.widen(' '));
898 __os.precision(std::numeric_limits<double>::digits10 + 1);
899
900 __os << __x.k() << __space << __x.p()
901 << __space << __x._M_gd;
902
903 __os.flags(__flags);
904 __os.fill(__fill);
905 __os.precision(__precision);
906 return __os;
907 }
908
909 template<typename _IntType, typename _CharT, typename _Traits>
910 std::basic_istream<_CharT, _Traits>&
911 operator>>(std::basic_istream<_CharT, _Traits>& __is,
912 negative_binomial_distribution<_IntType>& __x)
913 {
914 typedef std::basic_istream<_CharT, _Traits> __istream_type;
915 typedef typename __istream_type::ios_base __ios_base;
916
917 const typename __ios_base::fmtflags __flags = __is.flags();
918 __is.flags(__ios_base::skipws);
919
920 _IntType __k;
921 double __p;
922 __is >> __k >> __p >> __x._M_gd;
923 __x.param(typename negative_binomial_distribution<_IntType>::
924 param_type(__k, __p));
925
926 __is.flags(__flags);
927 return __is;
928 }
929
930
931 template<typename _IntType>
932 void
933 poisson_distribution<_IntType>::param_type::
934 _M_initialize()
935 {
936 #if _GLIBCXX_USE_C99_MATH_TR1
937 if (_M_mean >= 12)
938 {
939 const double __m = std::floor(_M_mean);
940 _M_lm_thr = std::log(_M_mean);
941 _M_lfm = std::lgamma(__m + 1);
942 _M_sm = std::sqrt(__m);
943
944 const double __pi_4 = 0.7853981633974483096156608458198757L;
945 const double __dx = std::sqrt(2 * __m * std::log(32 * __m
946 / __pi_4));
947 _M_d = std::round(std::max(6.0, std::min(__m, __dx)));
948 const double __cx = 2 * __m + _M_d;
949 _M_scx = std::sqrt(__cx / 2);
950 _M_1cx = 1 / __cx;
951
952 _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
953 _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2))
954 / _M_d;
955 }
956 else
957 #endif
958 _M_lm_thr = std::exp(-_M_mean);
959 }
960
961 /**
962 * A rejection algorithm when mean >= 12 and a simple method based
963 * upon the multiplication of uniform random variates otherwise.
964 * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
965 * is defined.
966 *
967 * Reference:
968 * Devroye, L. "Non-Uniform Random Variates Generation." Springer-Verlag,
969 * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
970 */
971 template<typename _IntType>
972 template<typename _UniformRandomNumberGenerator>
973 typename poisson_distribution<_IntType>::result_type
974 poisson_distribution<_IntType>::
975 operator()(_UniformRandomNumberGenerator& __urng,
976 const param_type& __param)
977 {
978 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
979 __aurng(__urng);
980 #if _GLIBCXX_USE_C99_MATH_TR1
981 if (__param.mean() >= 12)
982 {
983 double __x;
984
985 // See comments above...
986 const double __naf =
987 (1 - std::numeric_limits<double>::epsilon()) / 2;
988 const double __thr =
989 std::numeric_limits<_IntType>::max() + __naf;
990
991 const double __m = std::floor(__param.mean());
992 // sqrt(pi / 2)
993 const double __spi_2 = 1.2533141373155002512078826424055226L;
994 const double __c1 = __param._M_sm * __spi_2;
995 const double __c2 = __param._M_c2b + __c1;
996 const double __c3 = __c2 + 1;
997 const double __c4 = __c3 + 1;
998 // e^(1 / 78)
999 const double __e178 = 1.0129030479320018583185514777512983L;
1000 const double __c5 = __c4 + __e178;
1001 const double __c = __param._M_cb + __c5;
1002 const double __2cx = 2 * (2 * __m + __param._M_d);
1003
1004 bool __reject = true;
1005 do
1006 {
1007 const double __u = __c * __aurng();
1008 const double __e = -std::log(__aurng());
1009
1010 double __w = 0.0;
1011
1012 if (__u <= __c1)
1013 {
1014 const double __n = _M_nd(__urng);
1015 const double __y = -std::abs(__n) * __param._M_sm - 1;
1016 __x = std::floor(__y);
1017 __w = -__n * __n / 2;
1018 if (__x < -__m)
1019 continue;
1020 }
1021 else if (__u <= __c2)
1022 {
1023 const double __n = _M_nd(__urng);
1024 const double __y = 1 + std::abs(__n) * __param._M_scx;
1025 __x = std::ceil(__y);
1026 __w = __y * (2 - __y) * __param._M_1cx;
1027 if (__x > __param._M_d)
1028 continue;
1029 }
1030 else if (__u <= __c3)
1031 // NB: This case not in the book, nor in the Errata,
1032 // but should be ok...
1033 __x = -1;
1034 else if (__u <= __c4)
1035 __x = 0;
1036 else if (__u <= __c5)
1037 __x = 1;
1038 else
1039 {
1040 const double __v = -std::log(__aurng());
1041 const double __y = __param._M_d
1042 + __v * __2cx / __param._M_d;
1043 __x = std::ceil(__y);
1044 __w = -__param._M_d * __param._M_1cx * (1 + __y / 2);
1045 }
1046
1047 __reject = (__w - __e - __x * __param._M_lm_thr
1048 > __param._M_lfm - std::lgamma(__x + __m + 1));
1049
1050 __reject |= __x + __m >= __thr;
1051
1052 } while (__reject);
1053
1054 return result_type(__x + __m + __naf);
1055 }
1056 else
1057 #endif
1058 {
1059 _IntType __x = 0;
1060 double __prod = 1.0;
1061
1062 do
1063 {
1064 __prod *= __aurng();
1065 __x += 1;
1066 }
1067 while (__prod > __param._M_lm_thr);
1068
1069 return __x - 1;
1070 }
1071 }
1072
1073 template<typename _IntType,
1074 typename _CharT, typename _Traits>
1075 std::basic_ostream<_CharT, _Traits>&
1076 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1077 const poisson_distribution<_IntType>& __x)
1078 {
1079 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1080 typedef typename __ostream_type::ios_base __ios_base;
1081
1082 const typename __ios_base::fmtflags __flags = __os.flags();
1083 const _CharT __fill = __os.fill();
1084 const std::streamsize __precision = __os.precision();
1085 const _CharT __space = __os.widen(' ');
1086 __os.flags(__ios_base::scientific | __ios_base::left);
1087 __os.fill(__space);
1088 __os.precision(std::numeric_limits<double>::digits10 + 1);
1089
1090 __os << __x.mean() << __space << __x._M_nd;
1091
1092 __os.flags(__flags);
1093 __os.fill(__fill);
1094 __os.precision(__precision);
1095 return __os;
1096 }
1097
1098 template<typename _IntType,
1099 typename _CharT, typename _Traits>
1100 std::basic_istream<_CharT, _Traits>&
1101 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1102 poisson_distribution<_IntType>& __x)
1103 {
1104 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1105 typedef typename __istream_type::ios_base __ios_base;
1106
1107 const typename __ios_base::fmtflags __flags = __is.flags();
1108 __is.flags(__ios_base::skipws);
1109
1110 double __mean;
1111 __is >> __mean >> __x._M_nd;
1112 __x.param(typename poisson_distribution<_IntType>::param_type(__mean));
1113
1114 __is.flags(__flags);
1115 return __is;
1116 }
1117
1118
1119 template<typename _IntType>
1120 void
1121 binomial_distribution<_IntType>::param_type::
1122 _M_initialize()
1123 {
1124 const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
1125
1126 _M_easy = true;
1127
1128 #if _GLIBCXX_USE_C99_MATH_TR1
1129 if (_M_t * __p12 >= 8)
1130 {
1131 _M_easy = false;
1132 const double __np = std::floor(_M_t * __p12);
1133 const double __pa = __np / _M_t;
1134 const double __1p = 1 - __pa;
1135
1136 const double __pi_4 = 0.7853981633974483096156608458198757L;
1137 const double __d1x =
1138 std::sqrt(__np * __1p * std::log(32 * __np
1139 / (81 * __pi_4 * __1p)));
1140 _M_d1 = std::round(std::max(1.0, __d1x));
1141 const double __d2x =
1142 std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
1143 / (__pi_4 * __pa)));
1144 _M_d2 = std::round(std::max(1.0, __d2x));
1145
1146 // sqrt(pi / 2)
1147 const double __spi_2 = 1.2533141373155002512078826424055226L;
1148 _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
1149 _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
1150 _M_c = 2 * _M_d1 / __np;
1151 _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
1152 const double __a12 = _M_a1 + _M_s2 * __spi_2;
1153 const double __s1s = _M_s1 * _M_s1;
1154 _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
1155 * 2 * __s1s / _M_d1
1156 * std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
1157 const double __s2s = _M_s2 * _M_s2;
1158 _M_s = (_M_a123 + 2 * __s2s / _M_d2
1159 * std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
1160 _M_lf = (std::lgamma(__np + 1)
1161 + std::lgamma(_M_t - __np + 1));
1162 _M_lp1p = std::log(__pa / __1p);
1163
1164 _M_q = -std::log(1 - (__p12 - __pa) / __1p);
1165 }
1166 else
1167 #endif
1168 _M_q = -std::log(1 - __p12);
1169 }
1170
1171 template<typename _IntType>
1172 template<typename _UniformRandomNumberGenerator>
1173 typename binomial_distribution<_IntType>::result_type
1174 binomial_distribution<_IntType>::
1175 _M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t)
1176 {
1177 _IntType __x = 0;
1178 double __sum = 0.0;
1179 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1180 __aurng(__urng);
1181
1182 do
1183 {
1184 const double __e = -std::log(__aurng());
1185 __sum += __e / (__t - __x);
1186 __x += 1;
1187 }
1188 while (__sum <= _M_param._M_q);
1189
1190 return __x - 1;
1191 }
1192
1193 /**
1194 * A rejection algorithm when t * p >= 8 and a simple waiting time
1195 * method - the second in the referenced book - otherwise.
1196 * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
1197 * is defined.
1198 *
1199 * Reference:
1200 * Devroye, L. "Non-Uniform Random Variates Generation." Springer-Verlag,
1201 * New York, 1986, Ch. X, Sect. 4 (+ Errata!).
1202 */
1203 template<typename _IntType>
1204 template<typename _UniformRandomNumberGenerator>
1205 typename binomial_distribution<_IntType>::result_type
1206 binomial_distribution<_IntType>::
1207 operator()(_UniformRandomNumberGenerator& __urng,
1208 const param_type& __param)
1209 {
1210 result_type __ret;
1211 const _IntType __t = __param.t();
1212 const _IntType __p = __param.p();
1213 const double __p12 = __p <= 0.5 ? __p : 1.0 - __p;
1214 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1215 __aurng(__urng);
1216
1217 #if _GLIBCXX_USE_C99_MATH_TR1
1218 if (!__param._M_easy)
1219 {
1220 double __x;
1221
1222 // See comments above...
1223 const double __naf =
1224 (1 - std::numeric_limits<double>::epsilon()) / 2;
1225 const double __thr =
1226 std::numeric_limits<_IntType>::max() + __naf;
1227
1228 const double __np = std::floor(__t * __p12);
1229
1230 // sqrt(pi / 2)
1231 const double __spi_2 = 1.2533141373155002512078826424055226L;
1232 const double __a1 = __param._M_a1;
1233 const double __a12 = __a1 + __param._M_s2 * __spi_2;
1234 const double __a123 = __param._M_a123;
1235 const double __s1s = __param._M_s1 * __param._M_s1;
1236 const double __s2s = __param._M_s2 * __param._M_s2;
1237
1238 bool __reject;
1239 do
1240 {
1241 const double __u = __param._M_s * __aurng();
1242
1243 double __v;
1244
1245 if (__u <= __a1)
1246 {
1247 const double __n = _M_nd(__urng);
1248 const double __y = __param._M_s1 * std::abs(__n);
1249 __reject = __y >= __param._M_d1;
1250 if (!__reject)
1251 {
1252 const double __e = -std::log(__aurng());
1253 __x = std::floor(__y);
1254 __v = -__e - __n * __n / 2 + __param._M_c;
1255 }
1256 }
1257 else if (__u <= __a12)
1258 {
1259 const double __n = _M_nd(__urng);
1260 const double __y = __param._M_s2 * std::abs(__n);
1261 __reject = __y >= __param._M_d2;
1262 if (!__reject)
1263 {
1264 const double __e = -std::log(__aurng());
1265 __x = std::floor(-__y);
1266 __v = -__e - __n * __n / 2;
1267 }
1268 }
1269 else if (__u <= __a123)
1270 {
1271 const double __e1 = -std::log(__aurng());
1272 const double __e2 = -std::log(__aurng());
1273
1274 const double __y = __param._M_d1
1275 + 2 * __s1s * __e1 / __param._M_d1;
1276 __x = std::floor(__y);
1277 __v = (-__e2 + __param._M_d1 * (1 / (__t - __np)
1278 -__y / (2 * __s1s)));
1279 __reject = false;
1280 }
1281 else
1282 {
1283 const double __e1 = -std::log(__aurng());
1284 const double __e2 = -std::log(__aurng());
1285
1286 const double __y = __param._M_d2
1287 + 2 * __s2s * __e1 / __param._M_d2;
1288 __x = std::floor(-__y);
1289 __v = -__e2 - __param._M_d2 * __y / (2 * __s2s);
1290 __reject = false;
1291 }
1292
1293 __reject = __reject || __x < -__np || __x > __t - __np;
1294 if (!__reject)
1295 {
1296 const double __lfx =
1297 std::lgamma(__np + __x + 1)
1298 + std::lgamma(__t - (__np + __x) + 1);
1299 __reject = __v > __param._M_lf - __lfx
1300 + __x * __param._M_lp1p;
1301 }
1302
1303 __reject |= __x + __np >= __thr;
1304 }
1305 while (__reject);
1306
1307 __x += __np + __naf;
1308
1309 const _IntType __z = _M_waiting(__urng, __t - _IntType(__x));
1310 __ret = _IntType(__x) + __z;
1311 }
1312 else
1313 #endif
1314 __ret = _M_waiting(__urng, __t);
1315
1316 if (__p12 != __p)
1317 __ret = __t - __ret;
1318 return __ret;
1319 }
1320
1321 template<typename _IntType,
1322 typename _CharT, typename _Traits>
1323 std::basic_ostream<_CharT, _Traits>&
1324 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1325 const binomial_distribution<_IntType>& __x)
1326 {
1327 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1328 typedef typename __ostream_type::ios_base __ios_base;
1329
1330 const typename __ios_base::fmtflags __flags = __os.flags();
1331 const _CharT __fill = __os.fill();
1332 const std::streamsize __precision = __os.precision();
1333 const _CharT __space = __os.widen(' ');
1334 __os.flags(__ios_base::scientific | __ios_base::left);
1335 __os.fill(__space);
1336 __os.precision(std::numeric_limits<double>::digits10 + 1);
1337
1338 __os << __x.t() << __space << __x.p()
1339 << __space << __x._M_nd;
1340
1341 __os.flags(__flags);
1342 __os.fill(__fill);
1343 __os.precision(__precision);
1344 return __os;
1345 }
1346
1347 template<typename _IntType,
1348 typename _CharT, typename _Traits>
1349 std::basic_istream<_CharT, _Traits>&
1350 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1351 binomial_distribution<_IntType>& __x)
1352 {
1353 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1354 typedef typename __istream_type::ios_base __ios_base;
1355
1356 const typename __ios_base::fmtflags __flags = __is.flags();
1357 __is.flags(__ios_base::dec | __ios_base::skipws);
1358
1359 _IntType __t;
1360 double __p;
1361 __is >> __t >> __p >> __x._M_nd;
1362 __x.param(typename binomial_distribution<_IntType>::
1363 param_type(__t, __p));
1364
1365 __is.flags(__flags);
1366 return __is;
1367 }
1368
1369
1370 template<typename _RealType, typename _CharT, typename _Traits>
1371 std::basic_ostream<_CharT, _Traits>&
1372 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1373 const exponential_distribution<_RealType>& __x)
1374 {
1375 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1376 typedef typename __ostream_type::ios_base __ios_base;
1377
1378 const typename __ios_base::fmtflags __flags = __os.flags();
1379 const _CharT __fill = __os.fill();
1380 const std::streamsize __precision = __os.precision();
1381 __os.flags(__ios_base::scientific | __ios_base::left);
1382 __os.fill(__os.widen(' '));
1383 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
1384
1385 __os << __x.lambda();
1386
1387 __os.flags(__flags);
1388 __os.fill(__fill);
1389 __os.precision(__precision);
1390 return __os;
1391 }
1392
1393 template<typename _RealType, typename _CharT, typename _Traits>
1394 std::basic_istream<_CharT, _Traits>&
1395 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1396 exponential_distribution<_RealType>& __x)
1397 {
1398 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1399 typedef typename __istream_type::ios_base __ios_base;
1400
1401 const typename __ios_base::fmtflags __flags = __is.flags();
1402 __is.flags(__ios_base::dec | __ios_base::skipws);
1403
1404 _RealType __lambda;
1405 __is >> __lambda;
1406 __x.param(typename exponential_distribution<_RealType>::
1407 param_type(__lambda));
1408
1409 __is.flags(__flags);
1410 return __is;
1411 }
1412
1413
1414 /**
1415 * Polar method due to Marsaglia.
1416 *
1417 * Devroye, L. "Non-Uniform Random Variates Generation." Springer-Verlag,
1418 * New York, 1986, Ch. V, Sect. 4.4.
1419 */
1420 template<typename _RealType>
1421 template<typename _UniformRandomNumberGenerator>
1422 typename normal_distribution<_RealType>::result_type
1423 normal_distribution<_RealType>::
1424 operator()(_UniformRandomNumberGenerator& __urng,
1425 const param_type& __param)
1426 {
1427 result_type __ret;
1428 __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1429 __aurng(__urng);
1430
1431 if (_M_saved_available)
1432 {
1433 _M_saved_available = false;
1434 __ret = _M_saved;
1435 }
1436 else
1437 {
1438 result_type __x, __y, __r2;
1439 do
1440 {
1441 __x = result_type(2.0) * __aurng() - 1.0;
1442 __y = result_type(2.0) * __aurng() - 1.0;
1443 __r2 = __x * __x + __y * __y;
1444 }
1445 while (__r2 > 1.0 || __r2 == 0.0);
1446
1447 const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
1448 _M_saved = __x * __mult;
1449 _M_saved_available = true;
1450 __ret = __y * __mult;
1451 }
1452
1453 __ret = __ret * __param.stddev() + __param.mean();
1454 return __ret;
1455 }
1456
1457 template<typename _RealType, typename _CharT, typename _Traits>
1458 std::basic_ostream<_CharT, _Traits>&
1459 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1460 const normal_distribution<_RealType>& __x)
1461 {
1462 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1463 typedef typename __ostream_type::ios_base __ios_base;
1464
1465 const typename __ios_base::fmtflags __flags = __os.flags();
1466 const _CharT __fill = __os.fill();
1467 const std::streamsize __precision = __os.precision();
1468 const _CharT __space = __os.widen(' ');
1469 __os.flags(__ios_base::scientific | __ios_base::left);
1470 __os.fill(__space);
1471 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
1472
1473 __os << __x.mean() << __space << __x.stddev()
1474 << __space << __x._M_saved_available;
1475 if (__x._M_saved_available)
1476 __os << __space << __x._M_saved;
1477
1478 __os.flags(__flags);
1479 __os.fill(__fill);
1480 __os.precision(__precision);
1481 return __os;
1482 }
1483
1484 template<typename _RealType, typename _CharT, typename _Traits>
1485 std::basic_istream<_CharT, _Traits>&
1486 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1487 normal_distribution<_RealType>& __x)
1488 {
1489 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1490 typedef typename __istream_type::ios_base __ios_base;
1491
1492 const typename __ios_base::fmtflags __flags = __is.flags();
1493 __is.flags(__ios_base::dec | __ios_base::skipws);
1494
1495 double __mean, __stddev;
1496 __is >> __mean >> __stddev
1497 >> __x._M_saved_available;
1498 if (__x._M_saved_available)
1499 __is >> __x._M_saved;
1500 __x.param(typename normal_distribution<_RealType>::
1501 param_type(__mean, __stddev));
1502
1503 __is.flags(__flags);
1504 return __is;
1505 }
1506
1507
1508 template<typename _RealType, typename _CharT, typename _Traits>
1509 std::basic_ostream<_CharT, _Traits>&
1510 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1511 const lognormal_distribution<_RealType>& __x)
1512 {
1513 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1514 typedef typename __ostream_type::ios_base __ios_base;
1515
1516 const typename __ios_base::fmtflags __flags = __os.flags();
1517 const _CharT __fill = __os.fill();
1518 const std::streamsize __precision = __os.precision();
1519 const _CharT __space = __os.widen(' ');
1520 __os.flags(__ios_base::scientific | __ios_base::left);
1521 __os.fill(__space);
1522 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
1523
1524 __os << __x.m() << __space << __x.s()
1525 << __space << __x._M_nd;
1526
1527 __os.flags(__flags);
1528 __os.fill(__fill);
1529 __os.precision(__precision);
1530 return __os;
1531 }
1532
1533 template<typename _RealType, typename _CharT, typename _Traits>
1534 std::basic_istream<_CharT, _Traits>&
1535 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1536 lognormal_distribution<_RealType>& __x)
1537 {
1538 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1539 typedef typename __istream_type::ios_base __ios_base;
1540
1541 const typename __ios_base::fmtflags __flags = __is.flags();
1542 __is.flags(__ios_base::dec | __ios_base::skipws);
1543
1544 _RealType __m, __s;
1545 __is >> __m >> __s >> __x._M_nd;
1546 __x.param(typename lognormal_distribution<_RealType>::
1547 param_type(__m, __s));
1548
1549 __is.flags(__flags);
1550 return __is;
1551 }
1552
1553
1554 template<typename _RealType, typename _CharT, typename _Traits>
1555 std::basic_ostream<_CharT, _Traits>&
1556 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1557 const chi_squared_distribution<_RealType>& __x)
1558 {
1559 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1560 typedef typename __ostream_type::ios_base __ios_base;
1561
1562 const typename __ios_base::fmtflags __flags = __os.flags();
1563 const _CharT __fill = __os.fill();
1564 const std::streamsize __precision = __os.precision();
1565 const _CharT __space = __os.widen(' ');
1566 __os.flags(__ios_base::scientific | __ios_base::left);
1567 __os.fill(__space);
1568 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
1569
1570 __os << __x.n() << __space << __x._M_gd;
1571
1572 __os.flags(__flags);
1573 __os.fill(__fill);
1574 __os.precision(__precision);
1575 return __os;
1576 }
1577
1578 template<typename _RealType, typename _CharT, typename _Traits>
1579 std::basic_istream<_CharT, _Traits>&
1580 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1581 chi_squared_distribution<_RealType>& __x)
1582 {
1583 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1584 typedef typename __istream_type::ios_base __ios_base;
1585
1586 const typename __ios_base::fmtflags __flags = __is.flags();
1587 __is.flags(__ios_base::dec | __ios_base::skipws);
1588
1589 _RealType __n;
1590 __is >> __n >> __x._M_gd;
1591 __x.param(typename chi_squared_distribution<_RealType>::
1592 param_type(__n));
1593
1594 __is.flags(__flags);
1595 return __is;
1596 }
1597
1598
1599 template<typename _RealType>
1600 template<typename _UniformRandomNumberGenerator>
1601 typename cauchy_distribution<_RealType>::result_type
1602 cauchy_distribution<_RealType>::
1603 operator()(_UniformRandomNumberGenerator& __urng,
1604 const param_type& __p)
1605 {
1606 __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1607 __aurng(__urng);
1608 _RealType __u;
1609 do
1610 __u = __aurng();
1611 while (__u == 0.5);
1612
1613 const _RealType __pi = 3.1415926535897932384626433832795029L;
1614 return __p.a() + __p.b() * std::tan(__pi * __u);
1615 }
1616
1617 template<typename _RealType, typename _CharT, typename _Traits>
1618 std::basic_ostream<_CharT, _Traits>&
1619 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1620 const cauchy_distribution<_RealType>& __x)
1621 {
1622 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1623 typedef typename __ostream_type::ios_base __ios_base;
1624
1625 const typename __ios_base::fmtflags __flags = __os.flags();
1626 const _CharT __fill = __os.fill();
1627 const std::streamsize __precision = __os.precision();
1628 const _CharT __space = __os.widen(' ');
1629 __os.flags(__ios_base::scientific | __ios_base::left);
1630 __os.fill(__space);
1631 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
1632
1633 __os << __x.a() << __space << __x.b();
1634
1635 __os.flags(__flags);
1636 __os.fill(__fill);
1637 __os.precision(__precision);
1638 return __os;
1639 }
1640
1641 template<typename _RealType, typename _CharT, typename _Traits>
1642 std::basic_istream<_CharT, _Traits>&
1643 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1644 cauchy_distribution<_RealType>& __x)
1645 {
1646 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1647 typedef typename __istream_type::ios_base __ios_base;
1648
1649 const typename __ios_base::fmtflags __flags = __is.flags();
1650 __is.flags(__ios_base::dec | __ios_base::skipws);
1651
1652 _RealType __a, __b;
1653 __is >> __a >> __b;
1654 __x.param(typename cauchy_distribution<_RealType>::
1655 param_type(__a, __b));
1656
1657 __is.flags(__flags);
1658 return __is;
1659 }
1660
1661
1662 template<typename _RealType, typename _CharT, typename _Traits>
1663 std::basic_ostream<_CharT, _Traits>&
1664 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1665 const fisher_f_distribution<_RealType>& __x)
1666 {
1667 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1668 typedef typename __ostream_type::ios_base __ios_base;
1669
1670 const typename __ios_base::fmtflags __flags = __os.flags();
1671 const _CharT __fill = __os.fill();
1672 const std::streamsize __precision = __os.precision();
1673 const _CharT __space = __os.widen(' ');
1674 __os.flags(__ios_base::scientific | __ios_base::left);
1675 __os.fill(__space);
1676 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
1677
1678 __os << __x.m() << __space << __x.n()
1679 << __space << __x._M_gd_x << __space << __x._M_gd_y;
1680
1681 __os.flags(__flags);
1682 __os.fill(__fill);
1683 __os.precision(__precision);
1684 return __os;
1685 }
1686
1687 template<typename _RealType, typename _CharT, typename _Traits>
1688 std::basic_istream<_CharT, _Traits>&
1689 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1690 fisher_f_distribution<_RealType>& __x)
1691 {
1692 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1693 typedef typename __istream_type::ios_base __ios_base;
1694
1695 const typename __ios_base::fmtflags __flags = __is.flags();
1696 __is.flags(__ios_base::dec | __ios_base::skipws);
1697
1698 _RealType __m, __n;
1699 __is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y;
1700 __x.param(typename fisher_f_distribution<_RealType>::
1701 param_type(__m, __n));
1702
1703 __is.flags(__flags);
1704 return __is;
1705 }
1706
1707
1708 template<typename _RealType, typename _CharT, typename _Traits>
1709 std::basic_ostream<_CharT, _Traits>&
1710 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1711 const student_t_distribution<_RealType>& __x)
1712 {
1713 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1714 typedef typename __ostream_type::ios_base __ios_base;
1715
1716 const typename __ios_base::fmtflags __flags = __os.flags();
1717 const _CharT __fill = __os.fill();
1718 const std::streamsize __precision = __os.precision();
1719 const _CharT __space = __os.widen(' ');
1720 __os.flags(__ios_base::scientific | __ios_base::left);
1721 __os.fill(__space);
1722 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
1723
1724 __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd;
1725
1726 __os.flags(__flags);
1727 __os.fill(__fill);
1728 __os.precision(__precision);
1729 return __os;
1730 }
1731
1732 template<typename _RealType, typename _CharT, typename _Traits>
1733 std::basic_istream<_CharT, _Traits>&
1734 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1735 student_t_distribution<_RealType>& __x)
1736 {
1737 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1738 typedef typename __istream_type::ios_base __ios_base;
1739
1740 const typename __ios_base::fmtflags __flags = __is.flags();
1741 __is.flags(__ios_base::dec | __ios_base::skipws);
1742
1743 _RealType __n;
1744 __is >> __n >> __x._M_nd >> __x._M_gd;
1745 __x.param(typename student_t_distribution<_RealType>::param_type(__n));
1746
1747 __is.flags(__flags);
1748 return __is;
1749 }
1750
1751
1752 template<typename _RealType>
1753 void
1754 gamma_distribution<_RealType>::param_type::
1755 _M_initialize()
1756 {
1757 _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha;
1758
1759 const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0);
1760 _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1);
1761 }
1762
1763 /**
1764 * Marsaglia, G. and Tsang, W. W.
1765 * "A Simple Method for Generating Gamma Variables"
1766 * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000.
1767 */
1768 template<typename _RealType>
1769 template<typename _UniformRandomNumberGenerator>
1770 typename gamma_distribution<_RealType>::result_type
1771 gamma_distribution<_RealType>::
1772 operator()(_UniformRandomNumberGenerator& __urng,
1773 const param_type& __param)
1774 {
1775 __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1776 __aurng(__urng);
1777
1778 result_type __u, __v, __n;
1779 const result_type __a1 = (__param._M_malpha
1780 - _RealType(1.0) / _RealType(3.0));
1781
1782 do
1783 {
1784 do
1785 {
1786 __n = _M_nd(__urng);
1787 __v = result_type(1.0) + __param._M_a2 * __n;
1788 }
1789 while (__v <= 0.0);
1790
1791 __v = __v * __v * __v;
1792 __u = __aurng();
1793 }
1794 while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
1795 && (std::log(__u) > (0.5 * __n * __n + __a1
1796 * (1.0 - __v + std::log(__v)))));
1797
1798 if (__param.alpha() == __param._M_malpha)
1799 return __a1 * __v * __param.beta();
1800 else
1801 {
1802 do
1803 __u = __aurng();
1804 while (__u == 0.0);
1805
1806 return (std::pow(__u, result_type(1.0) / __param.alpha())
1807 * __a1 * __v * __param.beta());
1808 }
1809 }
1810
1811 template<typename _RealType, typename _CharT, typename _Traits>
1812 std::basic_ostream<_CharT, _Traits>&
1813 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1814 const gamma_distribution<_RealType>& __x)
1815 {
1816 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1817 typedef typename __ostream_type::ios_base __ios_base;
1818
1819 const typename __ios_base::fmtflags __flags = __os.flags();
1820 const _CharT __fill = __os.fill();
1821 const std::streamsize __precision = __os.precision();
1822 const _CharT __space = __os.widen(' ');
1823 __os.flags(__ios_base::scientific | __ios_base::left);
1824 __os.fill(__space);
1825 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
1826
1827 __os << __x.alpha() << __space << __x.beta()
1828 << __space << __x._M_nd;
1829
1830 __os.flags(__flags);
1831 __os.fill(__fill);
1832 __os.precision(__precision);
1833 return __os;
1834 }
1835
1836 template<typename _RealType, typename _CharT, typename _Traits>
1837 std::basic_istream<_CharT, _Traits>&
1838 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1839 gamma_distribution<_RealType>& __x)
1840 {
1841 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1842 typedef typename __istream_type::ios_base __ios_base;
1843
1844 const typename __ios_base::fmtflags __flags = __is.flags();
1845 __is.flags(__ios_base::dec | __ios_base::skipws);
1846
1847 _RealType __alpha_val, __beta_val;
1848 __is >> __alpha_val >> __beta_val >> __x._M_nd;
1849 __x.param(typename gamma_distribution<_RealType>::
1850 param_type(__alpha_val, __beta_val));
1851
1852 __is.flags(__flags);
1853 return __is;
1854 }
1855
1856
1857 template<typename _RealType>
1858 template<typename _UniformRandomNumberGenerator>
1859 typename weibull_distribution<_RealType>::result_type
1860 weibull_distribution<_RealType>::
1861 operator()(_UniformRandomNumberGenerator& __urng,
1862 const param_type& __p)
1863 {
1864 __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1865 __aurng(__urng);
1866 return __p.b() * std::pow(-std::log(__aurng()),
1867 result_type(1) / __p.a());
1868 }
1869
1870 template<typename _RealType, typename _CharT, typename _Traits>
1871 std::basic_ostream<_CharT, _Traits>&
1872 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1873 const weibull_distribution<_RealType>& __x)
1874 {
1875 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1876 typedef typename __ostream_type::ios_base __ios_base;
1877
1878 const typename __ios_base::fmtflags __flags = __os.flags();
1879 const _CharT __fill = __os.fill();
1880 const std::streamsize __precision = __os.precision();
1881 const _CharT __space = __os.widen(' ');
1882 __os.flags(__ios_base::scientific | __ios_base::left);
1883 __os.fill(__space);
1884 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
1885
1886 __os << __x.a() << __space << __x.b();
1887
1888 __os.flags(__flags);
1889 __os.fill(__fill);
1890 __os.precision(__precision);
1891 return __os;
1892 }
1893
1894 template<typename _RealType, typename _CharT, typename _Traits>
1895 std::basic_istream<_CharT, _Traits>&
1896 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1897 weibull_distribution<_RealType>& __x)
1898 {
1899 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1900 typedef typename __istream_type::ios_base __ios_base;
1901
1902 const typename __ios_base::fmtflags __flags = __is.flags();
1903 __is.flags(__ios_base::dec | __ios_base::skipws);
1904
1905 _RealType __a, __b;
1906 __is >> __a >> __b;
1907 __x.param(typename weibull_distribution<_RealType>::
1908 param_type(__a, __b));
1909
1910 __is.flags(__flags);
1911 return __is;
1912 }
1913
1914
1915 template<typename _RealType>
1916 template<typename _UniformRandomNumberGenerator>
1917 typename extreme_value_distribution<_RealType>::result_type
1918 extreme_value_distribution<_RealType>::
1919 operator()(_UniformRandomNumberGenerator& __urng,
1920 const param_type& __p)
1921 {
1922 __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1923 __aurng(__urng);
1924 return __p.a() - __p.b() * std::log(-std::log(__aurng()));
1925 }
1926
1927 template<typename _RealType, typename _CharT, typename _Traits>
1928 std::basic_ostream<_CharT, _Traits>&
1929 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1930 const extreme_value_distribution<_RealType>& __x)
1931 {
1932 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1933 typedef typename __ostream_type::ios_base __ios_base;
1934
1935 const typename __ios_base::fmtflags __flags = __os.flags();
1936 const _CharT __fill = __os.fill();
1937 const std::streamsize __precision = __os.precision();
1938 const _CharT __space = __os.widen(' ');
1939 __os.flags(__ios_base::scientific | __ios_base::left);
1940 __os.fill(__space);
1941 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
1942
1943 __os << __x.a() << __space << __x.b();
1944
1945 __os.flags(__flags);
1946 __os.fill(__fill);
1947 __os.precision(__precision);
1948 return __os;
1949 }
1950
1951 template<typename _RealType, typename _CharT, typename _Traits>
1952 std::basic_istream<_CharT, _Traits>&
1953 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1954 extreme_value_distribution<_RealType>& __x)
1955 {
1956 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1957 typedef typename __istream_type::ios_base __ios_base;
1958
1959 const typename __ios_base::fmtflags __flags = __is.flags();
1960 __is.flags(__ios_base::dec | __ios_base::skipws);
1961
1962 _RealType __a, __b;
1963 __is >> __a >> __b;
1964 __x.param(typename extreme_value_distribution<_RealType>::
1965 param_type(__a, __b));
1966
1967 __is.flags(__flags);
1968 return __is;
1969 }
1970
1971
1972 template<typename _IntType>
1973 void
1974 discrete_distribution<_IntType>::param_type::
1975 _M_initialize()
1976 {
1977 if (_M_prob.size() < 2)
1978 {
1979 _M_prob.clear();
1980 _M_prob.push_back(1.0);
1981 return;
1982 }
1983
1984 const double __sum = std::accumulate(_M_prob.begin(),
1985 _M_prob.end(), 0.0);
1986 // Now normalize the probabilites.
1987 std::transform(_M_prob.begin(), _M_prob.end(), _M_prob.begin(),
1988 std::bind2nd(std::divides<double>(), __sum));
1989 // Accumulate partial sums.
1990 _M_cp.reserve(_M_prob.size());
1991 std::partial_sum(_M_prob.begin(), _M_prob.end(),
1992 std::back_inserter(_M_cp));
1993 // Make sure the last cumulative probability is one.
1994 _M_cp[_M_cp.size() - 1] = 1.0;
1995 }
1996
1997 template<typename _IntType>
1998 template<typename _Func>
1999 discrete_distribution<_IntType>::param_type::
2000 param_type(size_t __nw, double __xmin, double __xmax, _Func __fw)
2001 : _M_prob(), _M_cp()
2002 {
2003 const size_t __n = __nw == 0 ? 1 : __nw;
2004 const double __delta = (__xmax - __xmin) / __n;
2005
2006 _M_prob.reserve(__n);
2007 for (size_t __k = 0; __k < __nw; ++__k)
2008 _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta));
2009
2010 _M_initialize();
2011 }
2012
2013 template<typename _IntType>
2014 template<typename _UniformRandomNumberGenerator>
2015 typename discrete_distribution<_IntType>::result_type
2016 discrete_distribution<_IntType>::
2017 operator()(_UniformRandomNumberGenerator& __urng,
2018 const param_type& __param)
2019 {
2020 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2021 __aurng(__urng);
2022
2023 const double __p = __aurng();
2024 auto __pos = std::lower_bound(__param._M_cp.begin(),
2025 __param._M_cp.end(), __p);
2026
2027 return __pos - __param._M_cp.begin();
2028 }
2029
2030 template<typename _IntType, typename _CharT, typename _Traits>
2031 std::basic_ostream<_CharT, _Traits>&
2032 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2033 const discrete_distribution<_IntType>& __x)
2034 {
2035 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2036 typedef typename __ostream_type::ios_base __ios_base;
2037
2038 const typename __ios_base::fmtflags __flags = __os.flags();
2039 const _CharT __fill = __os.fill();
2040 const std::streamsize __precision = __os.precision();
2041 const _CharT __space = __os.widen(' ');
2042 __os.flags(__ios_base::scientific | __ios_base::left);
2043 __os.fill(__space);
2044 __os.precision(std::numeric_limits<double>::digits10 + 1);
2045
2046 std::vector<double> __prob = __x.probabilities();
2047 __os << __prob.size();
2048 for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit)
2049 __os << __space << *__dit;
2050
2051 __os.flags(__flags);
2052 __os.fill(__fill);
2053 __os.precision(__precision);
2054 return __os;
2055 }
2056
2057 template<typename _IntType, typename _CharT, typename _Traits>
2058 std::basic_istream<_CharT, _Traits>&
2059 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2060 discrete_distribution<_IntType>& __x)
2061 {
2062 typedef std::basic_istream<_CharT, _Traits> __istream_type;
2063 typedef typename __istream_type::ios_base __ios_base;
2064
2065 const typename __ios_base::fmtflags __flags = __is.flags();
2066 __is.flags(__ios_base::dec | __ios_base::skipws);
2067
2068 size_t __n;
2069 __is >> __n;
2070
2071 std::vector<double> __prob_vec;
2072 __prob_vec.reserve(__n);
2073 for (; __n != 0; --__n)
2074 {
2075 double __prob;
2076 __is >> __prob;
2077 __prob_vec.push_back(__prob);
2078 }
2079
2080 __x.param(typename discrete_distribution<_IntType>::
2081 param_type(__prob_vec.begin(), __prob_vec.end()));
2082
2083 __is.flags(__flags);
2084 return __is;
2085 }
2086
2087
2088 template<typename _RealType>
2089 void
2090 piecewise_constant_distribution<_RealType>::param_type::
2091 _M_initialize()
2092 {
2093 if (_M_int.size() < 2)
2094 {
2095 _M_int.clear();
2096 _M_int.reserve(2);
2097 _M_int.push_back(_RealType(0));
2098 _M_int.push_back(_RealType(1));
2099
2100 _M_den.clear();
2101 _M_den.push_back(1.0);
2102
2103 return;
2104 }
2105
2106 const double __sum = std::accumulate(_M_den.begin(),
2107 _M_den.end(), 0.0);
2108
2109 std::transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
2110 std::bind2nd(std::divides<double>(), __sum));
2111
2112 _M_cp.reserve(_M_den.size());
2113 std::partial_sum(_M_den.begin(), _M_den.end(),
2114 std::back_inserter(_M_cp));
2115
2116 // Make sure the last cumulative probability is one.
2117 _M_cp[_M_cp.size() - 1] = 1.0;
2118
2119 for (size_t __k = 0; __k < _M_den.size(); ++__k)
2120 _M_den[__k] /= _M_int[__k + 1] - _M_int[__k];
2121 }
2122
2123 template<typename _RealType>
2124 template<typename _InputIteratorB, typename _InputIteratorW>
2125 piecewise_constant_distribution<_RealType>::param_type::
2126 param_type(_InputIteratorB __bbegin,
2127 _InputIteratorB __bend,
2128 _InputIteratorW __wbegin)
2129 : _M_int(), _M_den(), _M_cp()
2130 {
2131 if (__bbegin != __bend)
2132 {
2133 for (;;)
2134 {
2135 _M_int.push_back(*__bbegin);
2136 ++__bbegin;
2137 if (__bbegin == __bend)
2138 break;
2139
2140 _M_den.push_back(*__wbegin);
2141 ++__wbegin;
2142 }
2143 }
2144
2145 _M_initialize();
2146 }
2147
2148 template<typename _RealType>
2149 template<typename _Func>
2150 piecewise_constant_distribution<_RealType>::param_type::
2151 param_type(initializer_list<_RealType> __bl, _Func __fw)
2152 : _M_int(), _M_den(), _M_cp()
2153 {
2154 _M_int.reserve(__bl.size());
2155 for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
2156 _M_int.push_back(*__biter);
2157
2158 _M_den.reserve(_M_int.size() - 1);
2159 for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
2160 _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k])));
2161
2162 _M_initialize();
2163 }
2164
2165 template<typename _RealType>
2166 template<typename _Func>
2167 piecewise_constant_distribution<_RealType>::param_type::
2168 param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
2169 : _M_int(), _M_den(), _M_cp()
2170 {
2171 const size_t __n = __nw == 0 ? 1 : __nw;
2172 const _RealType __delta = (__xmax - __xmin) / __n;
2173
2174 _M_int.reserve(__n + 1);
2175 for (size_t __k = 0; __k <= __nw; ++__k)
2176 _M_int.push_back(__xmin + __k * __delta);
2177
2178 _M_den.reserve(__n);
2179 for (size_t __k = 0; __k < __nw; ++__k)
2180 _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta));
2181
2182 _M_initialize();
2183 }
2184
2185 template<typename _RealType>
2186 template<typename _UniformRandomNumberGenerator>
2187 typename piecewise_constant_distribution<_RealType>::result_type
2188 piecewise_constant_distribution<_RealType>::
2189 operator()(_UniformRandomNumberGenerator& __urng,
2190 const param_type& __param)
2191 {
2192 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2193 __aurng(__urng);
2194
2195 const double __p = __aurng();
2196 auto __pos = std::lower_bound(__param._M_cp.begin(),
2197 __param._M_cp.end(), __p);
2198 const size_t __i = __pos - __param._M_cp.begin();
2199
2200 const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
2201
2202 return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i];
2203 }
2204
2205 template<typename _RealType, typename _CharT, typename _Traits>
2206 std::basic_ostream<_CharT, _Traits>&
2207 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2208 const piecewise_constant_distribution<_RealType>& __x)
2209 {
2210 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2211 typedef typename __ostream_type::ios_base __ios_base;
2212
2213 const typename __ios_base::fmtflags __flags = __os.flags();
2214 const _CharT __fill = __os.fill();
2215 const std::streamsize __precision = __os.precision();
2216 const _CharT __space = __os.widen(' ');
2217 __os.flags(__ios_base::scientific | __ios_base::left);
2218 __os.fill(__space);
2219 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
2220
2221 std::vector<_RealType> __int = __x.intervals();
2222 __os << __int.size() - 1;
2223
2224 for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
2225 __os << __space << *__xit;
2226
2227 std::vector<double> __den = __x.densities();
2228 for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
2229 __os << __space << *__dit;
2230
2231 __os.flags(__flags);
2232 __os.fill(__fill);
2233 __os.precision(__precision);
2234 return __os;
2235 }
2236
2237 template<typename _RealType, typename _CharT, typename _Traits>
2238 std::basic_istream<_CharT, _Traits>&
2239 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2240 piecewise_constant_distribution<_RealType>& __x)
2241 {
2242 typedef std::basic_istream<_CharT, _Traits> __istream_type;
2243 typedef typename __istream_type::ios_base __ios_base;
2244
2245 const typename __ios_base::fmtflags __flags = __is.flags();
2246 __is.flags(__ios_base::dec | __ios_base::skipws);
2247
2248 size_t __n;
2249 __is >> __n;
2250
2251 std::vector<_RealType> __int_vec;
2252 __int_vec.reserve(__n + 1);
2253 for (size_t __i = 0; __i <= __n; ++__i)
2254 {
2255 _RealType __int;
2256 __is >> __int;
2257 __int_vec.push_back(__int);
2258 }
2259
2260 std::vector<double> __den_vec;
2261 __den_vec.reserve(__n);
2262 for (size_t __i = 0; __i < __n; ++__i)
2263 {
2264 double __den;
2265 __is >> __den;
2266 __den_vec.push_back(__den);
2267 }
2268
2269 __x.param(typename piecewise_constant_distribution<_RealType>::
2270 param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
2271
2272 __is.flags(__flags);
2273 return __is;
2274 }
2275
2276
2277 template<typename _RealType>
2278 void
2279 piecewise_linear_distribution<_RealType>::param_type::
2280 _M_initialize()
2281 {
2282 if (_M_int.size() < 2)
2283 {
2284 _M_int.clear();
2285 _M_int.reserve(2);
2286 _M_int.push_back(_RealType(0));
2287 _M_int.push_back(_RealType(1));
2288
2289 _M_den.clear();
2290 _M_den.reserve(2);
2291 _M_den.push_back(1.0);
2292 _M_den.push_back(1.0);
2293
2294 return;
2295 }
2296
2297 double __sum = 0.0;
2298 _M_cp.reserve(_M_int.size() - 1);
2299 _M_m.reserve(_M_int.size() - 1);
2300 for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
2301 {
2302 const _RealType __delta = _M_int[__k + 1] - _M_int[__k];
2303 __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta;
2304 _M_cp.push_back(__sum);
2305 _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta);
2306 }
2307
2308 // Now normalize the densities...
2309 std::transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
2310 std::bind2nd(std::divides<double>(), __sum));
2311 // ... and partial sums...
2312 std::transform(_M_cp.begin(), _M_cp.end(), _M_cp.begin(),
2313 std::bind2nd(std::divides<double>(), __sum));
2314 // ... and slopes.
2315 std::transform(_M_m.begin(), _M_m.end(), _M_m.begin(),
2316 std::bind2nd(std::divides<double>(), __sum));
2317 // Make sure the last cumulative probablility is one.
2318 _M_cp[_M_cp.size() - 1] = 1.0;
2319 }
2320
2321 template<typename _RealType>
2322 template<typename _InputIteratorB, typename _InputIteratorW>
2323 piecewise_linear_distribution<_RealType>::param_type::
2324 param_type(_InputIteratorB __bbegin,
2325 _InputIteratorB __bend,
2326 _InputIteratorW __wbegin)
2327 : _M_int(), _M_den(), _M_cp(), _M_m()
2328 {
2329 for (; __bbegin != __bend; ++__bbegin, ++__wbegin)
2330 {
2331 _M_int.push_back(*__bbegin);
2332 _M_den.push_back(*__wbegin);
2333 }
2334
2335 _M_initialize();
2336 }
2337
2338 template<typename _RealType>
2339 template<typename _Func>
2340 piecewise_linear_distribution<_RealType>::param_type::
2341 param_type(initializer_list<_RealType> __bl, _Func __fw)
2342 : _M_int(), _M_den(), _M_cp(), _M_m()
2343 {
2344 _M_int.reserve(__bl.size());
2345 _M_den.reserve(__bl.size());
2346 for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
2347 {
2348 _M_int.push_back(*__biter);
2349 _M_den.push_back(__fw(*__biter));
2350 }
2351
2352 _M_initialize();
2353 }
2354
2355 template<typename _RealType>
2356 template<typename _Func>
2357 piecewise_linear_distribution<_RealType>::param_type::
2358 param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
2359 : _M_int(), _M_den(), _M_cp(), _M_m()
2360 {
2361 const size_t __n = __nw == 0 ? 1 : __nw;
2362 const _RealType __delta = (__xmax - __xmin) / __n;
2363
2364 _M_int.reserve(__n + 1);
2365 _M_den.reserve(__n + 1);
2366 for (size_t __k = 0; __k <= __nw; ++__k)
2367 {
2368 _M_int.push_back(__xmin + __k * __delta);
2369 _M_den.push_back(__fw(_M_int[__k] + __delta));
2370 }
2371
2372 _M_initialize();
2373 }
2374
2375 template<typename _RealType>
2376 template<typename _UniformRandomNumberGenerator>
2377 typename piecewise_linear_distribution<_RealType>::result_type
2378 piecewise_linear_distribution<_RealType>::
2379 operator()(_UniformRandomNumberGenerator& __urng,
2380 const param_type& __param)
2381 {
2382 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2383 __aurng(__urng);
2384
2385 const double __p = __aurng();
2386 auto __pos = std::lower_bound(__param._M_cp.begin(),
2387 __param._M_cp.end(), __p);
2388 const size_t __i = __pos - __param._M_cp.begin();
2389
2390 const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
2391
2392 const double __a = 0.5 * __param._M_m[__i];
2393 const double __b = __param._M_den[__i];
2394 const double __cm = __p - __pref;
2395
2396 _RealType __x = __param._M_int[__i];
2397 if (__a == 0)
2398 __x += __cm / __b;
2399 else
2400 {
2401 const double __d = __b * __b + 4.0 * __a * __cm;
2402 __x += 0.5 * (std::sqrt(__d) - __b) / __a;
2403 }
2404
2405 return __x;
2406 }
2407
2408 template<typename _RealType, typename _CharT, typename _Traits>
2409 std::basic_ostream<_CharT, _Traits>&
2410 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2411 const piecewise_linear_distribution<_RealType>& __x)
2412 {
2413 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2414 typedef typename __ostream_type::ios_base __ios_base;
2415
2416 const typename __ios_base::fmtflags __flags = __os.flags();
2417 const _CharT __fill = __os.fill();
2418 const std::streamsize __precision = __os.precision();
2419 const _CharT __space = __os.widen(' ');
2420 __os.flags(__ios_base::scientific | __ios_base::left);
2421 __os.fill(__space);
2422 __os.precision(std::numeric_limits<_RealType>::digits10 + 1);
2423
2424 std::vector<_RealType> __int = __x.intervals();
2425 __os << __int.size() - 1;
2426
2427 for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
2428 __os << __space << *__xit;
2429
2430 std::vector<double> __den = __x.densities();
2431 for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
2432 __os << __space << *__dit;
2433
2434 __os.flags(__flags);
2435 __os.fill(__fill);
2436 __os.precision(__precision);
2437 return __os;
2438 }
2439
2440 template<typename _RealType, typename _CharT, typename _Traits>
2441 std::basic_istream<_CharT, _Traits>&
2442 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2443 piecewise_linear_distribution<_RealType>& __x)
2444 {
2445 typedef std::basic_istream<_CharT, _Traits> __istream_type;
2446 typedef typename __istream_type::ios_base __ios_base;
2447
2448 const typename __ios_base::fmtflags __flags = __is.flags();
2449 __is.flags(__ios_base::dec | __ios_base::skipws);
2450
2451 size_t __n;
2452 __is >> __n;
2453
2454 std::vector<_RealType> __int_vec;
2455 __int_vec.reserve(__n + 1);
2456 for (size_t __i = 0; __i <= __n; ++__i)
2457 {
2458 _RealType __int;
2459 __is >> __int;
2460 __int_vec.push_back(__int);
2461 }
2462
2463 std::vector<double> __den_vec;
2464 __den_vec.reserve(__n + 1);
2465 for (size_t __i = 0; __i <= __n; ++__i)
2466 {
2467 double __den;
2468 __is >> __den;
2469 __den_vec.push_back(__den);
2470 }
2471
2472 __x.param(typename piecewise_linear_distribution<_RealType>::
2473 param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
2474
2475 __is.flags(__flags);
2476 return __is;
2477 }
2478
2479
2480 template<typename _IntType>
2481 seed_seq::seed_seq(std::initializer_list<_IntType> __il)
2482 {
2483 for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter)
2484 _M_v.push_back(__detail::__mod<result_type,
2485 __detail::_Shift<result_type, 32>::__value>(*__iter));
2486 }
2487
2488 template<typename _InputIterator>
2489 seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end)
2490 {
2491 for (_InputIterator __iter = __begin; __iter != __end; ++__iter)
2492 _M_v.push_back(__detail::__mod<result_type,
2493 __detail::_Shift<result_type, 32>::__value>(*__iter));
2494 }
2495
2496 template<typename _RandomAccessIterator>
2497 void
2498 seed_seq::generate(_RandomAccessIterator __begin,
2499 _RandomAccessIterator __end)
2500 {
2501 typedef typename iterator_traits<_RandomAccessIterator>::value_type
2502 _Type;
2503
2504 if (__begin == __end)
2505 return;
2506
2507 std::fill(__begin, __end, _Type(0x8b8b8b8bu));
2508
2509 const size_t __n = __end - __begin;
2510 const size_t __s = _M_v.size();
2511 const size_t __t = (__n >= 623) ? 11
2512 : (__n >= 68) ? 7
2513 : (__n >= 39) ? 5
2514 : (__n >= 7) ? 3
2515 : (__n - 1) / 2;
2516 const size_t __p = (__n - __t) / 2;
2517 const size_t __q = __p + __t;
2518 const size_t __m = std::max(__s + 1, __n);
2519
2520 for (size_t __k = 0; __k < __m; ++__k)
2521 {
2522 _Type __arg = (__begin[__k % __n]
2523 ^ __begin[(__k + __p) % __n]
2524 ^ __begin[(__k - 1) % __n]);
2525 _Type __r1 = __arg ^ (__arg << 27);
2526 __r1 = __detail::__mod<_Type, __detail::_Shift<_Type, 32>::__value,
2527 1664525u, 0u>(__r1);
2528 _Type __r2 = __r1;
2529 if (__k == 0)
2530 __r2 += __s;
2531 else if (__k <= __s)
2532 __r2 += __k % __n + _M_v[__k - 1];
2533 else
2534 __r2 += __k % __n;
2535 __r2 = __detail::__mod<_Type,
2536 __detail::_Shift<_Type, 32>::__value>(__r2);
2537 __begin[(__k + __p) % __n] += __r1;
2538 __begin[(__k + __q) % __n] += __r2;
2539 __begin[__k % __n] = __r2;
2540 }
2541
2542 for (size_t __k = __m; __k < __m + __n; ++__k)
2543 {
2544 _Type __arg = (__begin[__k % __n]
2545 + __begin[(__k + __p) % __n]
2546 + __begin[(__k - 1) % __n]);
2547 _Type __r3 = __arg ^ (__arg << 27);
2548 __r3 = __detail::__mod<_Type, __detail::_Shift<_Type, 32>::__value,
2549 1566083941u, 0u>(__r3);
2550 _Type __r4 = __r3 - __k % __n;
2551 __r4 = __detail::__mod<_Type,
2552 __detail::_Shift<_Type, 32>::__value>(__r4);
2553 __begin[(__k + __p) % __n] ^= __r4;
2554 __begin[(__k + __q) % __n] ^= __r3;
2555 __begin[__k % __n] = __r4;
2556 }
2557 }
2558
2559 template<typename _RealType, size_t __bits,
2560 typename _UniformRandomNumberGenerator>
2561 _RealType
2562 generate_canonical(_UniformRandomNumberGenerator& __urng)
2563 {
2564 const size_t __b
2565 = std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits),
2566 __bits);
2567 const long double __r = static_cast<long double>(__urng.max())
2568 - static_cast<long double>(__urng.min()) + 1.0L;
2569 const size_t __log2r = std::log(__r) / std::log(2.0L);
2570 size_t __k = std::max<size_t>(1UL, (__b + __log2r - 1UL) / __log2r);
2571 _RealType __sum = _RealType(0);
2572 _RealType __tmp = _RealType(1);
2573 for (; __k != 0; --__k)
2574 {
2575 __sum += _RealType(__urng() - __urng.min()) * __tmp;
2576 __tmp *= __r;
2577 }
2578 return __sum / __tmp;
2579 }
2580 }