]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/bits/regex_executor.tcc
re PR libstdc++/63920 (Any regular expression should not match an empty sequence...
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / regex_executor.tcc
1 // class template regex -*- C++ -*-
2
3 // Copyright (C) 2013-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /**
26 * @file bits/regex_executor.tcc
27 * This is an internal header file, included by other library headers.
28 * Do not attempt to use it directly. @headername{regex}
29 */
30
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 namespace __detail
34 {
35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
36
37 template<typename _BiIter, typename _Alloc, typename _TraitsT,
38 bool __dfs_mode>
39 bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
40 _M_search()
41 {
42 if (_M_search_from_first())
43 return true;
44 if (_M_flags & regex_constants::match_continuous)
45 return false;
46 _M_flags |= regex_constants::match_prev_avail;
47 while (_M_begin != _M_end)
48 {
49 ++_M_begin;
50 if (_M_search_from_first())
51 return true;
52 }
53 return false;
54 }
55
56 // The _M_main function operates in different modes, DFS mode or BFS mode,
57 // indicated by template parameter __dfs_mode, and dispatches to one of the
58 // _M_main_dispatch overloads.
59 //
60 // ------------------------------------------------------------
61 //
62 // DFS mode:
63 //
64 // It applies a Depth-First-Search (aka backtracking) on given NFA and input
65 // string.
66 // At the very beginning the executor stands in the start state, then it
67 // tries every possible state transition in current state recursively. Some
68 // state transitions consume input string, say, a single-char-matcher or a
69 // back-reference matcher; some don't, like assertion or other anchor nodes.
70 // When the input is exhausted and/or the current state is an accepting
71 // state, the whole executor returns true.
72 //
73 // TODO: This approach is exponentially slow for certain input.
74 // Try to compile the NFA to a DFA.
75 //
76 // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
77 // Space complexity: \theta(match_results.size() + match_length)
78 //
79 template<typename _BiIter, typename _Alloc, typename _TraitsT,
80 bool __dfs_mode>
81 bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
82 _M_main_dispatch(_Match_mode __match_mode, __dfs)
83 {
84 _M_has_sol = false;
85 *_M_states._M_get_sol_pos() = _BiIter();
86 _M_cur_results = _M_results;
87 _M_dfs(__match_mode, _M_states._M_start);
88 return _M_has_sol;
89 }
90
91 // ------------------------------------------------------------
92 //
93 // BFS mode:
94 //
95 // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
96 // explained this algorithm clearly.
97 //
98 // It first computes epsilon closure (states that can be achieved without
99 // consuming characters) for every state that's still matching,
100 // using the same DFS algorithm, but doesn't re-enter states (using
101 // _M_states._M_visited to check), nor follow _S_opcode_match.
102 //
103 // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
104 // as the start state.
105 //
106 // It significantly reduces potential duplicate states, so has a better
107 // upper bound; but it requires more overhead.
108 //
109 // Time complexity: \Omega(match_length * match_results.size())
110 // O(match_length * _M_nfa.size() * match_results.size())
111 // Space complexity: \Omega(_M_nfa.size() + match_results.size())
112 // O(_M_nfa.size() * match_results.size())
113 template<typename _BiIter, typename _Alloc, typename _TraitsT,
114 bool __dfs_mode>
115 bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
116 _M_main_dispatch(_Match_mode __match_mode, __bfs)
117 {
118 _M_states._M_queue(_M_states._M_start, _M_results);
119 bool __ret = false;
120 while (1)
121 {
122 _M_has_sol = false;
123 if (_M_states._M_match_queue.empty())
124 break;
125 std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false);
126 auto __old_queue = std::move(_M_states._M_match_queue);
127 for (auto& __task : __old_queue)
128 {
129 _M_cur_results = std::move(__task.second);
130 _M_dfs(__match_mode, __task.first);
131 }
132 if (__match_mode == _Match_mode::_Prefix)
133 __ret |= _M_has_sol;
134 if (_M_current == _M_end)
135 break;
136 ++_M_current;
137 }
138 if (__match_mode == _Match_mode::_Exact)
139 __ret = _M_has_sol;
140 _M_states._M_match_queue.clear();
141 return __ret;
142 }
143
144 // Return whether now match the given sub-NFA.
145 template<typename _BiIter, typename _Alloc, typename _TraitsT,
146 bool __dfs_mode>
147 bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
148 _M_lookahead(_State<_TraitsT> __state)
149 {
150 _ResultsVec __what(_M_cur_results.size());
151 _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
152 __sub._M_states._M_start = __state._M_alt;
153 if (__sub._M_search_from_first())
154 {
155 for (size_t __i = 0; __i < __what.size(); __i++)
156 if (__what[__i].matched)
157 _M_cur_results[__i] = __what[__i];
158 return true;
159 }
160 return false;
161 }
162
163 // __rep_count records how many times (__rep_count.second)
164 // this node is visited under certain input iterator
165 // (__rep_count.first). This prevent the executor from entering
166 // infinite loop by refusing to continue when it's already been
167 // visited more than twice. It's `twice` instead of `once` because
168 // we need to spare one more time for potential group capture.
169 template<typename _BiIter, typename _Alloc, typename _TraitsT,
170 bool __dfs_mode>
171 void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
172 _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
173 {
174 const auto& __state = _M_nfa[__i];
175 auto& __rep_count = _M_rep_count[__i];
176 if (__rep_count.second == 0 || __rep_count.first != _M_current)
177 {
178 auto __back = __rep_count;
179 __rep_count.first = _M_current;
180 __rep_count.second = 1;
181 _M_dfs(__match_mode, __state._M_alt);
182 __rep_count = __back;
183 }
184 else
185 {
186 if (__rep_count.second < 2)
187 {
188 __rep_count.second++;
189 _M_dfs(__match_mode, __state._M_alt);
190 __rep_count.second--;
191 }
192 }
193 };
194
195 template<typename _BiIter, typename _Alloc, typename _TraitsT,
196 bool __dfs_mode>
197 void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
198 _M_dfs(_Match_mode __match_mode, _StateIdT __i)
199 {
200 if (_M_states._M_visited(__i))
201 return;
202
203 const auto& __state = _M_nfa[__i];
204 // Every change on _M_cur_results and _M_current will be rolled back after
205 // finishing the recursion step.
206 switch (__state._M_opcode)
207 {
208 // _M_alt branch is "match once more", while _M_next is "get me out
209 // of this quantifier". Executing _M_next first or _M_alt first don't
210 // mean the same thing, and we need to choose the correct order under
211 // given greedy mode.
212 case _S_opcode_repeat:
213 {
214 // Greedy.
215 if (!__state._M_neg)
216 {
217 _M_rep_once_more(__match_mode, __i);
218 // If it's DFS executor and already accepted, we're done.
219 if (!__dfs_mode || !_M_has_sol)
220 _M_dfs(__match_mode, __state._M_next);
221 }
222 else // Non-greedy mode
223 {
224 if (__dfs_mode)
225 {
226 // vice-versa.
227 _M_dfs(__match_mode, __state._M_next);
228 if (!_M_has_sol)
229 _M_rep_once_more(__match_mode, __i);
230 }
231 else
232 {
233 // DON'T attempt anything, because there's already another
234 // state with higher priority accepted. This state cannot
235 // be better by attempting its next node.
236 if (!_M_has_sol)
237 {
238 _M_dfs(__match_mode, __state._M_next);
239 // DON'T attempt anything if it's already accepted. An
240 // accepted state *must* be better than a solution that
241 // matches a non-greedy quantifier one more time.
242 if (!_M_has_sol)
243 _M_rep_once_more(__match_mode, __i);
244 }
245 }
246 }
247 }
248 break;
249 case _S_opcode_subexpr_begin:
250 {
251 auto& __res = _M_cur_results[__state._M_subexpr];
252 auto __back = __res.first;
253 __res.first = _M_current;
254 _M_dfs(__match_mode, __state._M_next);
255 __res.first = __back;
256 }
257 break;
258 case _S_opcode_subexpr_end:
259 {
260 auto& __res = _M_cur_results[__state._M_subexpr];
261 auto __back = __res;
262 __res.second = _M_current;
263 __res.matched = true;
264 _M_dfs(__match_mode, __state._M_next);
265 __res = __back;
266 }
267 break;
268 case _S_opcode_line_begin_assertion:
269 if (_M_at_begin())
270 _M_dfs(__match_mode, __state._M_next);
271 break;
272 case _S_opcode_line_end_assertion:
273 if (_M_at_end())
274 _M_dfs(__match_mode, __state._M_next);
275 break;
276 case _S_opcode_word_boundary:
277 if (_M_word_boundary() == !__state._M_neg)
278 _M_dfs(__match_mode, __state._M_next);
279 break;
280 // Here __state._M_alt offers a single start node for a sub-NFA.
281 // We recursively invoke our algorithm to match the sub-NFA.
282 case _S_opcode_subexpr_lookahead:
283 if (_M_lookahead(__state) == !__state._M_neg)
284 _M_dfs(__match_mode, __state._M_next);
285 break;
286 case _S_opcode_match:
287 if (_M_current == _M_end)
288 break;
289 if (__dfs_mode)
290 {
291 if (__state._M_matches(*_M_current))
292 {
293 ++_M_current;
294 _M_dfs(__match_mode, __state._M_next);
295 --_M_current;
296 }
297 }
298 else
299 if (__state._M_matches(*_M_current))
300 _M_states._M_queue(__state._M_next, _M_cur_results);
301 break;
302 // First fetch the matched result from _M_cur_results as __submatch;
303 // then compare it with
304 // (_M_current, _M_current + (__submatch.second - __submatch.first)).
305 // If matched, keep going; else just return and try another state.
306 case _S_opcode_backref:
307 {
308 _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
309 auto& __submatch = _M_cur_results[__state._M_backref_index];
310 if (!__submatch.matched)
311 break;
312 auto __last = _M_current;
313 for (auto __tmp = __submatch.first;
314 __last != _M_end && __tmp != __submatch.second;
315 ++__tmp)
316 ++__last;
317 if (_M_re._M_automaton->_M_traits.transform(__submatch.first,
318 __submatch.second)
319 == _M_re._M_automaton->_M_traits.transform(_M_current, __last))
320 {
321 if (__last != _M_current)
322 {
323 auto __backup = _M_current;
324 _M_current = __last;
325 _M_dfs(__match_mode, __state._M_next);
326 _M_current = __backup;
327 }
328 else
329 _M_dfs(__match_mode, __state._M_next);
330 }
331 }
332 break;
333 case _S_opcode_accept:
334 if (__dfs_mode)
335 {
336 _GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
337 if (__match_mode == _Match_mode::_Exact)
338 _M_has_sol = _M_current == _M_end;
339 else
340 _M_has_sol = true;
341 if (_M_current == _M_begin
342 && (_M_flags & regex_constants::match_not_null))
343 _M_has_sol = false;
344 if (_M_has_sol)
345 {
346 if (_M_nfa._M_flags & regex_constants::ECMAScript)
347 _M_results = _M_cur_results;
348 else // POSIX
349 {
350 _GLIBCXX_DEBUG_ASSERT(_M_states._M_get_sol_pos());
351 // Here's POSIX's logic: match the longest one. However
352 // we never know which one (lhs or rhs of "|") is longer
353 // unless we try both of them and compare the results.
354 // The member variable _M_sol_pos records the end
355 // position of the last successful match. It's better
356 // to be larger, because POSIX regex is always greedy.
357 // TODO: This could be slow.
358 if (*_M_states._M_get_sol_pos() == _BiIter()
359 || std::distance(_M_begin,
360 *_M_states._M_get_sol_pos())
361 < std::distance(_M_begin, _M_current))
362 {
363 *_M_states._M_get_sol_pos() = _M_current;
364 _M_results = _M_cur_results;
365 }
366 }
367 }
368 }
369 else
370 {
371 if (_M_current == _M_begin
372 && (_M_flags & regex_constants::match_not_null))
373 break;
374 if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
375 if (!_M_has_sol)
376 {
377 _M_has_sol = true;
378 _M_results = _M_cur_results;
379 }
380 }
381 break;
382 case _S_opcode_alternative:
383 if (_M_nfa._M_flags & regex_constants::ECMAScript)
384 {
385 // TODO: Let BFS support ECMAScript's alternative operation.
386 _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
387 _M_dfs(__match_mode, __state._M_alt);
388 // Pick lhs if it matches. Only try rhs if it doesn't.
389 if (!_M_has_sol)
390 _M_dfs(__match_mode, __state._M_next);
391 }
392 else
393 {
394 // Try both and compare the result.
395 // See "case _S_opcode_accept:" handling above.
396 _M_dfs(__match_mode, __state._M_alt);
397 auto __has_sol = _M_has_sol;
398 _M_has_sol = false;
399 _M_dfs(__match_mode, __state._M_next);
400 _M_has_sol |= __has_sol;
401 }
402 break;
403 default:
404 _GLIBCXX_DEBUG_ASSERT(false);
405 }
406 }
407
408 // Return whether now is at some word boundary.
409 template<typename _BiIter, typename _Alloc, typename _TraitsT,
410 bool __dfs_mode>
411 bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
412 _M_word_boundary() const
413 {
414 bool __left_is_word = false;
415 if (_M_current != _M_begin
416 || (_M_flags & regex_constants::match_prev_avail))
417 {
418 auto __prev = _M_current;
419 if (_M_is_word(*std::prev(__prev)))
420 __left_is_word = true;
421 }
422 bool __right_is_word =
423 _M_current != _M_end && _M_is_word(*_M_current);
424
425 if (__left_is_word == __right_is_word)
426 return false;
427 if (__left_is_word && !(_M_flags & regex_constants::match_not_eow))
428 return true;
429 if (__right_is_word && !(_M_flags & regex_constants::match_not_bow))
430 return true;
431 return false;
432 }
433
434 _GLIBCXX_END_NAMESPACE_VERSION
435 } // namespace __detail
436 } // namespace