]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/bits/random.tcc
random.h (discrete_distribution<>::param_type:: param_type()): Default construct...
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / random.tcc
1 // random number generation (out of line) -*- C++ -*-
2
3 // Copyright (C) 2009, 2010 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/random.tcc
26 * This is an internal header file, included by other library headers.
27 * You should not attempt to use it directly.
28 */
29
30 #ifndef _RANDOM_TCC
31 #define _RANDOM_TCC 1
32
33 #include <numeric> // std::accumulate and std::partial_sum
34
35 namespace std
36 {
37 /*
38 * (Further) implementation-space details.
39 */
40 namespace __detail
41 {
42 // General case for x = (ax + c) mod m -- use Schrage's algorithm to
43 // avoid integer overflow.
44 //
45 // Because a and c are compile-time integral constants the compiler
46 // kindly elides any unreachable paths.
47 //
48 // Preconditions: a > 0, m > 0.
49 //
50 template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool>
51 struct _Mod
52 {
53 static _Tp
54 __calc(_Tp __x)
55 {
56 if (__a == 1)
57 __x %= __m;
58 else
59 {
60 static const _Tp __q = __m / __a;
61 static const _Tp __r = __m % __a;
62
63 _Tp __t1 = __a * (__x % __q);
64 _Tp __t2 = __r * (__x / __q);
65 if (__t1 >= __t2)
66 __x = __t1 - __t2;
67 else
68 __x = __m - __t2 + __t1;
69 }
70
71 if (__c != 0)
72 {
73 const _Tp __d = __m - __x;
74 if (__d > __c)
75 __x += __c;
76 else
77 __x = __c - __d;
78 }
79 return __x;
80 }
81 };
82
83 // Special case for m == 0 -- use unsigned integer overflow as modulo
84 // operator.
85 template<typename _Tp, _Tp __m, _Tp __a, _Tp __c>
86 struct _Mod<_Tp, __m, __a, __c, true>
87 {
88 static _Tp
89 __calc(_Tp __x)
90 { return __a * __x + __c; }
91 };
92
93 template<typename _InputIterator, typename _OutputIterator,
94 typename _UnaryOperation>
95 _OutputIterator
96 __transform(_InputIterator __first, _InputIterator __last,
97 _OutputIterator __result, _UnaryOperation __unary_op)
98 {
99 for (; __first != __last; ++__first, ++__result)
100 *__result = __unary_op(*__first);
101 return __result;
102 }
103 } // namespace __detail
104
105
106 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
107 const _UIntType
108 linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier;
109
110 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
111 const _UIntType
112 linear_congruential_engine<_UIntType, __a, __c, __m>::increment;
113
114 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
115 const _UIntType
116 linear_congruential_engine<_UIntType, __a, __c, __m>::modulus;
117
118 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
119 const _UIntType
120 linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed;
121
122 /**
123 * Seeds the LCR with integral value @p __s, adjusted so that the
124 * ring identity is never a member of the convergence set.
125 */
126 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
127 void
128 linear_congruential_engine<_UIntType, __a, __c, __m>::
129 seed(result_type __s)
130 {
131 if ((__detail::__mod<_UIntType, __m>(__c) == 0)
132 && (__detail::__mod<_UIntType, __m>(__s) == 0))
133 _M_x = 1;
134 else
135 _M_x = __detail::__mod<_UIntType, __m>(__s);
136 }
137
138 /**
139 * Seeds the LCR engine with a value generated by @p __q.
140 */
141 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
142 template<typename _Sseq>
143 typename std::enable_if<std::is_class<_Sseq>::value>::type
144 linear_congruential_engine<_UIntType, __a, __c, __m>::
145 seed(_Sseq& __q)
146 {
147 const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits
148 : std::__lg(__m);
149 const _UIntType __k = (__k0 + 31) / 32;
150 uint_least32_t __arr[__k + 3];
151 __q.generate(__arr + 0, __arr + __k + 3);
152 _UIntType __factor = 1u;
153 _UIntType __sum = 0u;
154 for (size_t __j = 0; __j < __k; ++__j)
155 {
156 __sum += __arr[__j + 3] * __factor;
157 __factor *= __detail::_Shift<_UIntType, 32>::__value;
158 }
159 seed(__sum);
160 }
161
162 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
163 typename _CharT, typename _Traits>
164 std::basic_ostream<_CharT, _Traits>&
165 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
166 const linear_congruential_engine<_UIntType,
167 __a, __c, __m>& __lcr)
168 {
169 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
170 typedef typename __ostream_type::ios_base __ios_base;
171
172 const typename __ios_base::fmtflags __flags = __os.flags();
173 const _CharT __fill = __os.fill();
174 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
175 __os.fill(__os.widen(' '));
176
177 __os << __lcr._M_x;
178
179 __os.flags(__flags);
180 __os.fill(__fill);
181 return __os;
182 }
183
184 template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
185 typename _CharT, typename _Traits>
186 std::basic_istream<_CharT, _Traits>&
187 operator>>(std::basic_istream<_CharT, _Traits>& __is,
188 linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr)
189 {
190 typedef std::basic_istream<_CharT, _Traits> __istream_type;
191 typedef typename __istream_type::ios_base __ios_base;
192
193 const typename __ios_base::fmtflags __flags = __is.flags();
194 __is.flags(__ios_base::dec);
195
196 __is >> __lcr._M_x;
197
198 __is.flags(__flags);
199 return __is;
200 }
201
202
203 template<typename _UIntType,
204 size_t __w, size_t __n, size_t __m, size_t __r,
205 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
206 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
207 _UIntType __f>
208 const size_t
209 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
210 __s, __b, __t, __c, __l, __f>::word_size;
211
212 template<typename _UIntType,
213 size_t __w, size_t __n, size_t __m, size_t __r,
214 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
215 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
216 _UIntType __f>
217 const size_t
218 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
219 __s, __b, __t, __c, __l, __f>::state_size;
220
221 template<typename _UIntType,
222 size_t __w, size_t __n, size_t __m, size_t __r,
223 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
224 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
225 _UIntType __f>
226 const size_t
227 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
228 __s, __b, __t, __c, __l, __f>::shift_size;
229
230 template<typename _UIntType,
231 size_t __w, size_t __n, size_t __m, size_t __r,
232 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
233 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
234 _UIntType __f>
235 const size_t
236 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
237 __s, __b, __t, __c, __l, __f>::mask_bits;
238
239 template<typename _UIntType,
240 size_t __w, size_t __n, size_t __m, size_t __r,
241 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
242 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
243 _UIntType __f>
244 const _UIntType
245 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
246 __s, __b, __t, __c, __l, __f>::xor_mask;
247
248 template<typename _UIntType,
249 size_t __w, size_t __n, size_t __m, size_t __r,
250 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
251 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
252 _UIntType __f>
253 const size_t
254 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
255 __s, __b, __t, __c, __l, __f>::tempering_u;
256
257 template<typename _UIntType,
258 size_t __w, size_t __n, size_t __m, size_t __r,
259 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
260 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
261 _UIntType __f>
262 const _UIntType
263 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
264 __s, __b, __t, __c, __l, __f>::tempering_d;
265
266 template<typename _UIntType,
267 size_t __w, size_t __n, size_t __m, size_t __r,
268 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
269 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
270 _UIntType __f>
271 const size_t
272 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
273 __s, __b, __t, __c, __l, __f>::tempering_s;
274
275 template<typename _UIntType,
276 size_t __w, size_t __n, size_t __m, size_t __r,
277 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
278 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
279 _UIntType __f>
280 const _UIntType
281 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
282 __s, __b, __t, __c, __l, __f>::tempering_b;
283
284 template<typename _UIntType,
285 size_t __w, size_t __n, size_t __m, size_t __r,
286 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
287 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
288 _UIntType __f>
289 const size_t
290 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
291 __s, __b, __t, __c, __l, __f>::tempering_t;
292
293 template<typename _UIntType,
294 size_t __w, size_t __n, size_t __m, size_t __r,
295 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
296 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
297 _UIntType __f>
298 const _UIntType
299 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
300 __s, __b, __t, __c, __l, __f>::tempering_c;
301
302 template<typename _UIntType,
303 size_t __w, size_t __n, size_t __m, size_t __r,
304 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
305 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
306 _UIntType __f>
307 const size_t
308 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
309 __s, __b, __t, __c, __l, __f>::tempering_l;
310
311 template<typename _UIntType,
312 size_t __w, size_t __n, size_t __m, size_t __r,
313 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
314 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
315 _UIntType __f>
316 const _UIntType
317 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
318 __s, __b, __t, __c, __l, __f>::
319 initialization_multiplier;
320
321 template<typename _UIntType,
322 size_t __w, size_t __n, size_t __m, size_t __r,
323 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
324 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
325 _UIntType __f>
326 const _UIntType
327 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
328 __s, __b, __t, __c, __l, __f>::default_seed;
329
330 template<typename _UIntType,
331 size_t __w, size_t __n, size_t __m, size_t __r,
332 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
333 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
334 _UIntType __f>
335 void
336 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
337 __s, __b, __t, __c, __l, __f>::
338 seed(result_type __sd)
339 {
340 _M_x[0] = __detail::__mod<_UIntType,
341 __detail::_Shift<_UIntType, __w>::__value>(__sd);
342
343 for (size_t __i = 1; __i < state_size; ++__i)
344 {
345 _UIntType __x = _M_x[__i - 1];
346 __x ^= __x >> (__w - 2);
347 __x *= __f;
348 __x += __detail::__mod<_UIntType, __n>(__i);
349 _M_x[__i] = __detail::__mod<_UIntType,
350 __detail::_Shift<_UIntType, __w>::__value>(__x);
351 }
352 _M_p = state_size;
353 }
354
355 template<typename _UIntType,
356 size_t __w, size_t __n, size_t __m, size_t __r,
357 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
358 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
359 _UIntType __f>
360 template<typename _Sseq>
361 typename std::enable_if<std::is_class<_Sseq>::value>::type
362 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
363 __s, __b, __t, __c, __l, __f>::
364 seed(_Sseq& __q)
365 {
366 const _UIntType __upper_mask = (~_UIntType()) << __r;
367 const size_t __k = (__w + 31) / 32;
368 uint_least32_t __arr[__n * __k];
369 __q.generate(__arr + 0, __arr + __n * __k);
370
371 bool __zero = true;
372 for (size_t __i = 0; __i < state_size; ++__i)
373 {
374 _UIntType __factor = 1u;
375 _UIntType __sum = 0u;
376 for (size_t __j = 0; __j < __k; ++__j)
377 {
378 __sum += __arr[__k * __i + __j] * __factor;
379 __factor *= __detail::_Shift<_UIntType, 32>::__value;
380 }
381 _M_x[__i] = __detail::__mod<_UIntType,
382 __detail::_Shift<_UIntType, __w>::__value>(__sum);
383
384 if (__zero)
385 {
386 if (__i == 0)
387 {
388 if ((_M_x[0] & __upper_mask) != 0u)
389 __zero = false;
390 }
391 else if (_M_x[__i] != 0u)
392 __zero = false;
393 }
394 }
395 if (__zero)
396 _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value;
397 }
398
399 template<typename _UIntType, size_t __w,
400 size_t __n, size_t __m, size_t __r,
401 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
402 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
403 _UIntType __f>
404 typename
405 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
406 __s, __b, __t, __c, __l, __f>::result_type
407 mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
408 __s, __b, __t, __c, __l, __f>::
409 operator()()
410 {
411 // Reload the vector - cost is O(n) amortized over n calls.
412 if (_M_p >= state_size)
413 {
414 const _UIntType __upper_mask = (~_UIntType()) << __r;
415 const _UIntType __lower_mask = ~__upper_mask;
416
417 for (size_t __k = 0; __k < (__n - __m); ++__k)
418 {
419 _UIntType __y = ((_M_x[__k] & __upper_mask)
420 | (_M_x[__k + 1] & __lower_mask));
421 _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
422 ^ ((__y & 0x01) ? __a : 0));
423 }
424
425 for (size_t __k = (__n - __m); __k < (__n - 1); ++__k)
426 {
427 _UIntType __y = ((_M_x[__k] & __upper_mask)
428 | (_M_x[__k + 1] & __lower_mask));
429 _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
430 ^ ((__y & 0x01) ? __a : 0));
431 }
432
433 _UIntType __y = ((_M_x[__n - 1] & __upper_mask)
434 | (_M_x[0] & __lower_mask));
435 _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
436 ^ ((__y & 0x01) ? __a : 0));
437 _M_p = 0;
438 }
439
440 // Calculate o(x(i)).
441 result_type __z = _M_x[_M_p++];
442 __z ^= (__z >> __u) & __d;
443 __z ^= (__z << __s) & __b;
444 __z ^= (__z << __t) & __c;
445 __z ^= (__z >> __l);
446
447 return __z;
448 }
449
450 template<typename _UIntType, size_t __w,
451 size_t __n, size_t __m, size_t __r,
452 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
453 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
454 _UIntType __f, typename _CharT, typename _Traits>
455 std::basic_ostream<_CharT, _Traits>&
456 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
457 const mersenne_twister_engine<_UIntType, __w, __n, __m,
458 __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
459 {
460 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
461 typedef typename __ostream_type::ios_base __ios_base;
462
463 const typename __ios_base::fmtflags __flags = __os.flags();
464 const _CharT __fill = __os.fill();
465 const _CharT __space = __os.widen(' ');
466 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
467 __os.fill(__space);
468
469 for (size_t __i = 0; __i < __n - 1; ++__i)
470 __os << __x._M_x[__i] << __space;
471 __os << __x._M_x[__n - 1];
472
473 __os.flags(__flags);
474 __os.fill(__fill);
475 return __os;
476 }
477
478 template<typename _UIntType, size_t __w,
479 size_t __n, size_t __m, size_t __r,
480 _UIntType __a, size_t __u, _UIntType __d, size_t __s,
481 _UIntType __b, size_t __t, _UIntType __c, size_t __l,
482 _UIntType __f, typename _CharT, typename _Traits>
483 std::basic_istream<_CharT, _Traits>&
484 operator>>(std::basic_istream<_CharT, _Traits>& __is,
485 mersenne_twister_engine<_UIntType, __w, __n, __m,
486 __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
487 {
488 typedef std::basic_istream<_CharT, _Traits> __istream_type;
489 typedef typename __istream_type::ios_base __ios_base;
490
491 const typename __ios_base::fmtflags __flags = __is.flags();
492 __is.flags(__ios_base::dec | __ios_base::skipws);
493
494 for (size_t __i = 0; __i < __n; ++__i)
495 __is >> __x._M_x[__i];
496
497 __is.flags(__flags);
498 return __is;
499 }
500
501
502 template<typename _UIntType, size_t __w, size_t __s, size_t __r>
503 const size_t
504 subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size;
505
506 template<typename _UIntType, size_t __w, size_t __s, size_t __r>
507 const size_t
508 subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag;
509
510 template<typename _UIntType, size_t __w, size_t __s, size_t __r>
511 const size_t
512 subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag;
513
514 template<typename _UIntType, size_t __w, size_t __s, size_t __r>
515 const _UIntType
516 subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed;
517
518 template<typename _UIntType, size_t __w, size_t __s, size_t __r>
519 void
520 subtract_with_carry_engine<_UIntType, __w, __s, __r>::
521 seed(result_type __value)
522 {
523 std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u>
524 __lcg(__value == 0u ? default_seed : __value);
525
526 const size_t __n = (__w + 31) / 32;
527
528 for (size_t __i = 0; __i < long_lag; ++__i)
529 {
530 _UIntType __sum = 0u;
531 _UIntType __factor = 1u;
532 for (size_t __j = 0; __j < __n; ++__j)
533 {
534 __sum += __detail::__mod<uint_least32_t,
535 __detail::_Shift<uint_least32_t, 32>::__value>
536 (__lcg()) * __factor;
537 __factor *= __detail::_Shift<_UIntType, 32>::__value;
538 }
539 _M_x[__i] = __detail::__mod<_UIntType,
540 __detail::_Shift<_UIntType, __w>::__value>(__sum);
541 }
542 _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
543 _M_p = 0;
544 }
545
546 template<typename _UIntType, size_t __w, size_t __s, size_t __r>
547 template<typename _Sseq>
548 typename std::enable_if<std::is_class<_Sseq>::value>::type
549 subtract_with_carry_engine<_UIntType, __w, __s, __r>::
550 seed(_Sseq& __q)
551 {
552 const size_t __k = (__w + 31) / 32;
553 uint_least32_t __arr[__r * __k];
554 __q.generate(__arr + 0, __arr + __r * __k);
555
556 for (size_t __i = 0; __i < long_lag; ++__i)
557 {
558 _UIntType __sum = 0u;
559 _UIntType __factor = 1u;
560 for (size_t __j = 0; __j < __k; ++__j)
561 {
562 __sum += __arr[__k * __i + __j] * __factor;
563 __factor *= __detail::_Shift<_UIntType, 32>::__value;
564 }
565 _M_x[__i] = __detail::__mod<_UIntType,
566 __detail::_Shift<_UIntType, __w>::__value>(__sum);
567 }
568 _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
569 _M_p = 0;
570 }
571
572 template<typename _UIntType, size_t __w, size_t __s, size_t __r>
573 typename subtract_with_carry_engine<_UIntType, __w, __s, __r>::
574 result_type
575 subtract_with_carry_engine<_UIntType, __w, __s, __r>::
576 operator()()
577 {
578 // Derive short lag index from current index.
579 long __ps = _M_p - short_lag;
580 if (__ps < 0)
581 __ps += long_lag;
582
583 // Calculate new x(i) without overflow or division.
584 // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry
585 // cannot overflow.
586 _UIntType __xi;
587 if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
588 {
589 __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
590 _M_carry = 0;
591 }
592 else
593 {
594 __xi = (__detail::_Shift<_UIntType, __w>::__value
595 - _M_x[_M_p] - _M_carry + _M_x[__ps]);
596 _M_carry = 1;
597 }
598 _M_x[_M_p] = __xi;
599
600 // Adjust current index to loop around in ring buffer.
601 if (++_M_p >= long_lag)
602 _M_p = 0;
603
604 return __xi;
605 }
606
607 template<typename _UIntType, size_t __w, size_t __s, size_t __r,
608 typename _CharT, typename _Traits>
609 std::basic_ostream<_CharT, _Traits>&
610 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
611 const subtract_with_carry_engine<_UIntType,
612 __w, __s, __r>& __x)
613 {
614 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
615 typedef typename __ostream_type::ios_base __ios_base;
616
617 const typename __ios_base::fmtflags __flags = __os.flags();
618 const _CharT __fill = __os.fill();
619 const _CharT __space = __os.widen(' ');
620 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
621 __os.fill(__space);
622
623 for (size_t __i = 0; __i < __r; ++__i)
624 __os << __x._M_x[__i] << __space;
625 __os << __x._M_carry;
626
627 __os.flags(__flags);
628 __os.fill(__fill);
629 return __os;
630 }
631
632 template<typename _UIntType, size_t __w, size_t __s, size_t __r,
633 typename _CharT, typename _Traits>
634 std::basic_istream<_CharT, _Traits>&
635 operator>>(std::basic_istream<_CharT, _Traits>& __is,
636 subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x)
637 {
638 typedef std::basic_ostream<_CharT, _Traits> __istream_type;
639 typedef typename __istream_type::ios_base __ios_base;
640
641 const typename __ios_base::fmtflags __flags = __is.flags();
642 __is.flags(__ios_base::dec | __ios_base::skipws);
643
644 for (size_t __i = 0; __i < __r; ++__i)
645 __is >> __x._M_x[__i];
646 __is >> __x._M_carry;
647
648 __is.flags(__flags);
649 return __is;
650 }
651
652
653 template<typename _RandomNumberEngine, size_t __p, size_t __r>
654 const size_t
655 discard_block_engine<_RandomNumberEngine, __p, __r>::block_size;
656
657 template<typename _RandomNumberEngine, size_t __p, size_t __r>
658 const size_t
659 discard_block_engine<_RandomNumberEngine, __p, __r>::used_block;
660
661 template<typename _RandomNumberEngine, size_t __p, size_t __r>
662 typename discard_block_engine<_RandomNumberEngine,
663 __p, __r>::result_type
664 discard_block_engine<_RandomNumberEngine, __p, __r>::
665 operator()()
666 {
667 if (_M_n >= used_block)
668 {
669 _M_b.discard(block_size - _M_n);
670 _M_n = 0;
671 }
672 ++_M_n;
673 return _M_b();
674 }
675
676 template<typename _RandomNumberEngine, size_t __p, size_t __r,
677 typename _CharT, typename _Traits>
678 std::basic_ostream<_CharT, _Traits>&
679 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
680 const discard_block_engine<_RandomNumberEngine,
681 __p, __r>& __x)
682 {
683 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
684 typedef typename __ostream_type::ios_base __ios_base;
685
686 const typename __ios_base::fmtflags __flags = __os.flags();
687 const _CharT __fill = __os.fill();
688 const _CharT __space = __os.widen(' ');
689 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
690 __os.fill(__space);
691
692 __os << __x.base() << __space << __x._M_n;
693
694 __os.flags(__flags);
695 __os.fill(__fill);
696 return __os;
697 }
698
699 template<typename _RandomNumberEngine, size_t __p, size_t __r,
700 typename _CharT, typename _Traits>
701 std::basic_istream<_CharT, _Traits>&
702 operator>>(std::basic_istream<_CharT, _Traits>& __is,
703 discard_block_engine<_RandomNumberEngine, __p, __r>& __x)
704 {
705 typedef std::basic_istream<_CharT, _Traits> __istream_type;
706 typedef typename __istream_type::ios_base __ios_base;
707
708 const typename __ios_base::fmtflags __flags = __is.flags();
709 __is.flags(__ios_base::dec | __ios_base::skipws);
710
711 __is >> __x._M_b >> __x._M_n;
712
713 __is.flags(__flags);
714 return __is;
715 }
716
717
718 template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
719 typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
720 result_type
721 independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
722 operator()()
723 {
724 const long double __r = static_cast<long double>(_M_b.max())
725 - static_cast<long double>(_M_b.min()) + 1.0L;
726 const result_type __m = std::log(__r) / std::log(2.0L);
727 result_type __n, __n0, __y0, __y1, __s0, __s1;
728 for (size_t __i = 0; __i < 2; ++__i)
729 {
730 __n = (__w + __m - 1) / __m + __i;
731 __n0 = __n - __w % __n;
732 const result_type __w0 = __w / __n;
733 const result_type __w1 = __w0 + 1;
734 __s0 = result_type(1) << __w0;
735 __s1 = result_type(1) << __w1;
736 __y0 = __s0 * (__r / __s0);
737 __y1 = __s1 * (__r / __s1);
738 if (__r - __y0 <= __y0 / __n)
739 break;
740 }
741
742 result_type __sum = 0;
743 for (size_t __k = 0; __k < __n0; ++__k)
744 {
745 result_type __u;
746 do
747 __u = _M_b() - _M_b.min();
748 while (__u >= __y0);
749 __sum = __s0 * __sum + __u % __s0;
750 }
751 for (size_t __k = __n0; __k < __n; ++__k)
752 {
753 result_type __u;
754 do
755 __u = _M_b() - _M_b.min();
756 while (__u >= __y1);
757 __sum = __s1 * __sum + __u % __s1;
758 }
759 return __sum;
760 }
761
762
763 template<typename _RandomNumberEngine, size_t __k>
764 const size_t
765 shuffle_order_engine<_RandomNumberEngine, __k>::table_size;
766
767 template<typename _RandomNumberEngine, size_t __k>
768 typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type
769 shuffle_order_engine<_RandomNumberEngine, __k>::
770 operator()()
771 {
772 size_t __j = __k * ((_M_y - _M_b.min())
773 / (_M_b.max() - _M_b.min() + 1.0L));
774 _M_y = _M_v[__j];
775 _M_v[__j] = _M_b();
776
777 return _M_y;
778 }
779
780 template<typename _RandomNumberEngine, size_t __k,
781 typename _CharT, typename _Traits>
782 std::basic_ostream<_CharT, _Traits>&
783 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
784 const shuffle_order_engine<_RandomNumberEngine, __k>& __x)
785 {
786 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
787 typedef typename __ostream_type::ios_base __ios_base;
788
789 const typename __ios_base::fmtflags __flags = __os.flags();
790 const _CharT __fill = __os.fill();
791 const _CharT __space = __os.widen(' ');
792 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
793 __os.fill(__space);
794
795 __os << __x.base();
796 for (size_t __i = 0; __i < __k; ++__i)
797 __os << __space << __x._M_v[__i];
798 __os << __space << __x._M_y;
799
800 __os.flags(__flags);
801 __os.fill(__fill);
802 return __os;
803 }
804
805 template<typename _RandomNumberEngine, size_t __k,
806 typename _CharT, typename _Traits>
807 std::basic_istream<_CharT, _Traits>&
808 operator>>(std::basic_istream<_CharT, _Traits>& __is,
809 shuffle_order_engine<_RandomNumberEngine, __k>& __x)
810 {
811 typedef std::basic_istream<_CharT, _Traits> __istream_type;
812 typedef typename __istream_type::ios_base __ios_base;
813
814 const typename __ios_base::fmtflags __flags = __is.flags();
815 __is.flags(__ios_base::dec | __ios_base::skipws);
816
817 __is >> __x._M_b;
818 for (size_t __i = 0; __i < __k; ++__i)
819 __is >> __x._M_v[__i];
820 __is >> __x._M_y;
821
822 __is.flags(__flags);
823 return __is;
824 }
825
826
827 template<typename _IntType>
828 template<typename _UniformRandomNumberGenerator>
829 typename uniform_int_distribution<_IntType>::result_type
830 uniform_int_distribution<_IntType>::
831 operator()(_UniformRandomNumberGenerator& __urng,
832 const param_type& __param)
833 {
834 typedef typename std::make_unsigned<typename
835 _UniformRandomNumberGenerator::result_type>::type __urngtype;
836 typedef typename std::make_unsigned<result_type>::type __utype;
837 typedef typename std::conditional<(sizeof(__urngtype)
838 > sizeof(__utype)),
839 __urngtype, __utype>::type __uctype;
840
841 const __uctype __urngmin = __urng.min();
842 const __uctype __urngmax = __urng.max();
843 const __uctype __urngrange = __urngmax - __urngmin;
844 const __uctype __urange
845 = __uctype(__param.b()) - __uctype(__param.a());
846
847 __uctype __ret;
848
849 if (__urngrange > __urange)
850 {
851 // downscaling
852 const __uctype __uerange = __urange + 1; // __urange can be zero
853 const __uctype __scaling = __urngrange / __uerange;
854 const __uctype __past = __uerange * __scaling;
855 do
856 __ret = __uctype(__urng()) - __urngmin;
857 while (__ret >= __past);
858 __ret /= __scaling;
859 }
860 else if (__urngrange < __urange)
861 {
862 // upscaling
863 /*
864 Note that every value in [0, urange]
865 can be written uniquely as
866
867 (urngrange + 1) * high + low
868
869 where
870
871 high in [0, urange / (urngrange + 1)]
872
873 and
874
875 low in [0, urngrange].
876 */
877 __uctype __tmp; // wraparound control
878 do
879 {
880 const __uctype __uerngrange = __urngrange + 1;
881 __tmp = (__uerngrange * operator()
882 (__urng, param_type(0, __urange / __uerngrange)));
883 __ret = __tmp + (__uctype(__urng()) - __urngmin);
884 }
885 while (__ret > __urange || __ret < __tmp);
886 }
887 else
888 __ret = __uctype(__urng()) - __urngmin;
889
890 return __ret + __param.a();
891 }
892
893 template<typename _IntType, typename _CharT, typename _Traits>
894 std::basic_ostream<_CharT, _Traits>&
895 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
896 const uniform_int_distribution<_IntType>& __x)
897 {
898 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
899 typedef typename __ostream_type::ios_base __ios_base;
900
901 const typename __ios_base::fmtflags __flags = __os.flags();
902 const _CharT __fill = __os.fill();
903 const _CharT __space = __os.widen(' ');
904 __os.flags(__ios_base::scientific | __ios_base::left);
905 __os.fill(__space);
906
907 __os << __x.a() << __space << __x.b();
908
909 __os.flags(__flags);
910 __os.fill(__fill);
911 return __os;
912 }
913
914 template<typename _IntType, typename _CharT, typename _Traits>
915 std::basic_istream<_CharT, _Traits>&
916 operator>>(std::basic_istream<_CharT, _Traits>& __is,
917 uniform_int_distribution<_IntType>& __x)
918 {
919 typedef std::basic_istream<_CharT, _Traits> __istream_type;
920 typedef typename __istream_type::ios_base __ios_base;
921
922 const typename __ios_base::fmtflags __flags = __is.flags();
923 __is.flags(__ios_base::dec | __ios_base::skipws);
924
925 _IntType __a, __b;
926 __is >> __a >> __b;
927 __x.param(typename uniform_int_distribution<_IntType>::
928 param_type(__a, __b));
929
930 __is.flags(__flags);
931 return __is;
932 }
933
934
935 template<typename _RealType, typename _CharT, typename _Traits>
936 std::basic_ostream<_CharT, _Traits>&
937 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
938 const uniform_real_distribution<_RealType>& __x)
939 {
940 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
941 typedef typename __ostream_type::ios_base __ios_base;
942
943 const typename __ios_base::fmtflags __flags = __os.flags();
944 const _CharT __fill = __os.fill();
945 const std::streamsize __precision = __os.precision();
946 const _CharT __space = __os.widen(' ');
947 __os.flags(__ios_base::scientific | __ios_base::left);
948 __os.fill(__space);
949 __os.precision(std::numeric_limits<_RealType>::max_digits10);
950
951 __os << __x.a() << __space << __x.b();
952
953 __os.flags(__flags);
954 __os.fill(__fill);
955 __os.precision(__precision);
956 return __os;
957 }
958
959 template<typename _RealType, typename _CharT, typename _Traits>
960 std::basic_istream<_CharT, _Traits>&
961 operator>>(std::basic_istream<_CharT, _Traits>& __is,
962 uniform_real_distribution<_RealType>& __x)
963 {
964 typedef std::basic_istream<_CharT, _Traits> __istream_type;
965 typedef typename __istream_type::ios_base __ios_base;
966
967 const typename __ios_base::fmtflags __flags = __is.flags();
968 __is.flags(__ios_base::skipws);
969
970 _RealType __a, __b;
971 __is >> __a >> __b;
972 __x.param(typename uniform_real_distribution<_RealType>::
973 param_type(__a, __b));
974
975 __is.flags(__flags);
976 return __is;
977 }
978
979
980 template<typename _CharT, typename _Traits>
981 std::basic_ostream<_CharT, _Traits>&
982 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
983 const bernoulli_distribution& __x)
984 {
985 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
986 typedef typename __ostream_type::ios_base __ios_base;
987
988 const typename __ios_base::fmtflags __flags = __os.flags();
989 const _CharT __fill = __os.fill();
990 const std::streamsize __precision = __os.precision();
991 __os.flags(__ios_base::scientific | __ios_base::left);
992 __os.fill(__os.widen(' '));
993 __os.precision(std::numeric_limits<double>::max_digits10);
994
995 __os << __x.p();
996
997 __os.flags(__flags);
998 __os.fill(__fill);
999 __os.precision(__precision);
1000 return __os;
1001 }
1002
1003
1004 template<typename _IntType>
1005 template<typename _UniformRandomNumberGenerator>
1006 typename geometric_distribution<_IntType>::result_type
1007 geometric_distribution<_IntType>::
1008 operator()(_UniformRandomNumberGenerator& __urng,
1009 const param_type& __param)
1010 {
1011 // About the epsilon thing see this thread:
1012 // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
1013 const double __naf =
1014 (1 - std::numeric_limits<double>::epsilon()) / 2;
1015 // The largest _RealType convertible to _IntType.
1016 const double __thr =
1017 std::numeric_limits<_IntType>::max() + __naf;
1018 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1019 __aurng(__urng);
1020
1021 double __cand;
1022 do
1023 __cand = std::ceil(std::log(__aurng()) / __param._M_log_p);
1024 while (__cand >= __thr);
1025
1026 return result_type(__cand + __naf);
1027 }
1028
1029 template<typename _IntType,
1030 typename _CharT, typename _Traits>
1031 std::basic_ostream<_CharT, _Traits>&
1032 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1033 const geometric_distribution<_IntType>& __x)
1034 {
1035 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1036 typedef typename __ostream_type::ios_base __ios_base;
1037
1038 const typename __ios_base::fmtflags __flags = __os.flags();
1039 const _CharT __fill = __os.fill();
1040 const std::streamsize __precision = __os.precision();
1041 __os.flags(__ios_base::scientific | __ios_base::left);
1042 __os.fill(__os.widen(' '));
1043 __os.precision(std::numeric_limits<double>::max_digits10);
1044
1045 __os << __x.p();
1046
1047 __os.flags(__flags);
1048 __os.fill(__fill);
1049 __os.precision(__precision);
1050 return __os;
1051 }
1052
1053 template<typename _IntType,
1054 typename _CharT, typename _Traits>
1055 std::basic_istream<_CharT, _Traits>&
1056 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1057 geometric_distribution<_IntType>& __x)
1058 {
1059 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1060 typedef typename __istream_type::ios_base __ios_base;
1061
1062 const typename __ios_base::fmtflags __flags = __is.flags();
1063 __is.flags(__ios_base::skipws);
1064
1065 double __p;
1066 __is >> __p;
1067 __x.param(typename geometric_distribution<_IntType>::param_type(__p));
1068
1069 __is.flags(__flags);
1070 return __is;
1071 }
1072
1073
1074 template<typename _IntType>
1075 template<typename _UniformRandomNumberGenerator>
1076 typename negative_binomial_distribution<_IntType>::result_type
1077 negative_binomial_distribution<_IntType>::
1078 operator()(_UniformRandomNumberGenerator& __urng)
1079 {
1080 const double __y = _M_gd(__urng);
1081
1082 // XXX Is the constructor too slow?
1083 std::poisson_distribution<result_type> __poisson(__y);
1084 return __poisson(__urng);
1085 }
1086
1087 template<typename _IntType>
1088 template<typename _UniformRandomNumberGenerator>
1089 typename negative_binomial_distribution<_IntType>::result_type
1090 negative_binomial_distribution<_IntType>::
1091 operator()(_UniformRandomNumberGenerator& __urng,
1092 const param_type& __p)
1093 {
1094 typedef typename std::gamma_distribution<result_type>::param_type
1095 param_type;
1096
1097 const double __y =
1098 _M_gd(__urng, param_type(__p.k(), __p.p() / (1.0 - __p.p())));
1099
1100 std::poisson_distribution<result_type> __poisson(__y);
1101 return __poisson(__urng);
1102 }
1103
1104 template<typename _IntType, typename _CharT, typename _Traits>
1105 std::basic_ostream<_CharT, _Traits>&
1106 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1107 const negative_binomial_distribution<_IntType>& __x)
1108 {
1109 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1110 typedef typename __ostream_type::ios_base __ios_base;
1111
1112 const typename __ios_base::fmtflags __flags = __os.flags();
1113 const _CharT __fill = __os.fill();
1114 const std::streamsize __precision = __os.precision();
1115 const _CharT __space = __os.widen(' ');
1116 __os.flags(__ios_base::scientific | __ios_base::left);
1117 __os.fill(__os.widen(' '));
1118 __os.precision(std::numeric_limits<double>::max_digits10);
1119
1120 __os << __x.k() << __space << __x.p()
1121 << __space << __x._M_gd;
1122
1123 __os.flags(__flags);
1124 __os.fill(__fill);
1125 __os.precision(__precision);
1126 return __os;
1127 }
1128
1129 template<typename _IntType, typename _CharT, typename _Traits>
1130 std::basic_istream<_CharT, _Traits>&
1131 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1132 negative_binomial_distribution<_IntType>& __x)
1133 {
1134 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1135 typedef typename __istream_type::ios_base __ios_base;
1136
1137 const typename __ios_base::fmtflags __flags = __is.flags();
1138 __is.flags(__ios_base::skipws);
1139
1140 _IntType __k;
1141 double __p;
1142 __is >> __k >> __p >> __x._M_gd;
1143 __x.param(typename negative_binomial_distribution<_IntType>::
1144 param_type(__k, __p));
1145
1146 __is.flags(__flags);
1147 return __is;
1148 }
1149
1150
1151 template<typename _IntType>
1152 void
1153 poisson_distribution<_IntType>::param_type::
1154 _M_initialize()
1155 {
1156 #if _GLIBCXX_USE_C99_MATH_TR1
1157 if (_M_mean >= 12)
1158 {
1159 const double __m = std::floor(_M_mean);
1160 _M_lm_thr = std::log(_M_mean);
1161 _M_lfm = std::lgamma(__m + 1);
1162 _M_sm = std::sqrt(__m);
1163
1164 const double __pi_4 = 0.7853981633974483096156608458198757L;
1165 const double __dx = std::sqrt(2 * __m * std::log(32 * __m
1166 / __pi_4));
1167 _M_d = std::round(std::max(6.0, std::min(__m, __dx)));
1168 const double __cx = 2 * __m + _M_d;
1169 _M_scx = std::sqrt(__cx / 2);
1170 _M_1cx = 1 / __cx;
1171
1172 _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
1173 _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2))
1174 / _M_d;
1175 }
1176 else
1177 #endif
1178 _M_lm_thr = std::exp(-_M_mean);
1179 }
1180
1181 /**
1182 * A rejection algorithm when mean >= 12 and a simple method based
1183 * upon the multiplication of uniform random variates otherwise.
1184 * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
1185 * is defined.
1186 *
1187 * Reference:
1188 * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1189 * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
1190 */
1191 template<typename _IntType>
1192 template<typename _UniformRandomNumberGenerator>
1193 typename poisson_distribution<_IntType>::result_type
1194 poisson_distribution<_IntType>::
1195 operator()(_UniformRandomNumberGenerator& __urng,
1196 const param_type& __param)
1197 {
1198 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1199 __aurng(__urng);
1200 #if _GLIBCXX_USE_C99_MATH_TR1
1201 if (__param.mean() >= 12)
1202 {
1203 double __x;
1204
1205 // See comments above...
1206 const double __naf =
1207 (1 - std::numeric_limits<double>::epsilon()) / 2;
1208 const double __thr =
1209 std::numeric_limits<_IntType>::max() + __naf;
1210
1211 const double __m = std::floor(__param.mean());
1212 // sqrt(pi / 2)
1213 const double __spi_2 = 1.2533141373155002512078826424055226L;
1214 const double __c1 = __param._M_sm * __spi_2;
1215 const double __c2 = __param._M_c2b + __c1;
1216 const double __c3 = __c2 + 1;
1217 const double __c4 = __c3 + 1;
1218 // e^(1 / 78)
1219 const double __e178 = 1.0129030479320018583185514777512983L;
1220 const double __c5 = __c4 + __e178;
1221 const double __c = __param._M_cb + __c5;
1222 const double __2cx = 2 * (2 * __m + __param._M_d);
1223
1224 bool __reject = true;
1225 do
1226 {
1227 const double __u = __c * __aurng();
1228 const double __e = -std::log(__aurng());
1229
1230 double __w = 0.0;
1231
1232 if (__u <= __c1)
1233 {
1234 const double __n = _M_nd(__urng);
1235 const double __y = -std::abs(__n) * __param._M_sm - 1;
1236 __x = std::floor(__y);
1237 __w = -__n * __n / 2;
1238 if (__x < -__m)
1239 continue;
1240 }
1241 else if (__u <= __c2)
1242 {
1243 const double __n = _M_nd(__urng);
1244 const double __y = 1 + std::abs(__n) * __param._M_scx;
1245 __x = std::ceil(__y);
1246 __w = __y * (2 - __y) * __param._M_1cx;
1247 if (__x > __param._M_d)
1248 continue;
1249 }
1250 else if (__u <= __c3)
1251 // NB: This case not in the book, nor in the Errata,
1252 // but should be ok...
1253 __x = -1;
1254 else if (__u <= __c4)
1255 __x = 0;
1256 else if (__u <= __c5)
1257 __x = 1;
1258 else
1259 {
1260 const double __v = -std::log(__aurng());
1261 const double __y = __param._M_d
1262 + __v * __2cx / __param._M_d;
1263 __x = std::ceil(__y);
1264 __w = -__param._M_d * __param._M_1cx * (1 + __y / 2);
1265 }
1266
1267 __reject = (__w - __e - __x * __param._M_lm_thr
1268 > __param._M_lfm - std::lgamma(__x + __m + 1));
1269
1270 __reject |= __x + __m >= __thr;
1271
1272 } while (__reject);
1273
1274 return result_type(__x + __m + __naf);
1275 }
1276 else
1277 #endif
1278 {
1279 _IntType __x = 0;
1280 double __prod = 1.0;
1281
1282 do
1283 {
1284 __prod *= __aurng();
1285 __x += 1;
1286 }
1287 while (__prod > __param._M_lm_thr);
1288
1289 return __x - 1;
1290 }
1291 }
1292
1293 template<typename _IntType,
1294 typename _CharT, typename _Traits>
1295 std::basic_ostream<_CharT, _Traits>&
1296 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1297 const poisson_distribution<_IntType>& __x)
1298 {
1299 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1300 typedef typename __ostream_type::ios_base __ios_base;
1301
1302 const typename __ios_base::fmtflags __flags = __os.flags();
1303 const _CharT __fill = __os.fill();
1304 const std::streamsize __precision = __os.precision();
1305 const _CharT __space = __os.widen(' ');
1306 __os.flags(__ios_base::scientific | __ios_base::left);
1307 __os.fill(__space);
1308 __os.precision(std::numeric_limits<double>::max_digits10);
1309
1310 __os << __x.mean() << __space << __x._M_nd;
1311
1312 __os.flags(__flags);
1313 __os.fill(__fill);
1314 __os.precision(__precision);
1315 return __os;
1316 }
1317
1318 template<typename _IntType,
1319 typename _CharT, typename _Traits>
1320 std::basic_istream<_CharT, _Traits>&
1321 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1322 poisson_distribution<_IntType>& __x)
1323 {
1324 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1325 typedef typename __istream_type::ios_base __ios_base;
1326
1327 const typename __ios_base::fmtflags __flags = __is.flags();
1328 __is.flags(__ios_base::skipws);
1329
1330 double __mean;
1331 __is >> __mean >> __x._M_nd;
1332 __x.param(typename poisson_distribution<_IntType>::param_type(__mean));
1333
1334 __is.flags(__flags);
1335 return __is;
1336 }
1337
1338
1339 template<typename _IntType>
1340 void
1341 binomial_distribution<_IntType>::param_type::
1342 _M_initialize()
1343 {
1344 const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
1345
1346 _M_easy = true;
1347
1348 #if _GLIBCXX_USE_C99_MATH_TR1
1349 if (_M_t * __p12 >= 8)
1350 {
1351 _M_easy = false;
1352 const double __np = std::floor(_M_t * __p12);
1353 const double __pa = __np / _M_t;
1354 const double __1p = 1 - __pa;
1355
1356 const double __pi_4 = 0.7853981633974483096156608458198757L;
1357 const double __d1x =
1358 std::sqrt(__np * __1p * std::log(32 * __np
1359 / (81 * __pi_4 * __1p)));
1360 _M_d1 = std::round(std::max(1.0, __d1x));
1361 const double __d2x =
1362 std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
1363 / (__pi_4 * __pa)));
1364 _M_d2 = std::round(std::max(1.0, __d2x));
1365
1366 // sqrt(pi / 2)
1367 const double __spi_2 = 1.2533141373155002512078826424055226L;
1368 _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
1369 _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
1370 _M_c = 2 * _M_d1 / __np;
1371 _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
1372 const double __a12 = _M_a1 + _M_s2 * __spi_2;
1373 const double __s1s = _M_s1 * _M_s1;
1374 _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
1375 * 2 * __s1s / _M_d1
1376 * std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
1377 const double __s2s = _M_s2 * _M_s2;
1378 _M_s = (_M_a123 + 2 * __s2s / _M_d2
1379 * std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
1380 _M_lf = (std::lgamma(__np + 1)
1381 + std::lgamma(_M_t - __np + 1));
1382 _M_lp1p = std::log(__pa / __1p);
1383
1384 _M_q = -std::log(1 - (__p12 - __pa) / __1p);
1385 }
1386 else
1387 #endif
1388 _M_q = -std::log(1 - __p12);
1389 }
1390
1391 template<typename _IntType>
1392 template<typename _UniformRandomNumberGenerator>
1393 typename binomial_distribution<_IntType>::result_type
1394 binomial_distribution<_IntType>::
1395 _M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t)
1396 {
1397 _IntType __x = 0;
1398 double __sum = 0.0;
1399 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1400 __aurng(__urng);
1401
1402 do
1403 {
1404 const double __e = -std::log(__aurng());
1405 __sum += __e / (__t - __x);
1406 __x += 1;
1407 }
1408 while (__sum <= _M_param._M_q);
1409
1410 return __x - 1;
1411 }
1412
1413 /**
1414 * A rejection algorithm when t * p >= 8 and a simple waiting time
1415 * method - the second in the referenced book - otherwise.
1416 * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
1417 * is defined.
1418 *
1419 * Reference:
1420 * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1421 * New York, 1986, Ch. X, Sect. 4 (+ Errata!).
1422 */
1423 template<typename _IntType>
1424 template<typename _UniformRandomNumberGenerator>
1425 typename binomial_distribution<_IntType>::result_type
1426 binomial_distribution<_IntType>::
1427 operator()(_UniformRandomNumberGenerator& __urng,
1428 const param_type& __param)
1429 {
1430 result_type __ret;
1431 const _IntType __t = __param.t();
1432 const _IntType __p = __param.p();
1433 const double __p12 = __p <= 0.5 ? __p : 1.0 - __p;
1434 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1435 __aurng(__urng);
1436
1437 #if _GLIBCXX_USE_C99_MATH_TR1
1438 if (!__param._M_easy)
1439 {
1440 double __x;
1441
1442 // See comments above...
1443 const double __naf =
1444 (1 - std::numeric_limits<double>::epsilon()) / 2;
1445 const double __thr =
1446 std::numeric_limits<_IntType>::max() + __naf;
1447
1448 const double __np = std::floor(__t * __p12);
1449
1450 // sqrt(pi / 2)
1451 const double __spi_2 = 1.2533141373155002512078826424055226L;
1452 const double __a1 = __param._M_a1;
1453 const double __a12 = __a1 + __param._M_s2 * __spi_2;
1454 const double __a123 = __param._M_a123;
1455 const double __s1s = __param._M_s1 * __param._M_s1;
1456 const double __s2s = __param._M_s2 * __param._M_s2;
1457
1458 bool __reject;
1459 do
1460 {
1461 const double __u = __param._M_s * __aurng();
1462
1463 double __v;
1464
1465 if (__u <= __a1)
1466 {
1467 const double __n = _M_nd(__urng);
1468 const double __y = __param._M_s1 * std::abs(__n);
1469 __reject = __y >= __param._M_d1;
1470 if (!__reject)
1471 {
1472 const double __e = -std::log(__aurng());
1473 __x = std::floor(__y);
1474 __v = -__e - __n * __n / 2 + __param._M_c;
1475 }
1476 }
1477 else if (__u <= __a12)
1478 {
1479 const double __n = _M_nd(__urng);
1480 const double __y = __param._M_s2 * std::abs(__n);
1481 __reject = __y >= __param._M_d2;
1482 if (!__reject)
1483 {
1484 const double __e = -std::log(__aurng());
1485 __x = std::floor(-__y);
1486 __v = -__e - __n * __n / 2;
1487 }
1488 }
1489 else if (__u <= __a123)
1490 {
1491 const double __e1 = -std::log(__aurng());
1492 const double __e2 = -std::log(__aurng());
1493
1494 const double __y = __param._M_d1
1495 + 2 * __s1s * __e1 / __param._M_d1;
1496 __x = std::floor(__y);
1497 __v = (-__e2 + __param._M_d1 * (1 / (__t - __np)
1498 -__y / (2 * __s1s)));
1499 __reject = false;
1500 }
1501 else
1502 {
1503 const double __e1 = -std::log(__aurng());
1504 const double __e2 = -std::log(__aurng());
1505
1506 const double __y = __param._M_d2
1507 + 2 * __s2s * __e1 / __param._M_d2;
1508 __x = std::floor(-__y);
1509 __v = -__e2 - __param._M_d2 * __y / (2 * __s2s);
1510 __reject = false;
1511 }
1512
1513 __reject = __reject || __x < -__np || __x > __t - __np;
1514 if (!__reject)
1515 {
1516 const double __lfx =
1517 std::lgamma(__np + __x + 1)
1518 + std::lgamma(__t - (__np + __x) + 1);
1519 __reject = __v > __param._M_lf - __lfx
1520 + __x * __param._M_lp1p;
1521 }
1522
1523 __reject |= __x + __np >= __thr;
1524 }
1525 while (__reject);
1526
1527 __x += __np + __naf;
1528
1529 const _IntType __z = _M_waiting(__urng, __t - _IntType(__x));
1530 __ret = _IntType(__x) + __z;
1531 }
1532 else
1533 #endif
1534 __ret = _M_waiting(__urng, __t);
1535
1536 if (__p12 != __p)
1537 __ret = __t - __ret;
1538 return __ret;
1539 }
1540
1541 template<typename _IntType,
1542 typename _CharT, typename _Traits>
1543 std::basic_ostream<_CharT, _Traits>&
1544 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1545 const binomial_distribution<_IntType>& __x)
1546 {
1547 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1548 typedef typename __ostream_type::ios_base __ios_base;
1549
1550 const typename __ios_base::fmtflags __flags = __os.flags();
1551 const _CharT __fill = __os.fill();
1552 const std::streamsize __precision = __os.precision();
1553 const _CharT __space = __os.widen(' ');
1554 __os.flags(__ios_base::scientific | __ios_base::left);
1555 __os.fill(__space);
1556 __os.precision(std::numeric_limits<double>::max_digits10);
1557
1558 __os << __x.t() << __space << __x.p()
1559 << __space << __x._M_nd;
1560
1561 __os.flags(__flags);
1562 __os.fill(__fill);
1563 __os.precision(__precision);
1564 return __os;
1565 }
1566
1567 template<typename _IntType,
1568 typename _CharT, typename _Traits>
1569 std::basic_istream<_CharT, _Traits>&
1570 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1571 binomial_distribution<_IntType>& __x)
1572 {
1573 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1574 typedef typename __istream_type::ios_base __ios_base;
1575
1576 const typename __ios_base::fmtflags __flags = __is.flags();
1577 __is.flags(__ios_base::dec | __ios_base::skipws);
1578
1579 _IntType __t;
1580 double __p;
1581 __is >> __t >> __p >> __x._M_nd;
1582 __x.param(typename binomial_distribution<_IntType>::
1583 param_type(__t, __p));
1584
1585 __is.flags(__flags);
1586 return __is;
1587 }
1588
1589
1590 template<typename _RealType, typename _CharT, typename _Traits>
1591 std::basic_ostream<_CharT, _Traits>&
1592 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1593 const exponential_distribution<_RealType>& __x)
1594 {
1595 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1596 typedef typename __ostream_type::ios_base __ios_base;
1597
1598 const typename __ios_base::fmtflags __flags = __os.flags();
1599 const _CharT __fill = __os.fill();
1600 const std::streamsize __precision = __os.precision();
1601 __os.flags(__ios_base::scientific | __ios_base::left);
1602 __os.fill(__os.widen(' '));
1603 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1604
1605 __os << __x.lambda();
1606
1607 __os.flags(__flags);
1608 __os.fill(__fill);
1609 __os.precision(__precision);
1610 return __os;
1611 }
1612
1613 template<typename _RealType, typename _CharT, typename _Traits>
1614 std::basic_istream<_CharT, _Traits>&
1615 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1616 exponential_distribution<_RealType>& __x)
1617 {
1618 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1619 typedef typename __istream_type::ios_base __ios_base;
1620
1621 const typename __ios_base::fmtflags __flags = __is.flags();
1622 __is.flags(__ios_base::dec | __ios_base::skipws);
1623
1624 _RealType __lambda;
1625 __is >> __lambda;
1626 __x.param(typename exponential_distribution<_RealType>::
1627 param_type(__lambda));
1628
1629 __is.flags(__flags);
1630 return __is;
1631 }
1632
1633
1634 /**
1635 * Polar method due to Marsaglia.
1636 *
1637 * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1638 * New York, 1986, Ch. V, Sect. 4.4.
1639 */
1640 template<typename _RealType>
1641 template<typename _UniformRandomNumberGenerator>
1642 typename normal_distribution<_RealType>::result_type
1643 normal_distribution<_RealType>::
1644 operator()(_UniformRandomNumberGenerator& __urng,
1645 const param_type& __param)
1646 {
1647 result_type __ret;
1648 __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1649 __aurng(__urng);
1650
1651 if (_M_saved_available)
1652 {
1653 _M_saved_available = false;
1654 __ret = _M_saved;
1655 }
1656 else
1657 {
1658 result_type __x, __y, __r2;
1659 do
1660 {
1661 __x = result_type(2.0) * __aurng() - 1.0;
1662 __y = result_type(2.0) * __aurng() - 1.0;
1663 __r2 = __x * __x + __y * __y;
1664 }
1665 while (__r2 > 1.0 || __r2 == 0.0);
1666
1667 const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
1668 _M_saved = __x * __mult;
1669 _M_saved_available = true;
1670 __ret = __y * __mult;
1671 }
1672
1673 __ret = __ret * __param.stddev() + __param.mean();
1674 return __ret;
1675 }
1676
1677 template<typename _RealType>
1678 bool
1679 operator==(const std::normal_distribution<_RealType>& __d1,
1680 const std::normal_distribution<_RealType>& __d2)
1681 {
1682 if (__d1._M_param == __d2._M_param
1683 && __d1._M_saved_available == __d2._M_saved_available)
1684 {
1685 if (__d1._M_saved_available
1686 && __d1._M_saved == __d2._M_saved)
1687 return true;
1688 else if(!__d1._M_saved_available)
1689 return true;
1690 else
1691 return false;
1692 }
1693 else
1694 return false;
1695 }
1696
1697 template<typename _RealType, typename _CharT, typename _Traits>
1698 std::basic_ostream<_CharT, _Traits>&
1699 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1700 const normal_distribution<_RealType>& __x)
1701 {
1702 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1703 typedef typename __ostream_type::ios_base __ios_base;
1704
1705 const typename __ios_base::fmtflags __flags = __os.flags();
1706 const _CharT __fill = __os.fill();
1707 const std::streamsize __precision = __os.precision();
1708 const _CharT __space = __os.widen(' ');
1709 __os.flags(__ios_base::scientific | __ios_base::left);
1710 __os.fill(__space);
1711 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1712
1713 __os << __x.mean() << __space << __x.stddev()
1714 << __space << __x._M_saved_available;
1715 if (__x._M_saved_available)
1716 __os << __space << __x._M_saved;
1717
1718 __os.flags(__flags);
1719 __os.fill(__fill);
1720 __os.precision(__precision);
1721 return __os;
1722 }
1723
1724 template<typename _RealType, typename _CharT, typename _Traits>
1725 std::basic_istream<_CharT, _Traits>&
1726 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1727 normal_distribution<_RealType>& __x)
1728 {
1729 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1730 typedef typename __istream_type::ios_base __ios_base;
1731
1732 const typename __ios_base::fmtflags __flags = __is.flags();
1733 __is.flags(__ios_base::dec | __ios_base::skipws);
1734
1735 double __mean, __stddev;
1736 __is >> __mean >> __stddev
1737 >> __x._M_saved_available;
1738 if (__x._M_saved_available)
1739 __is >> __x._M_saved;
1740 __x.param(typename normal_distribution<_RealType>::
1741 param_type(__mean, __stddev));
1742
1743 __is.flags(__flags);
1744 return __is;
1745 }
1746
1747
1748 template<typename _RealType, typename _CharT, typename _Traits>
1749 std::basic_ostream<_CharT, _Traits>&
1750 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1751 const lognormal_distribution<_RealType>& __x)
1752 {
1753 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1754 typedef typename __ostream_type::ios_base __ios_base;
1755
1756 const typename __ios_base::fmtflags __flags = __os.flags();
1757 const _CharT __fill = __os.fill();
1758 const std::streamsize __precision = __os.precision();
1759 const _CharT __space = __os.widen(' ');
1760 __os.flags(__ios_base::scientific | __ios_base::left);
1761 __os.fill(__space);
1762 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1763
1764 __os << __x.m() << __space << __x.s()
1765 << __space << __x._M_nd;
1766
1767 __os.flags(__flags);
1768 __os.fill(__fill);
1769 __os.precision(__precision);
1770 return __os;
1771 }
1772
1773 template<typename _RealType, typename _CharT, typename _Traits>
1774 std::basic_istream<_CharT, _Traits>&
1775 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1776 lognormal_distribution<_RealType>& __x)
1777 {
1778 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1779 typedef typename __istream_type::ios_base __ios_base;
1780
1781 const typename __ios_base::fmtflags __flags = __is.flags();
1782 __is.flags(__ios_base::dec | __ios_base::skipws);
1783
1784 _RealType __m, __s;
1785 __is >> __m >> __s >> __x._M_nd;
1786 __x.param(typename lognormal_distribution<_RealType>::
1787 param_type(__m, __s));
1788
1789 __is.flags(__flags);
1790 return __is;
1791 }
1792
1793
1794 template<typename _RealType, typename _CharT, typename _Traits>
1795 std::basic_ostream<_CharT, _Traits>&
1796 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1797 const chi_squared_distribution<_RealType>& __x)
1798 {
1799 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1800 typedef typename __ostream_type::ios_base __ios_base;
1801
1802 const typename __ios_base::fmtflags __flags = __os.flags();
1803 const _CharT __fill = __os.fill();
1804 const std::streamsize __precision = __os.precision();
1805 const _CharT __space = __os.widen(' ');
1806 __os.flags(__ios_base::scientific | __ios_base::left);
1807 __os.fill(__space);
1808 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1809
1810 __os << __x.n() << __space << __x._M_gd;
1811
1812 __os.flags(__flags);
1813 __os.fill(__fill);
1814 __os.precision(__precision);
1815 return __os;
1816 }
1817
1818 template<typename _RealType, typename _CharT, typename _Traits>
1819 std::basic_istream<_CharT, _Traits>&
1820 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1821 chi_squared_distribution<_RealType>& __x)
1822 {
1823 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1824 typedef typename __istream_type::ios_base __ios_base;
1825
1826 const typename __ios_base::fmtflags __flags = __is.flags();
1827 __is.flags(__ios_base::dec | __ios_base::skipws);
1828
1829 _RealType __n;
1830 __is >> __n >> __x._M_gd;
1831 __x.param(typename chi_squared_distribution<_RealType>::
1832 param_type(__n));
1833
1834 __is.flags(__flags);
1835 return __is;
1836 }
1837
1838
1839 template<typename _RealType>
1840 template<typename _UniformRandomNumberGenerator>
1841 typename cauchy_distribution<_RealType>::result_type
1842 cauchy_distribution<_RealType>::
1843 operator()(_UniformRandomNumberGenerator& __urng,
1844 const param_type& __p)
1845 {
1846 __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1847 __aurng(__urng);
1848 _RealType __u;
1849 do
1850 __u = __aurng();
1851 while (__u == 0.5);
1852
1853 const _RealType __pi = 3.1415926535897932384626433832795029L;
1854 return __p.a() + __p.b() * std::tan(__pi * __u);
1855 }
1856
1857 template<typename _RealType, typename _CharT, typename _Traits>
1858 std::basic_ostream<_CharT, _Traits>&
1859 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1860 const cauchy_distribution<_RealType>& __x)
1861 {
1862 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1863 typedef typename __ostream_type::ios_base __ios_base;
1864
1865 const typename __ios_base::fmtflags __flags = __os.flags();
1866 const _CharT __fill = __os.fill();
1867 const std::streamsize __precision = __os.precision();
1868 const _CharT __space = __os.widen(' ');
1869 __os.flags(__ios_base::scientific | __ios_base::left);
1870 __os.fill(__space);
1871 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1872
1873 __os << __x.a() << __space << __x.b();
1874
1875 __os.flags(__flags);
1876 __os.fill(__fill);
1877 __os.precision(__precision);
1878 return __os;
1879 }
1880
1881 template<typename _RealType, typename _CharT, typename _Traits>
1882 std::basic_istream<_CharT, _Traits>&
1883 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1884 cauchy_distribution<_RealType>& __x)
1885 {
1886 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1887 typedef typename __istream_type::ios_base __ios_base;
1888
1889 const typename __ios_base::fmtflags __flags = __is.flags();
1890 __is.flags(__ios_base::dec | __ios_base::skipws);
1891
1892 _RealType __a, __b;
1893 __is >> __a >> __b;
1894 __x.param(typename cauchy_distribution<_RealType>::
1895 param_type(__a, __b));
1896
1897 __is.flags(__flags);
1898 return __is;
1899 }
1900
1901
1902 template<typename _RealType, typename _CharT, typename _Traits>
1903 std::basic_ostream<_CharT, _Traits>&
1904 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1905 const fisher_f_distribution<_RealType>& __x)
1906 {
1907 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1908 typedef typename __ostream_type::ios_base __ios_base;
1909
1910 const typename __ios_base::fmtflags __flags = __os.flags();
1911 const _CharT __fill = __os.fill();
1912 const std::streamsize __precision = __os.precision();
1913 const _CharT __space = __os.widen(' ');
1914 __os.flags(__ios_base::scientific | __ios_base::left);
1915 __os.fill(__space);
1916 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1917
1918 __os << __x.m() << __space << __x.n()
1919 << __space << __x._M_gd_x << __space << __x._M_gd_y;
1920
1921 __os.flags(__flags);
1922 __os.fill(__fill);
1923 __os.precision(__precision);
1924 return __os;
1925 }
1926
1927 template<typename _RealType, typename _CharT, typename _Traits>
1928 std::basic_istream<_CharT, _Traits>&
1929 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1930 fisher_f_distribution<_RealType>& __x)
1931 {
1932 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1933 typedef typename __istream_type::ios_base __ios_base;
1934
1935 const typename __ios_base::fmtflags __flags = __is.flags();
1936 __is.flags(__ios_base::dec | __ios_base::skipws);
1937
1938 _RealType __m, __n;
1939 __is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y;
1940 __x.param(typename fisher_f_distribution<_RealType>::
1941 param_type(__m, __n));
1942
1943 __is.flags(__flags);
1944 return __is;
1945 }
1946
1947
1948 template<typename _RealType, typename _CharT, typename _Traits>
1949 std::basic_ostream<_CharT, _Traits>&
1950 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1951 const student_t_distribution<_RealType>& __x)
1952 {
1953 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1954 typedef typename __ostream_type::ios_base __ios_base;
1955
1956 const typename __ios_base::fmtflags __flags = __os.flags();
1957 const _CharT __fill = __os.fill();
1958 const std::streamsize __precision = __os.precision();
1959 const _CharT __space = __os.widen(' ');
1960 __os.flags(__ios_base::scientific | __ios_base::left);
1961 __os.fill(__space);
1962 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1963
1964 __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd;
1965
1966 __os.flags(__flags);
1967 __os.fill(__fill);
1968 __os.precision(__precision);
1969 return __os;
1970 }
1971
1972 template<typename _RealType, typename _CharT, typename _Traits>
1973 std::basic_istream<_CharT, _Traits>&
1974 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1975 student_t_distribution<_RealType>& __x)
1976 {
1977 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1978 typedef typename __istream_type::ios_base __ios_base;
1979
1980 const typename __ios_base::fmtflags __flags = __is.flags();
1981 __is.flags(__ios_base::dec | __ios_base::skipws);
1982
1983 _RealType __n;
1984 __is >> __n >> __x._M_nd >> __x._M_gd;
1985 __x.param(typename student_t_distribution<_RealType>::param_type(__n));
1986
1987 __is.flags(__flags);
1988 return __is;
1989 }
1990
1991
1992 template<typename _RealType>
1993 void
1994 gamma_distribution<_RealType>::param_type::
1995 _M_initialize()
1996 {
1997 _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha;
1998
1999 const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0);
2000 _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1);
2001 }
2002
2003 /**
2004 * Marsaglia, G. and Tsang, W. W.
2005 * "A Simple Method for Generating Gamma Variables"
2006 * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000.
2007 */
2008 template<typename _RealType>
2009 template<typename _UniformRandomNumberGenerator>
2010 typename gamma_distribution<_RealType>::result_type
2011 gamma_distribution<_RealType>::
2012 operator()(_UniformRandomNumberGenerator& __urng,
2013 const param_type& __param)
2014 {
2015 __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2016 __aurng(__urng);
2017
2018 result_type __u, __v, __n;
2019 const result_type __a1 = (__param._M_malpha
2020 - _RealType(1.0) / _RealType(3.0));
2021
2022 do
2023 {
2024 do
2025 {
2026 __n = _M_nd(__urng);
2027 __v = result_type(1.0) + __param._M_a2 * __n;
2028 }
2029 while (__v <= 0.0);
2030
2031 __v = __v * __v * __v;
2032 __u = __aurng();
2033 }
2034 while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
2035 && (std::log(__u) > (0.5 * __n * __n + __a1
2036 * (1.0 - __v + std::log(__v)))));
2037
2038 if (__param.alpha() == __param._M_malpha)
2039 return __a1 * __v * __param.beta();
2040 else
2041 {
2042 do
2043 __u = __aurng();
2044 while (__u == 0.0);
2045
2046 return (std::pow(__u, result_type(1.0) / __param.alpha())
2047 * __a1 * __v * __param.beta());
2048 }
2049 }
2050
2051 template<typename _RealType, typename _CharT, typename _Traits>
2052 std::basic_ostream<_CharT, _Traits>&
2053 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2054 const gamma_distribution<_RealType>& __x)
2055 {
2056 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2057 typedef typename __ostream_type::ios_base __ios_base;
2058
2059 const typename __ios_base::fmtflags __flags = __os.flags();
2060 const _CharT __fill = __os.fill();
2061 const std::streamsize __precision = __os.precision();
2062 const _CharT __space = __os.widen(' ');
2063 __os.flags(__ios_base::scientific | __ios_base::left);
2064 __os.fill(__space);
2065 __os.precision(std::numeric_limits<_RealType>::max_digits10);
2066
2067 __os << __x.alpha() << __space << __x.beta()
2068 << __space << __x._M_nd;
2069
2070 __os.flags(__flags);
2071 __os.fill(__fill);
2072 __os.precision(__precision);
2073 return __os;
2074 }
2075
2076 template<typename _RealType, typename _CharT, typename _Traits>
2077 std::basic_istream<_CharT, _Traits>&
2078 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2079 gamma_distribution<_RealType>& __x)
2080 {
2081 typedef std::basic_istream<_CharT, _Traits> __istream_type;
2082 typedef typename __istream_type::ios_base __ios_base;
2083
2084 const typename __ios_base::fmtflags __flags = __is.flags();
2085 __is.flags(__ios_base::dec | __ios_base::skipws);
2086
2087 _RealType __alpha_val, __beta_val;
2088 __is >> __alpha_val >> __beta_val >> __x._M_nd;
2089 __x.param(typename gamma_distribution<_RealType>::
2090 param_type(__alpha_val, __beta_val));
2091
2092 __is.flags(__flags);
2093 return __is;
2094 }
2095
2096
2097 template<typename _RealType>
2098 template<typename _UniformRandomNumberGenerator>
2099 typename weibull_distribution<_RealType>::result_type
2100 weibull_distribution<_RealType>::
2101 operator()(_UniformRandomNumberGenerator& __urng,
2102 const param_type& __p)
2103 {
2104 __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2105 __aurng(__urng);
2106 return __p.b() * std::pow(-std::log(__aurng()),
2107 result_type(1) / __p.a());
2108 }
2109
2110 template<typename _RealType, typename _CharT, typename _Traits>
2111 std::basic_ostream<_CharT, _Traits>&
2112 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2113 const weibull_distribution<_RealType>& __x)
2114 {
2115 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2116 typedef typename __ostream_type::ios_base __ios_base;
2117
2118 const typename __ios_base::fmtflags __flags = __os.flags();
2119 const _CharT __fill = __os.fill();
2120 const std::streamsize __precision = __os.precision();
2121 const _CharT __space = __os.widen(' ');
2122 __os.flags(__ios_base::scientific | __ios_base::left);
2123 __os.fill(__space);
2124 __os.precision(std::numeric_limits<_RealType>::max_digits10);
2125
2126 __os << __x.a() << __space << __x.b();
2127
2128 __os.flags(__flags);
2129 __os.fill(__fill);
2130 __os.precision(__precision);
2131 return __os;
2132 }
2133
2134 template<typename _RealType, typename _CharT, typename _Traits>
2135 std::basic_istream<_CharT, _Traits>&
2136 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2137 weibull_distribution<_RealType>& __x)
2138 {
2139 typedef std::basic_istream<_CharT, _Traits> __istream_type;
2140 typedef typename __istream_type::ios_base __ios_base;
2141
2142 const typename __ios_base::fmtflags __flags = __is.flags();
2143 __is.flags(__ios_base::dec | __ios_base::skipws);
2144
2145 _RealType __a, __b;
2146 __is >> __a >> __b;
2147 __x.param(typename weibull_distribution<_RealType>::
2148 param_type(__a, __b));
2149
2150 __is.flags(__flags);
2151 return __is;
2152 }
2153
2154
2155 template<typename _RealType>
2156 template<typename _UniformRandomNumberGenerator>
2157 typename extreme_value_distribution<_RealType>::result_type
2158 extreme_value_distribution<_RealType>::
2159 operator()(_UniformRandomNumberGenerator& __urng,
2160 const param_type& __p)
2161 {
2162 __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2163 __aurng(__urng);
2164 return __p.a() - __p.b() * std::log(-std::log(__aurng()));
2165 }
2166
2167 template<typename _RealType, typename _CharT, typename _Traits>
2168 std::basic_ostream<_CharT, _Traits>&
2169 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2170 const extreme_value_distribution<_RealType>& __x)
2171 {
2172 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2173 typedef typename __ostream_type::ios_base __ios_base;
2174
2175 const typename __ios_base::fmtflags __flags = __os.flags();
2176 const _CharT __fill = __os.fill();
2177 const std::streamsize __precision = __os.precision();
2178 const _CharT __space = __os.widen(' ');
2179 __os.flags(__ios_base::scientific | __ios_base::left);
2180 __os.fill(__space);
2181 __os.precision(std::numeric_limits<_RealType>::max_digits10);
2182
2183 __os << __x.a() << __space << __x.b();
2184
2185 __os.flags(__flags);
2186 __os.fill(__fill);
2187 __os.precision(__precision);
2188 return __os;
2189 }
2190
2191 template<typename _RealType, typename _CharT, typename _Traits>
2192 std::basic_istream<_CharT, _Traits>&
2193 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2194 extreme_value_distribution<_RealType>& __x)
2195 {
2196 typedef std::basic_istream<_CharT, _Traits> __istream_type;
2197 typedef typename __istream_type::ios_base __ios_base;
2198
2199 const typename __ios_base::fmtflags __flags = __is.flags();
2200 __is.flags(__ios_base::dec | __ios_base::skipws);
2201
2202 _RealType __a, __b;
2203 __is >> __a >> __b;
2204 __x.param(typename extreme_value_distribution<_RealType>::
2205 param_type(__a, __b));
2206
2207 __is.flags(__flags);
2208 return __is;
2209 }
2210
2211
2212 template<typename _IntType>
2213 void
2214 discrete_distribution<_IntType>::param_type::
2215 _M_initialize()
2216 {
2217 if (_M_prob.size() < 2)
2218 {
2219 _M_prob.clear();
2220 return;
2221 }
2222
2223 const double __sum = std::accumulate(_M_prob.begin(),
2224 _M_prob.end(), 0.0);
2225 // Now normalize the probabilites.
2226 __detail::__transform(_M_prob.begin(), _M_prob.end(), _M_prob.begin(),
2227 std::bind2nd(std::divides<double>(), __sum));
2228 // Accumulate partial sums.
2229 _M_cp.reserve(_M_prob.size());
2230 std::partial_sum(_M_prob.begin(), _M_prob.end(),
2231 std::back_inserter(_M_cp));
2232 // Make sure the last cumulative probability is one.
2233 _M_cp[_M_cp.size() - 1] = 1.0;
2234 }
2235
2236 template<typename _IntType>
2237 template<typename _Func>
2238 discrete_distribution<_IntType>::param_type::
2239 param_type(size_t __nw, double __xmin, double __xmax, _Func __fw)
2240 : _M_prob(), _M_cp()
2241 {
2242 const size_t __n = __nw == 0 ? 1 : __nw;
2243 const double __delta = (__xmax - __xmin) / __n;
2244
2245 _M_prob.reserve(__n);
2246 for (size_t __k = 0; __k < __nw; ++__k)
2247 _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta));
2248
2249 _M_initialize();
2250 }
2251
2252 template<typename _IntType>
2253 template<typename _UniformRandomNumberGenerator>
2254 typename discrete_distribution<_IntType>::result_type
2255 discrete_distribution<_IntType>::
2256 operator()(_UniformRandomNumberGenerator& __urng,
2257 const param_type& __param)
2258 {
2259 if (__param._M_cp.empty())
2260 return result_type(0);
2261
2262 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2263 __aurng(__urng);
2264
2265 const double __p = __aurng();
2266 auto __pos = std::lower_bound(__param._M_cp.begin(),
2267 __param._M_cp.end(), __p);
2268
2269 return __pos - __param._M_cp.begin();
2270 }
2271
2272 template<typename _IntType, typename _CharT, typename _Traits>
2273 std::basic_ostream<_CharT, _Traits>&
2274 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2275 const discrete_distribution<_IntType>& __x)
2276 {
2277 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2278 typedef typename __ostream_type::ios_base __ios_base;
2279
2280 const typename __ios_base::fmtflags __flags = __os.flags();
2281 const _CharT __fill = __os.fill();
2282 const std::streamsize __precision = __os.precision();
2283 const _CharT __space = __os.widen(' ');
2284 __os.flags(__ios_base::scientific | __ios_base::left);
2285 __os.fill(__space);
2286 __os.precision(std::numeric_limits<double>::max_digits10);
2287
2288 std::vector<double> __prob = __x.probabilities();
2289 __os << __prob.size();
2290 for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit)
2291 __os << __space << *__dit;
2292
2293 __os.flags(__flags);
2294 __os.fill(__fill);
2295 __os.precision(__precision);
2296 return __os;
2297 }
2298
2299 template<typename _IntType, typename _CharT, typename _Traits>
2300 std::basic_istream<_CharT, _Traits>&
2301 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2302 discrete_distribution<_IntType>& __x)
2303 {
2304 typedef std::basic_istream<_CharT, _Traits> __istream_type;
2305 typedef typename __istream_type::ios_base __ios_base;
2306
2307 const typename __ios_base::fmtflags __flags = __is.flags();
2308 __is.flags(__ios_base::dec | __ios_base::skipws);
2309
2310 size_t __n;
2311 __is >> __n;
2312
2313 std::vector<double> __prob_vec;
2314 __prob_vec.reserve(__n);
2315 for (; __n != 0; --__n)
2316 {
2317 double __prob;
2318 __is >> __prob;
2319 __prob_vec.push_back(__prob);
2320 }
2321
2322 __x.param(typename discrete_distribution<_IntType>::
2323 param_type(__prob_vec.begin(), __prob_vec.end()));
2324
2325 __is.flags(__flags);
2326 return __is;
2327 }
2328
2329
2330 template<typename _RealType>
2331 void
2332 piecewise_constant_distribution<_RealType>::param_type::
2333 _M_initialize()
2334 {
2335 if (_M_int.size() < 2
2336 || (_M_int.size() == 2
2337 && _M_int[0] == _RealType(0)
2338 && _M_int[1] == _RealType(1)))
2339 {
2340 _M_int.clear();
2341 _M_den.clear();
2342 return;
2343 }
2344
2345 const double __sum = std::accumulate(_M_den.begin(),
2346 _M_den.end(), 0.0);
2347
2348 __detail::__transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
2349 std::bind2nd(std::divides<double>(), __sum));
2350
2351 _M_cp.reserve(_M_den.size());
2352 std::partial_sum(_M_den.begin(), _M_den.end(),
2353 std::back_inserter(_M_cp));
2354
2355 // Make sure the last cumulative probability is one.
2356 _M_cp[_M_cp.size() - 1] = 1.0;
2357
2358 for (size_t __k = 0; __k < _M_den.size(); ++__k)
2359 _M_den[__k] /= _M_int[__k + 1] - _M_int[__k];
2360 }
2361
2362 template<typename _RealType>
2363 template<typename _InputIteratorB, typename _InputIteratorW>
2364 piecewise_constant_distribution<_RealType>::param_type::
2365 param_type(_InputIteratorB __bbegin,
2366 _InputIteratorB __bend,
2367 _InputIteratorW __wbegin)
2368 : _M_int(), _M_den(), _M_cp()
2369 {
2370 if (__bbegin != __bend)
2371 {
2372 for (;;)
2373 {
2374 _M_int.push_back(*__bbegin);
2375 ++__bbegin;
2376 if (__bbegin == __bend)
2377 break;
2378
2379 _M_den.push_back(*__wbegin);
2380 ++__wbegin;
2381 }
2382 }
2383
2384 _M_initialize();
2385 }
2386
2387 template<typename _RealType>
2388 template<typename _Func>
2389 piecewise_constant_distribution<_RealType>::param_type::
2390 param_type(initializer_list<_RealType> __bl, _Func __fw)
2391 : _M_int(), _M_den(), _M_cp()
2392 {
2393 _M_int.reserve(__bl.size());
2394 for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
2395 _M_int.push_back(*__biter);
2396
2397 _M_den.reserve(_M_int.size() - 1);
2398 for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
2399 _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k])));
2400
2401 _M_initialize();
2402 }
2403
2404 template<typename _RealType>
2405 template<typename _Func>
2406 piecewise_constant_distribution<_RealType>::param_type::
2407 param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
2408 : _M_int(), _M_den(), _M_cp()
2409 {
2410 const size_t __n = __nw == 0 ? 1 : __nw;
2411 const _RealType __delta = (__xmax - __xmin) / __n;
2412
2413 _M_int.reserve(__n + 1);
2414 for (size_t __k = 0; __k <= __nw; ++__k)
2415 _M_int.push_back(__xmin + __k * __delta);
2416
2417 _M_den.reserve(__n);
2418 for (size_t __k = 0; __k < __nw; ++__k)
2419 _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta));
2420
2421 _M_initialize();
2422 }
2423
2424 template<typename _RealType>
2425 template<typename _UniformRandomNumberGenerator>
2426 typename piecewise_constant_distribution<_RealType>::result_type
2427 piecewise_constant_distribution<_RealType>::
2428 operator()(_UniformRandomNumberGenerator& __urng,
2429 const param_type& __param)
2430 {
2431 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2432 __aurng(__urng);
2433
2434 const double __p = __aurng();
2435 if (__param._M_cp.empty())
2436 return __p;
2437
2438 auto __pos = std::lower_bound(__param._M_cp.begin(),
2439 __param._M_cp.end(), __p);
2440 const size_t __i = __pos - __param._M_cp.begin();
2441
2442 const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
2443
2444 return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i];
2445 }
2446
2447 template<typename _RealType, typename _CharT, typename _Traits>
2448 std::basic_ostream<_CharT, _Traits>&
2449 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2450 const piecewise_constant_distribution<_RealType>& __x)
2451 {
2452 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2453 typedef typename __ostream_type::ios_base __ios_base;
2454
2455 const typename __ios_base::fmtflags __flags = __os.flags();
2456 const _CharT __fill = __os.fill();
2457 const std::streamsize __precision = __os.precision();
2458 const _CharT __space = __os.widen(' ');
2459 __os.flags(__ios_base::scientific | __ios_base::left);
2460 __os.fill(__space);
2461 __os.precision(std::numeric_limits<_RealType>::max_digits10);
2462
2463 std::vector<_RealType> __int = __x.intervals();
2464 __os << __int.size() - 1;
2465
2466 for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
2467 __os << __space << *__xit;
2468
2469 std::vector<double> __den = __x.densities();
2470 for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
2471 __os << __space << *__dit;
2472
2473 __os.flags(__flags);
2474 __os.fill(__fill);
2475 __os.precision(__precision);
2476 return __os;
2477 }
2478
2479 template<typename _RealType, typename _CharT, typename _Traits>
2480 std::basic_istream<_CharT, _Traits>&
2481 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2482 piecewise_constant_distribution<_RealType>& __x)
2483 {
2484 typedef std::basic_istream<_CharT, _Traits> __istream_type;
2485 typedef typename __istream_type::ios_base __ios_base;
2486
2487 const typename __ios_base::fmtflags __flags = __is.flags();
2488 __is.flags(__ios_base::dec | __ios_base::skipws);
2489
2490 size_t __n;
2491 __is >> __n;
2492
2493 std::vector<_RealType> __int_vec;
2494 __int_vec.reserve(__n + 1);
2495 for (size_t __i = 0; __i <= __n; ++__i)
2496 {
2497 _RealType __int;
2498 __is >> __int;
2499 __int_vec.push_back(__int);
2500 }
2501
2502 std::vector<double> __den_vec;
2503 __den_vec.reserve(__n);
2504 for (size_t __i = 0; __i < __n; ++__i)
2505 {
2506 double __den;
2507 __is >> __den;
2508 __den_vec.push_back(__den);
2509 }
2510
2511 __x.param(typename piecewise_constant_distribution<_RealType>::
2512 param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
2513
2514 __is.flags(__flags);
2515 return __is;
2516 }
2517
2518
2519 template<typename _RealType>
2520 void
2521 piecewise_linear_distribution<_RealType>::param_type::
2522 _M_initialize()
2523 {
2524 if (_M_int.size() < 2
2525 || (_M_int.size() == 2
2526 && _M_int[0] == _RealType(0)
2527 && _M_int[1] == _RealType(1)
2528 && _M_den[0] == _M_den[1]))
2529 {
2530 _M_int.clear();
2531 _M_den.clear();
2532 return;
2533 }
2534
2535 double __sum = 0.0;
2536 _M_cp.reserve(_M_int.size() - 1);
2537 _M_m.reserve(_M_int.size() - 1);
2538 for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
2539 {
2540 const _RealType __delta = _M_int[__k + 1] - _M_int[__k];
2541 __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta;
2542 _M_cp.push_back(__sum);
2543 _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta);
2544 }
2545
2546 // Now normalize the densities...
2547 __detail::__transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
2548 std::bind2nd(std::divides<double>(), __sum));
2549 // ... and partial sums...
2550 __detail::__transform(_M_cp.begin(), _M_cp.end(), _M_cp.begin(),
2551 std::bind2nd(std::divides<double>(), __sum));
2552 // ... and slopes.
2553 __detail::__transform(_M_m.begin(), _M_m.end(), _M_m.begin(),
2554 std::bind2nd(std::divides<double>(), __sum));
2555 // Make sure the last cumulative probablility is one.
2556 _M_cp[_M_cp.size() - 1] = 1.0;
2557 }
2558
2559 template<typename _RealType>
2560 template<typename _InputIteratorB, typename _InputIteratorW>
2561 piecewise_linear_distribution<_RealType>::param_type::
2562 param_type(_InputIteratorB __bbegin,
2563 _InputIteratorB __bend,
2564 _InputIteratorW __wbegin)
2565 : _M_int(), _M_den(), _M_cp(), _M_m()
2566 {
2567 for (; __bbegin != __bend; ++__bbegin, ++__wbegin)
2568 {
2569 _M_int.push_back(*__bbegin);
2570 _M_den.push_back(*__wbegin);
2571 }
2572
2573 _M_initialize();
2574 }
2575
2576 template<typename _RealType>
2577 template<typename _Func>
2578 piecewise_linear_distribution<_RealType>::param_type::
2579 param_type(initializer_list<_RealType> __bl, _Func __fw)
2580 : _M_int(), _M_den(), _M_cp(), _M_m()
2581 {
2582 _M_int.reserve(__bl.size());
2583 _M_den.reserve(__bl.size());
2584 for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
2585 {
2586 _M_int.push_back(*__biter);
2587 _M_den.push_back(__fw(*__biter));
2588 }
2589
2590 _M_initialize();
2591 }
2592
2593 template<typename _RealType>
2594 template<typename _Func>
2595 piecewise_linear_distribution<_RealType>::param_type::
2596 param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
2597 : _M_int(), _M_den(), _M_cp(), _M_m()
2598 {
2599 const size_t __n = __nw == 0 ? 1 : __nw;
2600 const _RealType __delta = (__xmax - __xmin) / __n;
2601
2602 _M_int.reserve(__n + 1);
2603 _M_den.reserve(__n + 1);
2604 for (size_t __k = 0; __k <= __nw; ++__k)
2605 {
2606 _M_int.push_back(__xmin + __k * __delta);
2607 _M_den.push_back(__fw(_M_int[__k] + __delta));
2608 }
2609
2610 _M_initialize();
2611 }
2612
2613 template<typename _RealType>
2614 template<typename _UniformRandomNumberGenerator>
2615 typename piecewise_linear_distribution<_RealType>::result_type
2616 piecewise_linear_distribution<_RealType>::
2617 operator()(_UniformRandomNumberGenerator& __urng,
2618 const param_type& __param)
2619 {
2620 __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2621 __aurng(__urng);
2622
2623 const double __p = __aurng();
2624 if (__param._M_cp.empty())
2625 return __p;
2626
2627 auto __pos = std::lower_bound(__param._M_cp.begin(),
2628 __param._M_cp.end(), __p);
2629 const size_t __i = __pos - __param._M_cp.begin();
2630
2631 const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
2632
2633 const double __a = 0.5 * __param._M_m[__i];
2634 const double __b = __param._M_den[__i];
2635 const double __cm = __p - __pref;
2636
2637 _RealType __x = __param._M_int[__i];
2638 if (__a == 0)
2639 __x += __cm / __b;
2640 else
2641 {
2642 const double __d = __b * __b + 4.0 * __a * __cm;
2643 __x += 0.5 * (std::sqrt(__d) - __b) / __a;
2644 }
2645
2646 return __x;
2647 }
2648
2649 template<typename _RealType, typename _CharT, typename _Traits>
2650 std::basic_ostream<_CharT, _Traits>&
2651 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2652 const piecewise_linear_distribution<_RealType>& __x)
2653 {
2654 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2655 typedef typename __ostream_type::ios_base __ios_base;
2656
2657 const typename __ios_base::fmtflags __flags = __os.flags();
2658 const _CharT __fill = __os.fill();
2659 const std::streamsize __precision = __os.precision();
2660 const _CharT __space = __os.widen(' ');
2661 __os.flags(__ios_base::scientific | __ios_base::left);
2662 __os.fill(__space);
2663 __os.precision(std::numeric_limits<_RealType>::max_digits10);
2664
2665 std::vector<_RealType> __int = __x.intervals();
2666 __os << __int.size() - 1;
2667
2668 for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
2669 __os << __space << *__xit;
2670
2671 std::vector<double> __den = __x.densities();
2672 for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
2673 __os << __space << *__dit;
2674
2675 __os.flags(__flags);
2676 __os.fill(__fill);
2677 __os.precision(__precision);
2678 return __os;
2679 }
2680
2681 template<typename _RealType, typename _CharT, typename _Traits>
2682 std::basic_istream<_CharT, _Traits>&
2683 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2684 piecewise_linear_distribution<_RealType>& __x)
2685 {
2686 typedef std::basic_istream<_CharT, _Traits> __istream_type;
2687 typedef typename __istream_type::ios_base __ios_base;
2688
2689 const typename __ios_base::fmtflags __flags = __is.flags();
2690 __is.flags(__ios_base::dec | __ios_base::skipws);
2691
2692 size_t __n;
2693 __is >> __n;
2694
2695 std::vector<_RealType> __int_vec;
2696 __int_vec.reserve(__n + 1);
2697 for (size_t __i = 0; __i <= __n; ++__i)
2698 {
2699 _RealType __int;
2700 __is >> __int;
2701 __int_vec.push_back(__int);
2702 }
2703
2704 std::vector<double> __den_vec;
2705 __den_vec.reserve(__n + 1);
2706 for (size_t __i = 0; __i <= __n; ++__i)
2707 {
2708 double __den;
2709 __is >> __den;
2710 __den_vec.push_back(__den);
2711 }
2712
2713 __x.param(typename piecewise_linear_distribution<_RealType>::
2714 param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
2715
2716 __is.flags(__flags);
2717 return __is;
2718 }
2719
2720
2721 template<typename _IntType>
2722 seed_seq::seed_seq(std::initializer_list<_IntType> __il)
2723 {
2724 for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter)
2725 _M_v.push_back(__detail::__mod<result_type,
2726 __detail::_Shift<result_type, 32>::__value>(*__iter));
2727 }
2728
2729 template<typename _InputIterator>
2730 seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end)
2731 {
2732 for (_InputIterator __iter = __begin; __iter != __end; ++__iter)
2733 _M_v.push_back(__detail::__mod<result_type,
2734 __detail::_Shift<result_type, 32>::__value>(*__iter));
2735 }
2736
2737 template<typename _RandomAccessIterator>
2738 void
2739 seed_seq::generate(_RandomAccessIterator __begin,
2740 _RandomAccessIterator __end)
2741 {
2742 typedef typename iterator_traits<_RandomAccessIterator>::value_type
2743 _Type;
2744
2745 if (__begin == __end)
2746 return;
2747
2748 std::fill(__begin, __end, _Type(0x8b8b8b8bu));
2749
2750 const size_t __n = __end - __begin;
2751 const size_t __s = _M_v.size();
2752 const size_t __t = (__n >= 623) ? 11
2753 : (__n >= 68) ? 7
2754 : (__n >= 39) ? 5
2755 : (__n >= 7) ? 3
2756 : (__n - 1) / 2;
2757 const size_t __p = (__n - __t) / 2;
2758 const size_t __q = __p + __t;
2759 const size_t __m = std::max(__s + 1, __n);
2760
2761 for (size_t __k = 0; __k < __m; ++__k)
2762 {
2763 _Type __arg = (__begin[__k % __n]
2764 ^ __begin[(__k + __p) % __n]
2765 ^ __begin[(__k - 1) % __n]);
2766 _Type __r1 = __arg ^ (__arg << 27);
2767 __r1 = __detail::__mod<_Type, __detail::_Shift<_Type, 32>::__value,
2768 1664525u, 0u>(__r1);
2769 _Type __r2 = __r1;
2770 if (__k == 0)
2771 __r2 += __s;
2772 else if (__k <= __s)
2773 __r2 += __k % __n + _M_v[__k - 1];
2774 else
2775 __r2 += __k % __n;
2776 __r2 = __detail::__mod<_Type,
2777 __detail::_Shift<_Type, 32>::__value>(__r2);
2778 __begin[(__k + __p) % __n] += __r1;
2779 __begin[(__k + __q) % __n] += __r2;
2780 __begin[__k % __n] = __r2;
2781 }
2782
2783 for (size_t __k = __m; __k < __m + __n; ++__k)
2784 {
2785 _Type __arg = (__begin[__k % __n]
2786 + __begin[(__k + __p) % __n]
2787 + __begin[(__k - 1) % __n]);
2788 _Type __r3 = __arg ^ (__arg << 27);
2789 __r3 = __detail::__mod<_Type, __detail::_Shift<_Type, 32>::__value,
2790 1566083941u, 0u>(__r3);
2791 _Type __r4 = __r3 - __k % __n;
2792 __r4 = __detail::__mod<_Type,
2793 __detail::_Shift<_Type, 32>::__value>(__r4);
2794 __begin[(__k + __p) % __n] ^= __r4;
2795 __begin[(__k + __q) % __n] ^= __r3;
2796 __begin[__k % __n] = __r4;
2797 }
2798 }
2799
2800 template<typename _RealType, size_t __bits,
2801 typename _UniformRandomNumberGenerator>
2802 _RealType
2803 generate_canonical(_UniformRandomNumberGenerator& __urng)
2804 {
2805 const size_t __b
2806 = std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits),
2807 __bits);
2808 const long double __r = static_cast<long double>(__urng.max())
2809 - static_cast<long double>(__urng.min()) + 1.0L;
2810 const size_t __log2r = std::log(__r) / std::log(2.0L);
2811 size_t __k = std::max<size_t>(1UL, (__b + __log2r - 1UL) / __log2r);
2812 _RealType __sum = _RealType(0);
2813 _RealType __tmp = _RealType(1);
2814 for (; __k != 0; --__k)
2815 {
2816 __sum += _RealType(__urng() - __urng.min()) * __tmp;
2817 __tmp *= __r;
2818 }
2819 return __sum / __tmp;
2820 }
2821 }
2822
2823 #endif