]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/bits/stl_deque.h
c++config (_GLIBCXX_STD): New.
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / stl_deque.h
1 // Deque implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_deque.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef _DEQUE_H
62 #define _DEQUE_H 1
63
64 #include <bits/concept_check.h>
65 #include <bits/stl_iterator_base_types.h>
66 #include <bits/stl_iterator_base_funcs.h>
67
68 namespace _GLIBCXX_STD
69 {
70 /**
71 * @if maint
72 * @brief This function controls the size of memory nodes.
73 * @param size The size of an element.
74 * @return The number (not byte size) of elements per node.
75 *
76 * This function started off as a compiler kludge from SGI, but seems to
77 * be a useful wrapper around a repeated constant expression. The '512' is
78 * tuneable (and no other code needs to change), but no investigation has
79 * been done since inheriting the SGI code.
80 * @endif
81 */
82 inline size_t
83 __deque_buf_size(size_t __size)
84 { return __size < 512 ? size_t(512 / __size) : size_t(1); }
85
86
87 /**
88 * @brief A deque::iterator.
89 *
90 * Quite a bit of intelligence here. Much of the functionality of deque is
91 * actually passed off to this class. A deque holds two of these internally,
92 * marking its valid range. Access to elements is done as offsets of either
93 * of those two, relying on operator overloading in this class.
94 *
95 * @if maint
96 * All the functions are op overloads except for _M_set_node.
97 * @endif
98 */
99 template<typename _Tp, typename _Ref, typename _Ptr>
100 struct _Deque_iterator
101 {
102 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
103 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
104
105 static size_t _S_buffer_size()
106 { return __deque_buf_size(sizeof(_Tp)); }
107
108 typedef random_access_iterator_tag iterator_category;
109 typedef _Tp value_type;
110 typedef _Ptr pointer;
111 typedef _Ref reference;
112 typedef size_t size_type;
113 typedef ptrdiff_t difference_type;
114 typedef _Tp** _Map_pointer;
115 typedef _Deque_iterator _Self;
116
117 _Tp* _M_cur;
118 _Tp* _M_first;
119 _Tp* _M_last;
120 _Map_pointer _M_node;
121
122 _Deque_iterator(_Tp* __x, _Map_pointer __y)
123 : _M_cur(__x), _M_first(*__y),
124 _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
125
126 _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
127
128 _Deque_iterator(const iterator& __x)
129 : _M_cur(__x._M_cur), _M_first(__x._M_first),
130 _M_last(__x._M_last), _M_node(__x._M_node) {}
131
132 reference
133 operator*() const
134 { return *_M_cur; }
135
136 pointer
137 operator->() const
138 { return _M_cur; }
139
140 _Self&
141 operator++()
142 {
143 ++_M_cur;
144 if (_M_cur == _M_last)
145 {
146 _M_set_node(_M_node + 1);
147 _M_cur = _M_first;
148 }
149 return *this;
150 }
151
152 _Self
153 operator++(int)
154 {
155 _Self __tmp = *this;
156 ++*this;
157 return __tmp;
158 }
159
160 _Self&
161 operator--()
162 {
163 if (_M_cur == _M_first)
164 {
165 _M_set_node(_M_node - 1);
166 _M_cur = _M_last;
167 }
168 --_M_cur;
169 return *this;
170 }
171
172 _Self
173 operator--(int)
174 {
175 _Self __tmp = *this;
176 --*this;
177 return __tmp;
178 }
179
180 _Self&
181 operator+=(difference_type __n)
182 {
183 const difference_type __offset = __n + (_M_cur - _M_first);
184 if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
185 _M_cur += __n;
186 else
187 {
188 const difference_type __node_offset =
189 __offset > 0 ? __offset / difference_type(_S_buffer_size())
190 : -difference_type((-__offset - 1)
191 / _S_buffer_size()) - 1;
192 _M_set_node(_M_node + __node_offset);
193 _M_cur = _M_first + (__offset - __node_offset
194 * difference_type(_S_buffer_size()));
195 }
196 return *this;
197 }
198
199 _Self
200 operator+(difference_type __n) const
201 {
202 _Self __tmp = *this;
203 return __tmp += __n;
204 }
205
206 _Self&
207 operator-=(difference_type __n)
208 { return *this += -__n; }
209
210 _Self
211 operator-(difference_type __n) const
212 {
213 _Self __tmp = *this;
214 return __tmp -= __n;
215 }
216
217 reference
218 operator[](difference_type __n) const
219 { return *(*this + __n); }
220
221 /** @if maint
222 * Prepares to traverse new_node. Sets everything except _M_cur, which
223 * should therefore be set by the caller immediately afterwards, based on
224 * _M_first and _M_last.
225 * @endif
226 */
227 void
228 _M_set_node(_Map_pointer __new_node)
229 {
230 _M_node = __new_node;
231 _M_first = *__new_node;
232 _M_last = _M_first + difference_type(_S_buffer_size());
233 }
234 };
235
236 // Note: we also provide overloads whose operands are of the same type in
237 // order to avoid ambiguous overload resolution when std::rel_ops operators
238 // are in scope (for additional details, see libstdc++/3628)
239 template<typename _Tp, typename _Ref, typename _Ptr>
240 inline bool
241 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
242 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
243 { return __x._M_cur == __y._M_cur; }
244
245 template<typename _Tp, typename _RefL, typename _PtrL,
246 typename _RefR, typename _PtrR>
247 inline bool
248 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
249 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
250 { return __x._M_cur == __y._M_cur; }
251
252 template<typename _Tp, typename _Ref, typename _Ptr>
253 inline bool
254 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
255 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
256 { return !(__x == __y); }
257
258 template<typename _Tp, typename _RefL, typename _PtrL,
259 typename _RefR, typename _PtrR>
260 inline bool
261 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
262 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
263 { return !(__x == __y); }
264
265 template<typename _Tp, typename _Ref, typename _Ptr>
266 inline bool
267 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
268 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
269 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
270 : (__x._M_node < __y._M_node); }
271
272 template<typename _Tp, typename _RefL, typename _PtrL,
273 typename _RefR, typename _PtrR>
274 inline bool
275 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
276 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
277 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
278 : (__x._M_node < __y._M_node); }
279
280 template<typename _Tp, typename _Ref, typename _Ptr>
281 inline bool
282 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
283 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
284 { return __y < __x; }
285
286 template<typename _Tp, typename _RefL, typename _PtrL,
287 typename _RefR, typename _PtrR>
288 inline bool
289 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
290 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
291 { return __y < __x; }
292
293 template<typename _Tp, typename _Ref, typename _Ptr>
294 inline bool
295 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
296 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
297 { return !(__y < __x); }
298
299 template<typename _Tp, typename _RefL, typename _PtrL,
300 typename _RefR, typename _PtrR>
301 inline bool
302 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
303 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
304 { return !(__y < __x); }
305
306 template<typename _Tp, typename _Ref, typename _Ptr>
307 inline bool
308 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
309 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
310 { return !(__x < __y); }
311
312 template<typename _Tp, typename _RefL, typename _PtrL,
313 typename _RefR, typename _PtrR>
314 inline bool
315 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
316 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
317 { return !(__x < __y); }
318
319 // _GLIBCXX_RESOLVE_LIB_DEFECTS
320 // According to the resolution of DR179 not only the various comparison
321 // operators but also operator- must accept mixed iterator/const_iterator
322 // parameters.
323 template<typename _Tp, typename _RefL, typename _PtrL,
324 typename _RefR, typename _PtrR>
325 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
326 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
327 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
328 {
329 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
330 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
331 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
332 + (__y._M_last - __y._M_cur);
333 }
334
335 template<typename _Tp, typename _Ref, typename _Ptr>
336 inline _Deque_iterator<_Tp, _Ref, _Ptr>
337 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
338 { return __x + __n; }
339
340 /**
341 * @if maint
342 * Deque base class. This class provides the unified face for %deque's
343 * allocation. This class's constructor and destructor allocate and
344 * deallocate (but do not initialize) storage. This makes %exception
345 * safety easier.
346 *
347 * Nothing in this class ever constructs or destroys an actual Tp element.
348 * (Deque handles that itself.) Only/All memory management is performed
349 * here.
350 * @endif
351 */
352 template<typename _Tp, typename _Alloc>
353 class _Deque_base
354 {
355 public:
356 typedef _Alloc allocator_type;
357
358 allocator_type
359 get_allocator() const
360 { return *static_cast<const _Alloc*>(&this->_M_impl); }
361
362 typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator;
363 typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
364
365 _Deque_base(const allocator_type& __a, size_t __num_elements)
366 : _M_impl(__a)
367 { _M_initialize_map(__num_elements); }
368
369 _Deque_base(const allocator_type& __a)
370 : _M_impl(__a)
371 { }
372
373 ~_Deque_base();
374
375 protected:
376 //This struct encapsulates the implementation of the std::deque
377 //standard container and at the same time makes use of the EBO
378 //for empty allocators.
379 struct _Deque_impl
380 : public _Alloc {
381 _Tp** _M_map;
382 size_t _M_map_size;
383 iterator _M_start;
384 iterator _M_finish;
385
386 _Deque_impl(const _Alloc& __a)
387 : _Alloc(__a), _M_map(0), _M_map_size(0), _M_start(), _M_finish()
388 { }
389 };
390
391 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
392 _Map_alloc_type _M_get_map_allocator() const
393 { return _Map_alloc_type(this->get_allocator()); }
394
395 _Tp*
396 _M_allocate_node()
397 { return _M_impl._Alloc::allocate(__deque_buf_size(sizeof(_Tp))); }
398
399 void
400 _M_deallocate_node(_Tp* __p)
401 { _M_impl._Alloc::deallocate(__p, __deque_buf_size(sizeof(_Tp))); }
402
403 _Tp**
404 _M_allocate_map(size_t __n)
405 { return _M_get_map_allocator().allocate(__n); }
406
407 void
408 _M_deallocate_map(_Tp** __p, size_t __n)
409 { _M_get_map_allocator().deallocate(__p, __n); }
410
411 protected:
412 void _M_initialize_map(size_t);
413 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
414 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
415 enum { _S_initial_map_size = 8 };
416
417 _Deque_impl _M_impl;
418 };
419
420 template<typename _Tp, typename _Alloc>
421 _Deque_base<_Tp,_Alloc>::~_Deque_base()
422 {
423 if (this->_M_impl._M_map)
424 {
425 _M_destroy_nodes(this->_M_impl._M_start._M_node, this->_M_impl._M_finish._M_node + 1);
426 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
427 }
428 }
429
430 /**
431 * @if maint
432 * @brief Layout storage.
433 * @param num_elements The count of T's for which to allocate space
434 * at first.
435 * @return Nothing.
436 *
437 * The initial underlying memory layout is a bit complicated...
438 * @endif
439 */
440 template<typename _Tp, typename _Alloc>
441 void
442 _Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements)
443 {
444 size_t __num_nodes = __num_elements / __deque_buf_size(sizeof(_Tp)) + 1;
445
446 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
447 __num_nodes + 2);
448 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
449
450 // For "small" maps (needing less than _M_map_size nodes), allocation
451 // starts in the middle elements and grows outwards. So nstart may be
452 // the beginning of _M_map, but for small maps it may be as far in as
453 // _M_map+3.
454
455 _Tp** __nstart = this->_M_impl._M_map + (this->_M_impl._M_map_size - __num_nodes) / 2;
456 _Tp** __nfinish = __nstart + __num_nodes;
457
458 try
459 { _M_create_nodes(__nstart, __nfinish); }
460 catch(...)
461 {
462 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
463 this->_M_impl._M_map = 0;
464 this->_M_impl._M_map_size = 0;
465 __throw_exception_again;
466 }
467
468 this->_M_impl._M_start._M_set_node(__nstart);
469 this->_M_impl._M_finish._M_set_node(__nfinish - 1);
470 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
471 this->_M_impl._M_finish._M_cur = this->_M_impl._M_finish._M_first + __num_elements
472 % __deque_buf_size(sizeof(_Tp));
473 }
474
475 template<typename _Tp, typename _Alloc>
476 void
477 _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
478 {
479 _Tp** __cur;
480 try
481 {
482 for (__cur = __nstart; __cur < __nfinish; ++__cur)
483 *__cur = this->_M_allocate_node();
484 }
485 catch(...)
486 {
487 _M_destroy_nodes(__nstart, __cur);
488 __throw_exception_again;
489 }
490 }
491
492 template<typename _Tp, typename _Alloc>
493 void
494 _Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
495 {
496 for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
497 _M_deallocate_node(*__n);
498 }
499
500 /**
501 * @brief A standard container using fixed-size memory allocation and
502 * constant-time manipulation of elements at either end.
503 *
504 * @ingroup Containers
505 * @ingroup Sequences
506 *
507 * Meets the requirements of a <a href="tables.html#65">container</a>, a
508 * <a href="tables.html#66">reversible container</a>, and a
509 * <a href="tables.html#67">sequence</a>, including the
510 * <a href="tables.html#68">optional sequence requirements</a>.
511 *
512 * In previous HP/SGI versions of deque, there was an extra template
513 * parameter so users could control the node size. This extension turned
514 * out to violate the C++ standard (it can be detected using template
515 * template parameters), and it was removed.
516 *
517 * @if maint
518 * Here's how a deque<Tp> manages memory. Each deque has 4 members:
519 *
520 * - Tp** _M_map
521 * - size_t _M_map_size
522 * - iterator _M_start, _M_finish
523 *
524 * map_size is at least 8. %map is an array of map_size pointers-to-"nodes".
525 * (The name %map has nothing to do with the std::map class, and "nodes"
526 * should not be confused with std::list's usage of "node".)
527 *
528 * A "node" has no specific type name as such, but it is referred to as
529 * "node" in this file. It is a simple array-of-Tp. If Tp is very large,
530 * there will be one Tp element per node (i.e., an "array" of one).
531 * For non-huge Tp's, node size is inversely related to Tp size: the
532 * larger the Tp, the fewer Tp's will fit in a node. The goal here is to
533 * keep the total size of a node relatively small and constant over different
534 * Tp's, to improve allocator efficiency.
535 *
536 * **** As I write this, the nodes are /not/ allocated using the high-speed
537 * memory pool. There are 20 hours left in the year; perhaps I can fix
538 * this before 2002.
539 *
540 * Not every pointer in the %map array will point to a node. If the initial
541 * number of elements in the deque is small, the /middle/ %map pointers will
542 * be valid, and the ones at the edges will be unused. This same situation
543 * will arise as the %map grows: available %map pointers, if any, will be on
544 * the ends. As new nodes are created, only a subset of the %map's pointers
545 * need to be copied "outward".
546 *
547 * Class invariants:
548 * - For any nonsingular iterator i:
549 * - i.node points to a member of the %map array. (Yes, you read that
550 * correctly: i.node does not actually point to a node.) The member of
551 * the %map array is what actually points to the node.
552 * - i.first == *(i.node) (This points to the node (first Tp element).)
553 * - i.last == i.first + node_size
554 * - i.cur is a pointer in the range [i.first, i.last). NOTE:
555 * the implication of this is that i.cur is always a dereferenceable
556 * pointer, even if i is a past-the-end iterator.
557 * - Start and Finish are always nonsingular iterators. NOTE: this means that
558 * an empty deque must have one node, a deque with <N elements (where N is
559 * the node buffer size) must have one node, a deque with N through (2N-1)
560 * elements must have two nodes, etc.
561 * - For every node other than start.node and finish.node, every element in
562 * the node is an initialized object. If start.node == finish.node, then
563 * [start.cur, finish.cur) are initialized objects, and the elements outside
564 * that range are uninitialized storage. Otherwise, [start.cur, start.last)
565 * and [finish.first, finish.cur) are initialized objects, and [start.first,
566 * start.cur) and [finish.cur, finish.last) are uninitialized storage.
567 * - [%map, %map + map_size) is a valid, non-empty range.
568 * - [start.node, finish.node] is a valid range contained within
569 * [%map, %map + map_size).
570 * - A pointer in the range [%map, %map + map_size) points to an allocated
571 * node if and only if the pointer is in the range
572 * [start.node, finish.node].
573 *
574 * Here's the magic: nothing in deque is "aware" of the discontiguous
575 * storage!
576 *
577 * The memory setup and layout occurs in the parent, _Base, and the iterator
578 * class is entirely responsible for "leaping" from one node to the next.
579 * All the implementation routines for deque itself work only through the
580 * start and finish iterators. This keeps the routines simple and sane,
581 * and we can use other standard algorithms as well.
582 * @endif
583 */
584 template<typename _Tp, typename _Alloc = allocator<_Tp> >
585 class deque : protected _Deque_base<_Tp, _Alloc>
586 {
587 // concept requirements
588 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
589
590 typedef _Deque_base<_Tp, _Alloc> _Base;
591
592 public:
593 typedef _Tp value_type;
594 typedef value_type* pointer;
595 typedef const value_type* const_pointer;
596 typedef typename _Base::iterator iterator;
597 typedef typename _Base::const_iterator const_iterator;
598 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
599 typedef std::reverse_iterator<iterator> reverse_iterator;
600 typedef value_type& reference;
601 typedef const value_type& const_reference;
602 typedef size_t size_type;
603 typedef ptrdiff_t difference_type;
604 typedef typename _Base::allocator_type allocator_type;
605
606 protected:
607 typedef pointer* _Map_pointer;
608
609 static size_t _S_buffer_size()
610 { return __deque_buf_size(sizeof(_Tp)); }
611
612 // Functions controlling memory layout, and nothing else.
613 using _Base::_M_initialize_map;
614 using _Base::_M_create_nodes;
615 using _Base::_M_destroy_nodes;
616 using _Base::_M_allocate_node;
617 using _Base::_M_deallocate_node;
618 using _Base::_M_allocate_map;
619 using _Base::_M_deallocate_map;
620
621 /** @if maint
622 * A total of four data members accumulated down the heirarchy.
623 * May be accessed via _M_impl.*
624 * @endif
625 */
626 using _Base::_M_impl;
627
628 public:
629 // [23.2.1.1] construct/copy/destroy
630 // (assign() and get_allocator() are also listed in this section)
631 /**
632 * @brief Default constructor creates no elements.
633 */
634 explicit
635 deque(const allocator_type& __a = allocator_type())
636 : _Base(__a, 0) {}
637
638 /**
639 * @brief Create a %deque with copies of an exemplar element.
640 * @param n The number of elements to initially create.
641 * @param value An element to copy.
642 *
643 * This constructor fills the %deque with @a n copies of @a value.
644 */
645 deque(size_type __n, const value_type& __value,
646 const allocator_type& __a = allocator_type())
647 : _Base(__a, __n)
648 { _M_fill_initialize(__value); }
649
650 /**
651 * @brief Create a %deque with default elements.
652 * @param n The number of elements to initially create.
653 *
654 * This constructor fills the %deque with @a n copies of a
655 * default-constructed element.
656 */
657 explicit
658 deque(size_type __n)
659 : _Base(allocator_type(), __n)
660 { _M_fill_initialize(value_type()); }
661
662 /**
663 * @brief %Deque copy constructor.
664 * @param x A %deque of identical element and allocator types.
665 *
666 * The newly-created %deque uses a copy of the allocation object used
667 * by @a x.
668 */
669 deque(const deque& __x)
670 : _Base(__x.get_allocator(), __x.size())
671 { std::uninitialized_copy(__x.begin(), __x.end(), this->_M_impl._M_start); }
672
673 /**
674 * @brief Builds a %deque from a range.
675 * @param first An input iterator.
676 * @param last An input iterator.
677 *
678 * Create a %deque consisting of copies of the elements from [first,
679 * last).
680 *
681 * If the iterators are forward, bidirectional, or random-access, then
682 * this will call the elements' copy constructor N times (where N is
683 * distance(first,last)) and do no memory reallocation. But if only
684 * input iterators are used, then this will do at most 2N calls to the
685 * copy constructor, and logN memory reallocations.
686 */
687 template<typename _InputIterator>
688 deque(_InputIterator __first, _InputIterator __last,
689 const allocator_type& __a = allocator_type())
690 : _Base(__a)
691 {
692 // Check whether it's an integral type. If so, it's not an iterator.
693 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
694 _M_initialize_dispatch(__first, __last, _Integral());
695 }
696
697 /**
698 * The dtor only erases the elements, and note that if the elements
699 * themselves are pointers, the pointed-to memory is not touched in any
700 * way. Managing the pointer is the user's responsibilty.
701 */
702 ~deque()
703 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish); }
704
705 /**
706 * @brief %Deque assignment operator.
707 * @param x A %deque of identical element and allocator types.
708 *
709 * All the elements of @a x are copied, but unlike the copy constructor,
710 * the allocator object is not copied.
711 */
712 deque&
713 operator=(const deque& __x);
714
715 /**
716 * @brief Assigns a given value to a %deque.
717 * @param n Number of elements to be assigned.
718 * @param val Value to be assigned.
719 *
720 * This function fills a %deque with @a n copies of the given value.
721 * Note that the assignment completely changes the %deque and that the
722 * resulting %deque's size is the same as the number of elements assigned.
723 * Old data may be lost.
724 */
725 void
726 assign(size_type __n, const value_type& __val)
727 { _M_fill_assign(__n, __val); }
728
729 /**
730 * @brief Assigns a range to a %deque.
731 * @param first An input iterator.
732 * @param last An input iterator.
733 *
734 * This function fills a %deque with copies of the elements in the
735 * range [first,last).
736 *
737 * Note that the assignment completely changes the %deque and that the
738 * resulting %deque's size is the same as the number of elements
739 * assigned. Old data may be lost.
740 */
741 template<typename _InputIterator>
742 void
743 assign(_InputIterator __first, _InputIterator __last)
744 {
745 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
746 _M_assign_dispatch(__first, __last, _Integral());
747 }
748
749 /// Get a copy of the memory allocation object.
750 allocator_type
751 get_allocator() const
752 { return _Base::get_allocator(); }
753
754 // iterators
755 /**
756 * Returns a read/write iterator that points to the first element in the
757 * %deque. Iteration is done in ordinary element order.
758 */
759 iterator
760 begin()
761 { return this->_M_impl._M_start; }
762
763 /**
764 * Returns a read-only (constant) iterator that points to the first
765 * element in the %deque. Iteration is done in ordinary element order.
766 */
767 const_iterator
768 begin() const
769 { return this->_M_impl._M_start; }
770
771 /**
772 * Returns a read/write iterator that points one past the last element in
773 * the %deque. Iteration is done in ordinary element order.
774 */
775 iterator
776 end()
777 { return this->_M_impl._M_finish; }
778
779 /**
780 * Returns a read-only (constant) iterator that points one past the last
781 * element in the %deque. Iteration is done in ordinary element order.
782 */
783 const_iterator
784 end() const
785 { return this->_M_impl._M_finish; }
786
787 /**
788 * Returns a read/write reverse iterator that points to the last element
789 * in the %deque. Iteration is done in reverse element order.
790 */
791 reverse_iterator
792 rbegin()
793 { return reverse_iterator(this->_M_impl._M_finish); }
794
795 /**
796 * Returns a read-only (constant) reverse iterator that points to the
797 * last element in the %deque. Iteration is done in reverse element
798 * order.
799 */
800 const_reverse_iterator
801 rbegin() const
802 { return const_reverse_iterator(this->_M_impl._M_finish); }
803
804 /**
805 * Returns a read/write reverse iterator that points to one before the
806 * first element in the %deque. Iteration is done in reverse element
807 * order.
808 */
809 reverse_iterator
810 rend() { return reverse_iterator(this->_M_impl._M_start); }
811
812 /**
813 * Returns a read-only (constant) reverse iterator that points to one
814 * before the first element in the %deque. Iteration is done in reverse
815 * element order.
816 */
817 const_reverse_iterator
818 rend() const
819 { return const_reverse_iterator(this->_M_impl._M_start); }
820
821 // [23.2.1.2] capacity
822 /** Returns the number of elements in the %deque. */
823 size_type
824 size() const
825 { return this->_M_impl._M_finish - this->_M_impl._M_start; }
826
827 /** Returns the size() of the largest possible %deque. */
828 size_type
829 max_size() const
830 { return size_type(-1); }
831
832 /**
833 * @brief Resizes the %deque to the specified number of elements.
834 * @param new_size Number of elements the %deque should contain.
835 * @param x Data with which new elements should be populated.
836 *
837 * This function will %resize the %deque to the specified number of
838 * elements. If the number is smaller than the %deque's current size the
839 * %deque is truncated, otherwise the %deque is extended and new elements
840 * are populated with given data.
841 */
842 void
843 resize(size_type __new_size, const value_type& __x)
844 {
845 const size_type __len = size();
846 if (__new_size < __len)
847 erase(this->_M_impl._M_start + __new_size, this->_M_impl._M_finish);
848 else
849 insert(this->_M_impl._M_finish, __new_size - __len, __x);
850 }
851
852 /**
853 * @brief Resizes the %deque to the specified number of elements.
854 * @param new_size Number of elements the %deque should contain.
855 *
856 * This function will resize the %deque to the specified number of
857 * elements. If the number is smaller than the %deque's current size the
858 * %deque is truncated, otherwise the %deque is extended and new elements
859 * are default-constructed.
860 */
861 void
862 resize(size_type new_size)
863 { resize(new_size, value_type()); }
864
865 /**
866 * Returns true if the %deque is empty. (Thus begin() would equal end().)
867 */
868 bool
869 empty() const
870 { return this->_M_impl._M_finish == this->_M_impl._M_start; }
871
872 // element access
873 /**
874 * @brief Subscript access to the data contained in the %deque.
875 * @param n The index of the element for which data should be accessed.
876 * @return Read/write reference to data.
877 *
878 * This operator allows for easy, array-style, data access.
879 * Note that data access with this operator is unchecked and out_of_range
880 * lookups are not defined. (For checked lookups see at().)
881 */
882 reference
883 operator[](size_type __n)
884 { return this->_M_impl._M_start[difference_type(__n)]; }
885
886 /**
887 * @brief Subscript access to the data contained in the %deque.
888 * @param n The index of the element for which data should be accessed.
889 * @return Read-only (constant) reference to data.
890 *
891 * This operator allows for easy, array-style, data access.
892 * Note that data access with this operator is unchecked and out_of_range
893 * lookups are not defined. (For checked lookups see at().)
894 */
895 const_reference
896 operator[](size_type __n) const
897 { return this->_M_impl._M_start[difference_type(__n)]; }
898
899 protected:
900 /// @if maint Safety check used only from at(). @endif
901 void
902 _M_range_check(size_type __n) const
903 {
904 if (__n >= this->size())
905 __throw_out_of_range(__N("deque::_M_range_check"));
906 }
907
908 public:
909 /**
910 * @brief Provides access to the data contained in the %deque.
911 * @param n The index of the element for which data should be accessed.
912 * @return Read/write reference to data.
913 * @throw std::out_of_range If @a n is an invalid index.
914 *
915 * This function provides for safer data access. The parameter is first
916 * checked that it is in the range of the deque. The function throws
917 * out_of_range if the check fails.
918 */
919 reference
920 at(size_type __n)
921 { _M_range_check(__n); return (*this)[__n]; }
922
923 /**
924 * @brief Provides access to the data contained in the %deque.
925 * @param n The index of the element for which data should be accessed.
926 * @return Read-only (constant) reference to data.
927 * @throw std::out_of_range If @a n is an invalid index.
928 *
929 * This function provides for safer data access. The parameter is first
930 * checked that it is in the range of the deque. The function throws
931 * out_of_range if the check fails.
932 */
933 const_reference
934 at(size_type __n) const
935 {
936 _M_range_check(__n);
937 return (*this)[__n];
938 }
939
940 /**
941 * Returns a read/write reference to the data at the first element of the
942 * %deque.
943 */
944 reference
945 front()
946 { return *this->_M_impl._M_start; }
947
948 /**
949 * Returns a read-only (constant) reference to the data at the first
950 * element of the %deque.
951 */
952 const_reference
953 front() const
954 { return *this->_M_impl._M_start; }
955
956 /**
957 * Returns a read/write reference to the data at the last element of the
958 * %deque.
959 */
960 reference
961 back()
962 {
963 iterator __tmp = this->_M_impl._M_finish;
964 --__tmp;
965 return *__tmp;
966 }
967
968 /**
969 * Returns a read-only (constant) reference to the data at the last
970 * element of the %deque.
971 */
972 const_reference
973 back() const
974 {
975 const_iterator __tmp = this->_M_impl._M_finish;
976 --__tmp;
977 return *__tmp;
978 }
979
980 // [23.2.1.2] modifiers
981 /**
982 * @brief Add data to the front of the %deque.
983 * @param x Data to be added.
984 *
985 * This is a typical stack operation. The function creates an element at
986 * the front of the %deque and assigns the given data to it. Due to the
987 * nature of a %deque this operation can be done in constant time.
988 */
989 void
990 push_front(const value_type& __x)
991 {
992 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
993 {
994 std::_Construct(this->_M_impl._M_start._M_cur - 1, __x);
995 --this->_M_impl._M_start._M_cur;
996 }
997 else
998 _M_push_front_aux(__x);
999 }
1000
1001 /**
1002 * @brief Add data to the end of the %deque.
1003 * @param x Data to be added.
1004 *
1005 * This is a typical stack operation. The function creates an element at
1006 * the end of the %deque and assigns the given data to it. Due to the
1007 * nature of a %deque this operation can be done in constant time.
1008 */
1009 void
1010 push_back(const value_type& __x)
1011 {
1012 if (this->_M_impl._M_finish._M_cur != this->_M_impl._M_finish._M_last - 1)
1013 {
1014 std::_Construct(this->_M_impl._M_finish._M_cur, __x);
1015 ++this->_M_impl._M_finish._M_cur;
1016 }
1017 else
1018 _M_push_back_aux(__x);
1019 }
1020
1021 /**
1022 * @brief Removes first element.
1023 *
1024 * This is a typical stack operation. It shrinks the %deque by one.
1025 *
1026 * Note that no data is returned, and if the first element's data is
1027 * needed, it should be retrieved before pop_front() is called.
1028 */
1029 void
1030 pop_front()
1031 {
1032 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_last - 1)
1033 {
1034 std::_Destroy(this->_M_impl._M_start._M_cur);
1035 ++this->_M_impl._M_start._M_cur;
1036 }
1037 else
1038 _M_pop_front_aux();
1039 }
1040
1041 /**
1042 * @brief Removes last element.
1043 *
1044 * This is a typical stack operation. It shrinks the %deque by one.
1045 *
1046 * Note that no data is returned, and if the last element's data is
1047 * needed, it should be retrieved before pop_back() is called.
1048 */
1049 void
1050 pop_back()
1051 {
1052 if (this->_M_impl._M_finish._M_cur != this->_M_impl._M_finish._M_first)
1053 {
1054 --this->_M_impl._M_finish._M_cur;
1055 std::_Destroy(this->_M_impl._M_finish._M_cur);
1056 }
1057 else
1058 _M_pop_back_aux();
1059 }
1060
1061 /**
1062 * @brief Inserts given value into %deque before specified iterator.
1063 * @param position An iterator into the %deque.
1064 * @param x Data to be inserted.
1065 * @return An iterator that points to the inserted data.
1066 *
1067 * This function will insert a copy of the given value before the
1068 * specified location.
1069 */
1070 iterator
1071 insert(iterator position, const value_type& __x);
1072
1073 /**
1074 * @brief Inserts a number of copies of given data into the %deque.
1075 * @param position An iterator into the %deque.
1076 * @param n Number of elements to be inserted.
1077 * @param x Data to be inserted.
1078 *
1079 * This function will insert a specified number of copies of the given
1080 * data before the location specified by @a position.
1081 */
1082 void
1083 insert(iterator __position, size_type __n, const value_type& __x)
1084 { _M_fill_insert(__position, __n, __x); }
1085
1086 /**
1087 * @brief Inserts a range into the %deque.
1088 * @param position An iterator into the %deque.
1089 * @param first An input iterator.
1090 * @param last An input iterator.
1091 *
1092 * This function will insert copies of the data in the range [first,last)
1093 * into the %deque before the location specified by @a pos. This is
1094 * known as "range insert."
1095 */
1096 template<typename _InputIterator>
1097 void
1098 insert(iterator __position, _InputIterator __first,
1099 _InputIterator __last)
1100 {
1101 // Check whether it's an integral type. If so, it's not an iterator.
1102 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
1103 _M_insert_dispatch(__position, __first, __last, _Integral());
1104 }
1105
1106 /**
1107 * @brief Remove element at given position.
1108 * @param position Iterator pointing to element to be erased.
1109 * @return An iterator pointing to the next element (or end()).
1110 *
1111 * This function will erase the element at the given position and thus
1112 * shorten the %deque by one.
1113 *
1114 * The user is cautioned that
1115 * this function only erases the element, and that if the element is
1116 * itself a pointer, the pointed-to memory is not touched in any way.
1117 * Managing the pointer is the user's responsibilty.
1118 */
1119 iterator
1120 erase(iterator __position);
1121
1122 /**
1123 * @brief Remove a range of elements.
1124 * @param first Iterator pointing to the first element to be erased.
1125 * @param last Iterator pointing to one past the last element to be
1126 * erased.
1127 * @return An iterator pointing to the element pointed to by @a last
1128 * prior to erasing (or end()).
1129 *
1130 * This function will erase the elements in the range [first,last) and
1131 * shorten the %deque accordingly.
1132 *
1133 * The user is cautioned that
1134 * this function only erases the elements, and that if the elements
1135 * themselves are pointers, the pointed-to memory is not touched in any
1136 * way. Managing the pointer is the user's responsibilty.
1137 */
1138 iterator
1139 erase(iterator __first, iterator __last);
1140
1141 /**
1142 * @brief Swaps data with another %deque.
1143 * @param x A %deque of the same element and allocator types.
1144 *
1145 * This exchanges the elements between two deques in constant time.
1146 * (Four pointers, so it should be quite fast.)
1147 * Note that the global std::swap() function is specialized such that
1148 * std::swap(d1,d2) will feed to this function.
1149 */
1150 void
1151 swap(deque& __x)
1152 {
1153 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1154 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1155 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1156 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1157 }
1158
1159 /**
1160 * Erases all the elements. Note that this function only erases the
1161 * elements, and that if the elements themselves are pointers, the
1162 * pointed-to memory is not touched in any way. Managing the pointer is
1163 * the user's responsibilty.
1164 */
1165 void clear();
1166
1167 protected:
1168 // Internal constructor functions follow.
1169
1170 // called by the range constructor to implement [23.1.1]/9
1171 template<typename _Integer>
1172 void
1173 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1174 {
1175 _M_initialize_map(__n);
1176 _M_fill_initialize(__x);
1177 }
1178
1179 // called by the range constructor to implement [23.1.1]/9
1180 template<typename _InputIterator>
1181 void
1182 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1183 __false_type)
1184 {
1185 typedef typename iterator_traits<_InputIterator>::iterator_category
1186 _IterCategory;
1187 _M_range_initialize(__first, __last, _IterCategory());
1188 }
1189
1190 // called by the second initialize_dispatch above
1191 //@{
1192 /**
1193 * @if maint
1194 * @brief Fills the deque with whatever is in [first,last).
1195 * @param first An input iterator.
1196 * @param last An input iterator.
1197 * @return Nothing.
1198 *
1199 * If the iterators are actually forward iterators (or better), then the
1200 * memory layout can be done all at once. Else we move forward using
1201 * push_back on each value from the iterator.
1202 * @endif
1203 */
1204 template<typename _InputIterator>
1205 void
1206 _M_range_initialize(_InputIterator __first, _InputIterator __last,
1207 input_iterator_tag);
1208
1209 // called by the second initialize_dispatch above
1210 template<typename _ForwardIterator>
1211 void
1212 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1213 forward_iterator_tag);
1214 //@}
1215
1216 /**
1217 * @if maint
1218 * @brief Fills the %deque with copies of value.
1219 * @param value Initial value.
1220 * @return Nothing.
1221 * @pre _M_start and _M_finish have already been initialized, but none of
1222 * the %deque's elements have yet been constructed.
1223 *
1224 * This function is called only when the user provides an explicit size
1225 * (with or without an explicit exemplar value).
1226 * @endif
1227 */
1228 void
1229 _M_fill_initialize(const value_type& __value);
1230
1231 // Internal assign functions follow. The *_aux functions do the actual
1232 // assignment work for the range versions.
1233
1234 // called by the range assign to implement [23.1.1]/9
1235 template<typename _Integer>
1236 void
1237 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1238 {
1239 _M_fill_assign(static_cast<size_type>(__n),
1240 static_cast<value_type>(__val));
1241 }
1242
1243 // called by the range assign to implement [23.1.1]/9
1244 template<typename _InputIterator>
1245 void
1246 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1247 __false_type)
1248 {
1249 typedef typename iterator_traits<_InputIterator>::iterator_category
1250 _IterCategory;
1251 _M_assign_aux(__first, __last, _IterCategory());
1252 }
1253
1254 // called by the second assign_dispatch above
1255 template<typename _InputIterator>
1256 void
1257 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1258 input_iterator_tag);
1259
1260 // called by the second assign_dispatch above
1261 template<typename _ForwardIterator>
1262 void
1263 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1264 forward_iterator_tag)
1265 {
1266 const size_type __len = std::distance(__first, __last);
1267 if (__len > size())
1268 {
1269 _ForwardIterator __mid = __first;
1270 std::advance(__mid, size());
1271 std::copy(__first, __mid, begin());
1272 insert(end(), __mid, __last);
1273 }
1274 else
1275 erase(std::copy(__first, __last, begin()), end());
1276 }
1277
1278 // Called by assign(n,t), and the range assign when it turns out to be the
1279 // same thing.
1280 void
1281 _M_fill_assign(size_type __n, const value_type& __val)
1282 {
1283 if (__n > size())
1284 {
1285 std::fill(begin(), end(), __val);
1286 insert(end(), __n - size(), __val);
1287 }
1288 else
1289 {
1290 erase(begin() + __n, end());
1291 std::fill(begin(), end(), __val);
1292 }
1293 }
1294
1295 //@{
1296 /**
1297 * @if maint
1298 * @brief Helper functions for push_* and pop_*.
1299 * @endif
1300 */
1301 void _M_push_back_aux(const value_type&);
1302 void _M_push_front_aux(const value_type&);
1303 void _M_pop_back_aux();
1304 void _M_pop_front_aux();
1305 //@}
1306
1307 // Internal insert functions follow. The *_aux functions do the actual
1308 // insertion work when all shortcuts fail.
1309
1310 // called by the range insert to implement [23.1.1]/9
1311 template<typename _Integer>
1312 void
1313 _M_insert_dispatch(iterator __pos,
1314 _Integer __n, _Integer __x, __true_type)
1315 {
1316 _M_fill_insert(__pos, static_cast<size_type>(__n),
1317 static_cast<value_type>(__x));
1318 }
1319
1320 // called by the range insert to implement [23.1.1]/9
1321 template<typename _InputIterator>
1322 void
1323 _M_insert_dispatch(iterator __pos,
1324 _InputIterator __first, _InputIterator __last,
1325 __false_type)
1326 {
1327 typedef typename iterator_traits<_InputIterator>::iterator_category
1328 _IterCategory;
1329 _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1330 }
1331
1332 // called by the second insert_dispatch above
1333 template<typename _InputIterator>
1334 void
1335 _M_range_insert_aux(iterator __pos, _InputIterator __first,
1336 _InputIterator __last, input_iterator_tag);
1337
1338 // called by the second insert_dispatch above
1339 template<typename _ForwardIterator>
1340 void
1341 _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1342 _ForwardIterator __last, forward_iterator_tag);
1343
1344 // Called by insert(p,n,x), and the range insert when it turns out to be
1345 // the same thing. Can use fill functions in optimal situations,
1346 // otherwise passes off to insert_aux(p,n,x).
1347 void
1348 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1349
1350 // called by insert(p,x)
1351 iterator
1352 _M_insert_aux(iterator __pos, const value_type& __x);
1353
1354 // called by insert(p,n,x) via fill_insert
1355 void
1356 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1357
1358 // called by range_insert_aux for forward iterators
1359 template<typename _ForwardIterator>
1360 void
1361 _M_insert_aux(iterator __pos,
1362 _ForwardIterator __first, _ForwardIterator __last,
1363 size_type __n);
1364
1365 //@{
1366 /**
1367 * @if maint
1368 * @brief Memory-handling helpers for the previous internal insert
1369 * functions.
1370 * @endif
1371 */
1372 iterator
1373 _M_reserve_elements_at_front(size_type __n)
1374 {
1375 const size_type __vacancies = this->_M_impl._M_start._M_cur
1376 - this->_M_impl._M_start._M_first;
1377 if (__n > __vacancies)
1378 _M_new_elements_at_front(__n - __vacancies);
1379 return this->_M_impl._M_start - difference_type(__n);
1380 }
1381
1382 iterator
1383 _M_reserve_elements_at_back(size_type __n)
1384 {
1385 const size_type __vacancies = (this->_M_impl._M_finish._M_last
1386 - this->_M_impl._M_finish._M_cur) - 1;
1387 if (__n > __vacancies)
1388 _M_new_elements_at_back(__n - __vacancies);
1389 return this->_M_impl._M_finish + difference_type(__n);
1390 }
1391
1392 void
1393 _M_new_elements_at_front(size_type __new_elements);
1394
1395 void
1396 _M_new_elements_at_back(size_type __new_elements);
1397 //@}
1398
1399
1400 //@{
1401 /**
1402 * @if maint
1403 * @brief Memory-handling helpers for the major %map.
1404 *
1405 * Makes sure the _M_map has space for new nodes. Does not actually add
1406 * the nodes. Can invalidate _M_map pointers. (And consequently, %deque
1407 * iterators.)
1408 * @endif
1409 */
1410 void
1411 _M_reserve_map_at_back (size_type __nodes_to_add = 1)
1412 {
1413 if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1414 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1415 _M_reallocate_map(__nodes_to_add, false);
1416 }
1417
1418 void
1419 _M_reserve_map_at_front (size_type __nodes_to_add = 1)
1420 {
1421 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node - this->_M_impl._M_map))
1422 _M_reallocate_map(__nodes_to_add, true);
1423 }
1424
1425 void
1426 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1427 //@}
1428 };
1429
1430
1431 /**
1432 * @brief Deque equality comparison.
1433 * @param x A %deque.
1434 * @param y A %deque of the same type as @a x.
1435 * @return True iff the size and elements of the deques are equal.
1436 *
1437 * This is an equivalence relation. It is linear in the size of the
1438 * deques. Deques are considered equivalent if their sizes are equal,
1439 * and if corresponding elements compare equal.
1440 */
1441 template<typename _Tp, typename _Alloc>
1442 inline bool
1443 operator==(const deque<_Tp, _Alloc>& __x,
1444 const deque<_Tp, _Alloc>& __y)
1445 { return __x.size() == __y.size()
1446 && std::equal(__x.begin(), __x.end(), __y.begin()); }
1447
1448 /**
1449 * @brief Deque ordering relation.
1450 * @param x A %deque.
1451 * @param y A %deque of the same type as @a x.
1452 * @return True iff @a x is lexicographically less than @a y.
1453 *
1454 * This is a total ordering relation. It is linear in the size of the
1455 * deques. The elements must be comparable with @c <.
1456 *
1457 * See std::lexicographical_compare() for how the determination is made.
1458 */
1459 template<typename _Tp, typename _Alloc>
1460 inline bool
1461 operator<(const deque<_Tp, _Alloc>& __x,
1462 const deque<_Tp, _Alloc>& __y)
1463 { return lexicographical_compare(__x.begin(), __x.end(),
1464 __y.begin(), __y.end()); }
1465
1466 /// Based on operator==
1467 template<typename _Tp, typename _Alloc>
1468 inline bool
1469 operator!=(const deque<_Tp, _Alloc>& __x,
1470 const deque<_Tp, _Alloc>& __y)
1471 { return !(__x == __y); }
1472
1473 /// Based on operator<
1474 template<typename _Tp, typename _Alloc>
1475 inline bool
1476 operator>(const deque<_Tp, _Alloc>& __x,
1477 const deque<_Tp, _Alloc>& __y)
1478 { return __y < __x; }
1479
1480 /// Based on operator<
1481 template<typename _Tp, typename _Alloc>
1482 inline bool
1483 operator<=(const deque<_Tp, _Alloc>& __x,
1484 const deque<_Tp, _Alloc>& __y)
1485 { return !(__y < __x); }
1486
1487 /// Based on operator<
1488 template<typename _Tp, typename _Alloc>
1489 inline bool
1490 operator>=(const deque<_Tp, _Alloc>& __x,
1491 const deque<_Tp, _Alloc>& __y)
1492 { return !(__x < __y); }
1493
1494 /// See std::deque::swap().
1495 template<typename _Tp, typename _Alloc>
1496 inline void
1497 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1498 { __x.swap(__y); }
1499 } // namespace std
1500
1501 #endif /* _DEQUE_H */