]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/bits/stl_list.h
set.h (set<>::cbegin, [...]): Add.
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / stl_list.h
1 // List implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 // USA.
21
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
30
31 /*
32 *
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
35 *
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation. Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose. It is provided "as is" without express or implied warranty.
43 *
44 *
45 * Copyright (c) 1996,1997
46 * Silicon Graphics Computer Systems, Inc.
47 *
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation. Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose. It is provided "as is" without express or implied warranty.
55 */
56
57 /** @file stl_list.h
58 * This is an internal header file, included by other library headers.
59 * You should not attempt to use it directly.
60 */
61
62 #ifndef _STL_LIST_H
63 #define _STL_LIST_H 1
64
65 #include <bits/concept_check.h>
66
67 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
68
69 // Supporting structures are split into common and templated types; the
70 // latter publicly inherits from the former in an effort to reduce code
71 // duplication. This results in some "needless" static_cast'ing later on,
72 // but it's all safe downcasting.
73
74 /// @if maint Common part of a node in the %list. @endif
75 struct _List_node_base
76 {
77 _List_node_base* _M_next; ///< Self-explanatory
78 _List_node_base* _M_prev; ///< Self-explanatory
79
80 static void
81 swap(_List_node_base& __x, _List_node_base& __y);
82
83 void
84 transfer(_List_node_base * const __first,
85 _List_node_base * const __last);
86
87 void
88 reverse();
89
90 void
91 hook(_List_node_base * const __position);
92
93 void
94 unhook();
95 };
96
97 /// @if maint An actual node in the %list. @endif
98 template<typename _Tp>
99 struct _List_node : public _List_node_base
100 {
101 _Tp _M_data; ///< User's data.
102 };
103
104 /**
105 * @brief A list::iterator.
106 *
107 * @if maint
108 * All the functions are op overloads.
109 * @endif
110 */
111 template<typename _Tp>
112 struct _List_iterator
113 {
114 typedef _List_iterator<_Tp> _Self;
115 typedef _List_node<_Tp> _Node;
116
117 typedef ptrdiff_t difference_type;
118 typedef std::bidirectional_iterator_tag iterator_category;
119 typedef _Tp value_type;
120 typedef _Tp* pointer;
121 typedef _Tp& reference;
122
123 _List_iterator()
124 : _M_node() { }
125
126 explicit
127 _List_iterator(_List_node_base* __x)
128 : _M_node(__x) { }
129
130 // Must downcast from List_node_base to _List_node to get to _M_data.
131 reference
132 operator*() const
133 { return static_cast<_Node*>(_M_node)->_M_data; }
134
135 pointer
136 operator->() const
137 { return &static_cast<_Node*>(_M_node)->_M_data; }
138
139 _Self&
140 operator++()
141 {
142 _M_node = _M_node->_M_next;
143 return *this;
144 }
145
146 _Self
147 operator++(int)
148 {
149 _Self __tmp = *this;
150 _M_node = _M_node->_M_next;
151 return __tmp;
152 }
153
154 _Self&
155 operator--()
156 {
157 _M_node = _M_node->_M_prev;
158 return *this;
159 }
160
161 _Self
162 operator--(int)
163 {
164 _Self __tmp = *this;
165 _M_node = _M_node->_M_prev;
166 return __tmp;
167 }
168
169 bool
170 operator==(const _Self& __x) const
171 { return _M_node == __x._M_node; }
172
173 bool
174 operator!=(const _Self& __x) const
175 { return _M_node != __x._M_node; }
176
177 // The only member points to the %list element.
178 _List_node_base* _M_node;
179 };
180
181 /**
182 * @brief A list::const_iterator.
183 *
184 * @if maint
185 * All the functions are op overloads.
186 * @endif
187 */
188 template<typename _Tp>
189 struct _List_const_iterator
190 {
191 typedef _List_const_iterator<_Tp> _Self;
192 typedef const _List_node<_Tp> _Node;
193 typedef _List_iterator<_Tp> iterator;
194
195 typedef ptrdiff_t difference_type;
196 typedef std::bidirectional_iterator_tag iterator_category;
197 typedef _Tp value_type;
198 typedef const _Tp* pointer;
199 typedef const _Tp& reference;
200
201 _List_const_iterator()
202 : _M_node() { }
203
204 explicit
205 _List_const_iterator(const _List_node_base* __x)
206 : _M_node(__x) { }
207
208 _List_const_iterator(const iterator& __x)
209 : _M_node(__x._M_node) { }
210
211 // Must downcast from List_node_base to _List_node to get to
212 // _M_data.
213 reference
214 operator*() const
215 { return static_cast<_Node*>(_M_node)->_M_data; }
216
217 pointer
218 operator->() const
219 { return &static_cast<_Node*>(_M_node)->_M_data; }
220
221 _Self&
222 operator++()
223 {
224 _M_node = _M_node->_M_next;
225 return *this;
226 }
227
228 _Self
229 operator++(int)
230 {
231 _Self __tmp = *this;
232 _M_node = _M_node->_M_next;
233 return __tmp;
234 }
235
236 _Self&
237 operator--()
238 {
239 _M_node = _M_node->_M_prev;
240 return *this;
241 }
242
243 _Self
244 operator--(int)
245 {
246 _Self __tmp = *this;
247 _M_node = _M_node->_M_prev;
248 return __tmp;
249 }
250
251 bool
252 operator==(const _Self& __x) const
253 { return _M_node == __x._M_node; }
254
255 bool
256 operator!=(const _Self& __x) const
257 { return _M_node != __x._M_node; }
258
259 // The only member points to the %list element.
260 const _List_node_base* _M_node;
261 };
262
263 template<typename _Val>
264 inline bool
265 operator==(const _List_iterator<_Val>& __x,
266 const _List_const_iterator<_Val>& __y)
267 { return __x._M_node == __y._M_node; }
268
269 template<typename _Val>
270 inline bool
271 operator!=(const _List_iterator<_Val>& __x,
272 const _List_const_iterator<_Val>& __y)
273 { return __x._M_node != __y._M_node; }
274
275
276 /**
277 * @if maint
278 * See bits/stl_deque.h's _Deque_base for an explanation.
279 * @endif
280 */
281 template<typename _Tp, typename _Alloc>
282 class _List_base
283 {
284 protected:
285 // NOTA BENE
286 // The stored instance is not actually of "allocator_type"'s
287 // type. Instead we rebind the type to
288 // Allocator<List_node<Tp>>, which according to [20.1.5]/4
289 // should probably be the same. List_node<Tp> is not the same
290 // size as Tp (it's two pointers larger), and specializations on
291 // Tp may go unused because List_node<Tp> is being bound
292 // instead.
293 //
294 // We put this to the test in the constructors and in
295 // get_allocator, where we use conversions between
296 // allocator_type and _Node_alloc_type. The conversion is
297 // required by table 32 in [20.1.5].
298 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
299 _Node_alloc_type;
300
301 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
302
303 struct _List_impl
304 : public _Node_alloc_type
305 {
306 _List_node_base _M_node;
307
308 _List_impl()
309 : _Node_alloc_type(), _M_node()
310 { }
311
312 _List_impl(const _Node_alloc_type& __a)
313 : _Node_alloc_type(__a), _M_node()
314 { }
315 };
316
317 _List_impl _M_impl;
318
319 _List_node<_Tp>*
320 _M_get_node()
321 { return _M_impl._Node_alloc_type::allocate(1); }
322
323 void
324 _M_put_node(_List_node<_Tp>* __p)
325 { _M_impl._Node_alloc_type::deallocate(__p, 1); }
326
327 public:
328 typedef _Alloc allocator_type;
329
330 _Node_alloc_type&
331 _M_get_Node_allocator()
332 { return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
333
334 const _Node_alloc_type&
335 _M_get_Node_allocator() const
336 { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
337
338 _Tp_alloc_type
339 _M_get_Tp_allocator() const
340 { return _Tp_alloc_type(_M_get_Node_allocator()); }
341
342 allocator_type
343 get_allocator() const
344 { return allocator_type(_M_get_Node_allocator()); }
345
346 _List_base()
347 : _M_impl()
348 { _M_init(); }
349
350 _List_base(const allocator_type& __a)
351 : _M_impl(__a)
352 { _M_init(); }
353
354 // This is what actually destroys the list.
355 ~_List_base()
356 { _M_clear(); }
357
358 void
359 _M_clear();
360
361 void
362 _M_init()
363 {
364 this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
365 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
366 }
367 };
368
369 /**
370 * @brief A standard container with linear time access to elements,
371 * and fixed time insertion/deletion at any point in the sequence.
372 *
373 * @ingroup Containers
374 * @ingroup Sequences
375 *
376 * Meets the requirements of a <a href="tables.html#65">container</a>, a
377 * <a href="tables.html#66">reversible container</a>, and a
378 * <a href="tables.html#67">sequence</a>, including the
379 * <a href="tables.html#68">optional sequence requirements</a> with the
380 * %exception of @c at and @c operator[].
381 *
382 * This is a @e doubly @e linked %list. Traversal up and down the
383 * %list requires linear time, but adding and removing elements (or
384 * @e nodes) is done in constant time, regardless of where the
385 * change takes place. Unlike std::vector and std::deque,
386 * random-access iterators are not provided, so subscripting ( @c
387 * [] ) access is not allowed. For algorithms which only need
388 * sequential access, this lack makes no difference.
389 *
390 * Also unlike the other standard containers, std::list provides
391 * specialized algorithms %unique to linked lists, such as
392 * splicing, sorting, and in-place reversal.
393 *
394 * @if maint
395 * A couple points on memory allocation for list<Tp>:
396 *
397 * First, we never actually allocate a Tp, we allocate
398 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
399 * that after elements from %list<X,Alloc1> are spliced into
400 * %list<X,Alloc2>, destroying the memory of the second %list is a
401 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
402 *
403 * Second, a %list conceptually represented as
404 * @code
405 * A <---> B <---> C <---> D
406 * @endcode
407 * is actually circular; a link exists between A and D. The %list
408 * class holds (as its only data member) a private list::iterator
409 * pointing to @e D, not to @e A! To get to the head of the %list,
410 * we start at the tail and move forward by one. When this member
411 * iterator's next/previous pointers refer to itself, the %list is
412 * %empty. @endif
413 */
414 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
415 class list : protected _List_base<_Tp, _Alloc>
416 {
417 // concept requirements
418 typedef typename _Alloc::value_type _Alloc_value_type;
419 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
420 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
421
422 typedef _List_base<_Tp, _Alloc> _Base;
423 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
424
425 public:
426 typedef _Tp value_type;
427 typedef typename _Tp_alloc_type::pointer pointer;
428 typedef typename _Tp_alloc_type::const_pointer const_pointer;
429 typedef typename _Tp_alloc_type::reference reference;
430 typedef typename _Tp_alloc_type::const_reference const_reference;
431 typedef _List_iterator<_Tp> iterator;
432 typedef _List_const_iterator<_Tp> const_iterator;
433 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
434 typedef std::reverse_iterator<iterator> reverse_iterator;
435 typedef size_t size_type;
436 typedef ptrdiff_t difference_type;
437 typedef _Alloc allocator_type;
438
439 protected:
440 // Note that pointers-to-_Node's can be ctor-converted to
441 // iterator types.
442 typedef _List_node<_Tp> _Node;
443
444 using _Base::_M_impl;
445 using _Base::_M_put_node;
446 using _Base::_M_get_node;
447 using _Base::_M_get_Tp_allocator;
448 using _Base::_M_get_Node_allocator;
449
450 /**
451 * @if maint
452 * @param x An instance of user data.
453 *
454 * Allocates space for a new node and constructs a copy of @a x in it.
455 * @endif
456 */
457 _Node*
458 _M_create_node(const value_type& __x)
459 {
460 _Node* __p = this->_M_get_node();
461 try
462 {
463 _M_get_Tp_allocator().construct(&__p->_M_data, __x);
464 }
465 catch(...)
466 {
467 _M_put_node(__p);
468 __throw_exception_again;
469 }
470 return __p;
471 }
472
473 public:
474 // [23.2.2.1] construct/copy/destroy
475 // (assign() and get_allocator() are also listed in this section)
476 /**
477 * @brief Default constructor creates no elements.
478 */
479 list()
480 : _Base() { }
481
482 /**
483 * @brief Creates a %list with no elements.
484 * @param a An allocator object.
485 */
486 explicit
487 list(const allocator_type& __a)
488 : _Base(__a) { }
489
490 /**
491 * @brief Creates a %list with copies of an exemplar element.
492 * @param n The number of elements to initially create.
493 * @param value An element to copy.
494 * @param a An allocator object.
495 *
496 * This constructor fills the %list with @a n copies of @a value.
497 */
498 explicit
499 list(size_type __n, const value_type& __value = value_type(),
500 const allocator_type& __a = allocator_type())
501 : _Base(__a)
502 { _M_fill_initialize(__n, __value); }
503
504 /**
505 * @brief %List copy constructor.
506 * @param x A %list of identical element and allocator types.
507 *
508 * The newly-created %list uses a copy of the allocation object used
509 * by @a x.
510 */
511 list(const list& __x)
512 : _Base(__x._M_get_Node_allocator())
513 { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
514
515 #ifdef __GXX_EXPERIMENTAL_CXX0X__
516 /**
517 * @brief %List move constructor.
518 * @param x A %list of identical element and allocator types.
519 *
520 * The newly-created %list contains the exact contents of @a x.
521 * The contents of @a x are a valid, but unspecified %list.
522 */
523 list(list&& __x)
524 : _Base(__x._M_get_Node_allocator())
525 { this->swap(__x); }
526 #endif
527
528 /**
529 * @brief Builds a %list from a range.
530 * @param first An input iterator.
531 * @param last An input iterator.
532 * @param a An allocator object.
533 *
534 * Create a %list consisting of copies of the elements from
535 * [@a first,@a last). This is linear in N (where N is
536 * distance(@a first,@a last)).
537 */
538 template<typename _InputIterator>
539 list(_InputIterator __first, _InputIterator __last,
540 const allocator_type& __a = allocator_type())
541 : _Base(__a)
542 {
543 // Check whether it's an integral type. If so, it's not an iterator.
544 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
545 _M_initialize_dispatch(__first, __last, _Integral());
546 }
547
548 /**
549 * No explicit dtor needed as the _Base dtor takes care of
550 * things. The _Base dtor only erases the elements, and note
551 * that if the elements themselves are pointers, the pointed-to
552 * memory is not touched in any way. Managing the pointer is
553 * the user's responsibilty.
554 */
555
556 /**
557 * @brief %List assignment operator.
558 * @param x A %list of identical element and allocator types.
559 *
560 * All the elements of @a x are copied, but unlike the copy
561 * constructor, the allocator object is not copied.
562 */
563 list&
564 operator=(const list& __x);
565
566 #ifdef __GXX_EXPERIMENTAL_CXX0X__
567 /**
568 * @brief %List move assignment operator.
569 * @param x A %list of identical element and allocator types.
570 *
571 * The contents of @a x are moved into this %list (without copying).
572 * @a x is a valid, but unspecified %list
573 */
574 list&
575 operator=(list&& __x)
576 {
577 this->swap(__x);
578 return *this;
579 }
580 #endif
581
582 /**
583 * @brief Assigns a given value to a %list.
584 * @param n Number of elements to be assigned.
585 * @param val Value to be assigned.
586 *
587 * This function fills a %list with @a n copies of the given
588 * value. Note that the assignment completely changes the %list
589 * and that the resulting %list's size is the same as the number
590 * of elements assigned. Old data may be lost.
591 */
592 void
593 assign(size_type __n, const value_type& __val)
594 { _M_fill_assign(__n, __val); }
595
596 /**
597 * @brief Assigns a range to a %list.
598 * @param first An input iterator.
599 * @param last An input iterator.
600 *
601 * This function fills a %list with copies of the elements in the
602 * range [@a first,@a last).
603 *
604 * Note that the assignment completely changes the %list and
605 * that the resulting %list's size is the same as the number of
606 * elements assigned. Old data may be lost.
607 */
608 template<typename _InputIterator>
609 void
610 assign(_InputIterator __first, _InputIterator __last)
611 {
612 // Check whether it's an integral type. If so, it's not an iterator.
613 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
614 _M_assign_dispatch(__first, __last, _Integral());
615 }
616
617 /// Get a copy of the memory allocation object.
618 allocator_type
619 get_allocator() const
620 { return _Base::get_allocator(); }
621
622 // iterators
623 /**
624 * Returns a read/write iterator that points to the first element in the
625 * %list. Iteration is done in ordinary element order.
626 */
627 iterator
628 begin()
629 { return iterator(this->_M_impl._M_node._M_next); }
630
631 /**
632 * Returns a read-only (constant) iterator that points to the
633 * first element in the %list. Iteration is done in ordinary
634 * element order.
635 */
636 const_iterator
637 begin() const
638 { return const_iterator(this->_M_impl._M_node._M_next); }
639
640 /**
641 * Returns a read/write iterator that points one past the last
642 * element in the %list. Iteration is done in ordinary element
643 * order.
644 */
645 iterator
646 end()
647 { return iterator(&this->_M_impl._M_node); }
648
649 /**
650 * Returns a read-only (constant) iterator that points one past
651 * the last element in the %list. Iteration is done in ordinary
652 * element order.
653 */
654 const_iterator
655 end() const
656 { return const_iterator(&this->_M_impl._M_node); }
657
658 /**
659 * Returns a read/write reverse iterator that points to the last
660 * element in the %list. Iteration is done in reverse element
661 * order.
662 */
663 reverse_iterator
664 rbegin()
665 { return reverse_iterator(end()); }
666
667 /**
668 * Returns a read-only (constant) reverse iterator that points to
669 * the last element in the %list. Iteration is done in reverse
670 * element order.
671 */
672 const_reverse_iterator
673 rbegin() const
674 { return const_reverse_iterator(end()); }
675
676 /**
677 * Returns a read/write reverse iterator that points to one
678 * before the first element in the %list. Iteration is done in
679 * reverse element order.
680 */
681 reverse_iterator
682 rend()
683 { return reverse_iterator(begin()); }
684
685 /**
686 * Returns a read-only (constant) reverse iterator that points to one
687 * before the first element in the %list. Iteration is done in reverse
688 * element order.
689 */
690 const_reverse_iterator
691 rend() const
692 { return const_reverse_iterator(begin()); }
693
694 #ifdef __GXX_EXPERIMENTAL_CXX0X__
695 /**
696 * Returns a read-only (constant) iterator that points to the
697 * first element in the %list. Iteration is done in ordinary
698 * element order.
699 */
700 const_iterator
701 cbegin() const
702 { return const_iterator(this->_M_impl._M_node._M_next); }
703
704 /**
705 * Returns a read-only (constant) iterator that points one past
706 * the last element in the %list. Iteration is done in ordinary
707 * element order.
708 */
709 const_iterator
710 cend() const
711 { return const_iterator(&this->_M_impl._M_node); }
712
713 /**
714 * Returns a read-only (constant) reverse iterator that points to
715 * the last element in the %list. Iteration is done in reverse
716 * element order.
717 */
718 const_reverse_iterator
719 crbegin() const
720 { return const_reverse_iterator(end()); }
721
722 /**
723 * Returns a read-only (constant) reverse iterator that points to one
724 * before the first element in the %list. Iteration is done in reverse
725 * element order.
726 */
727 const_reverse_iterator
728 crend() const
729 { return const_reverse_iterator(begin()); }
730 #endif
731
732 // [23.2.2.2] capacity
733 /**
734 * Returns true if the %list is empty. (Thus begin() would equal
735 * end().)
736 */
737 bool
738 empty() const
739 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
740
741 /** Returns the number of elements in the %list. */
742 size_type
743 size() const
744 { return std::distance(begin(), end()); }
745
746 /** Returns the size() of the largest possible %list. */
747 size_type
748 max_size() const
749 { return _M_get_Tp_allocator().max_size(); }
750
751 /**
752 * @brief Resizes the %list to the specified number of elements.
753 * @param new_size Number of elements the %list should contain.
754 * @param x Data with which new elements should be populated.
755 *
756 * This function will %resize the %list to the specified number
757 * of elements. If the number is smaller than the %list's
758 * current size the %list is truncated, otherwise the %list is
759 * extended and new elements are populated with given data.
760 */
761 void
762 resize(size_type __new_size, value_type __x = value_type());
763
764 // element access
765 /**
766 * Returns a read/write reference to the data at the first
767 * element of the %list.
768 */
769 reference
770 front()
771 { return *begin(); }
772
773 /**
774 * Returns a read-only (constant) reference to the data at the first
775 * element of the %list.
776 */
777 const_reference
778 front() const
779 { return *begin(); }
780
781 /**
782 * Returns a read/write reference to the data at the last element
783 * of the %list.
784 */
785 reference
786 back()
787 {
788 iterator __tmp = end();
789 --__tmp;
790 return *__tmp;
791 }
792
793 /**
794 * Returns a read-only (constant) reference to the data at the last
795 * element of the %list.
796 */
797 const_reference
798 back() const
799 {
800 const_iterator __tmp = end();
801 --__tmp;
802 return *__tmp;
803 }
804
805 // [23.2.2.3] modifiers
806 /**
807 * @brief Add data to the front of the %list.
808 * @param x Data to be added.
809 *
810 * This is a typical stack operation. The function creates an
811 * element at the front of the %list and assigns the given data
812 * to it. Due to the nature of a %list this operation can be
813 * done in constant time, and does not invalidate iterators and
814 * references.
815 */
816 void
817 push_front(const value_type& __x)
818 { this->_M_insert(begin(), __x); }
819
820 /**
821 * @brief Removes first element.
822 *
823 * This is a typical stack operation. It shrinks the %list by
824 * one. Due to the nature of a %list this operation can be done
825 * in constant time, and only invalidates iterators/references to
826 * the element being removed.
827 *
828 * Note that no data is returned, and if the first element's data
829 * is needed, it should be retrieved before pop_front() is
830 * called.
831 */
832 void
833 pop_front()
834 { this->_M_erase(begin()); }
835
836 /**
837 * @brief Add data to the end of the %list.
838 * @param x Data to be added.
839 *
840 * This is a typical stack operation. The function creates an
841 * element at the end of the %list and assigns the given data to
842 * it. Due to the nature of a %list this operation can be done
843 * in constant time, and does not invalidate iterators and
844 * references.
845 */
846 void
847 push_back(const value_type& __x)
848 { this->_M_insert(end(), __x); }
849
850 /**
851 * @brief Removes last element.
852 *
853 * This is a typical stack operation. It shrinks the %list by
854 * one. Due to the nature of a %list this operation can be done
855 * in constant time, and only invalidates iterators/references to
856 * the element being removed.
857 *
858 * Note that no data is returned, and if the last element's data
859 * is needed, it should be retrieved before pop_back() is called.
860 */
861 void
862 pop_back()
863 { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
864
865 /**
866 * @brief Inserts given value into %list before specified iterator.
867 * @param position An iterator into the %list.
868 * @param x Data to be inserted.
869 * @return An iterator that points to the inserted data.
870 *
871 * This function will insert a copy of the given value before
872 * the specified location. Due to the nature of a %list this
873 * operation can be done in constant time, and does not
874 * invalidate iterators and references.
875 */
876 iterator
877 insert(iterator __position, const value_type& __x);
878
879 /**
880 * @brief Inserts a number of copies of given data into the %list.
881 * @param position An iterator into the %list.
882 * @param n Number of elements to be inserted.
883 * @param x Data to be inserted.
884 *
885 * This function will insert a specified number of copies of the
886 * given data before the location specified by @a position.
887 *
888 * This operation is linear in the number of elements inserted and
889 * does not invalidate iterators and references.
890 */
891 void
892 insert(iterator __position, size_type __n, const value_type& __x)
893 {
894 list __tmp(__n, __x, _M_get_Node_allocator());
895 splice(__position, __tmp);
896 }
897
898 /**
899 * @brief Inserts a range into the %list.
900 * @param position An iterator into the %list.
901 * @param first An input iterator.
902 * @param last An input iterator.
903 *
904 * This function will insert copies of the data in the range [@a
905 * first,@a last) into the %list before the location specified by
906 * @a position.
907 *
908 * This operation is linear in the number of elements inserted and
909 * does not invalidate iterators and references.
910 */
911 template<typename _InputIterator>
912 void
913 insert(iterator __position, _InputIterator __first,
914 _InputIterator __last)
915 {
916 list __tmp(__first, __last, _M_get_Node_allocator());
917 splice(__position, __tmp);
918 }
919
920 /**
921 * @brief Remove element at given position.
922 * @param position Iterator pointing to element to be erased.
923 * @return An iterator pointing to the next element (or end()).
924 *
925 * This function will erase the element at the given position and thus
926 * shorten the %list by one.
927 *
928 * Due to the nature of a %list this operation can be done in
929 * constant time, and only invalidates iterators/references to
930 * the element being removed. The user is also cautioned that
931 * this function only erases the element, and that if the element
932 * is itself a pointer, the pointed-to memory is not touched in
933 * any way. Managing the pointer is the user's responsibilty.
934 */
935 iterator
936 erase(iterator __position);
937
938 /**
939 * @brief Remove a range of elements.
940 * @param first Iterator pointing to the first element to be erased.
941 * @param last Iterator pointing to one past the last element to be
942 * erased.
943 * @return An iterator pointing to the element pointed to by @a last
944 * prior to erasing (or end()).
945 *
946 * This function will erase the elements in the range @a
947 * [first,last) and shorten the %list accordingly.
948 *
949 * This operation is linear time in the size of the range and only
950 * invalidates iterators/references to the element being removed.
951 * The user is also cautioned that this function only erases the
952 * elements, and that if the elements themselves are pointers, the
953 * pointed-to memory is not touched in any way. Managing the pointer
954 * is the user's responsibilty.
955 */
956 iterator
957 erase(iterator __first, iterator __last)
958 {
959 while (__first != __last)
960 __first = erase(__first);
961 return __last;
962 }
963
964 /**
965 * @brief Swaps data with another %list.
966 * @param x A %list of the same element and allocator types.
967 *
968 * This exchanges the elements between two lists in constant
969 * time. Note that the global std::swap() function is
970 * specialized such that std::swap(l1,l2) will feed to this
971 * function.
972 */
973 void
974 #ifdef __GXX_EXPERIMENTAL_CXX0X__
975 swap(list&& __x)
976 #else
977 swap(list& __x)
978 #endif
979 {
980 _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
981
982 // _GLIBCXX_RESOLVE_LIB_DEFECTS
983 // 431. Swapping containers with unequal allocators.
984 std::__alloc_swap<typename _Base::_Node_alloc_type>::
985 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
986 }
987
988 /**
989 * Erases all the elements. Note that this function only erases
990 * the elements, and that if the elements themselves are
991 * pointers, the pointed-to memory is not touched in any way.
992 * Managing the pointer is the user's responsibilty.
993 */
994 void
995 clear()
996 {
997 _Base::_M_clear();
998 _Base::_M_init();
999 }
1000
1001 // [23.2.2.4] list operations
1002 /**
1003 * @brief Insert contents of another %list.
1004 * @param position Iterator referencing the element to insert before.
1005 * @param x Source list.
1006 *
1007 * The elements of @a x are inserted in constant time in front of
1008 * the element referenced by @a position. @a x becomes an empty
1009 * list.
1010 *
1011 * Requires this != @a x.
1012 */
1013 void
1014 splice(iterator __position, list& __x)
1015 {
1016 if (!__x.empty())
1017 {
1018 _M_check_equal_allocators(__x);
1019
1020 this->_M_transfer(__position, __x.begin(), __x.end());
1021 }
1022 }
1023
1024 /**
1025 * @brief Insert element from another %list.
1026 * @param position Iterator referencing the element to insert before.
1027 * @param x Source list.
1028 * @param i Iterator referencing the element to move.
1029 *
1030 * Removes the element in list @a x referenced by @a i and
1031 * inserts it into the current list before @a position.
1032 */
1033 void
1034 splice(iterator __position, list& __x, iterator __i)
1035 {
1036 iterator __j = __i;
1037 ++__j;
1038 if (__position == __i || __position == __j)
1039 return;
1040
1041 if (this != &__x)
1042 _M_check_equal_allocators(__x);
1043
1044 this->_M_transfer(__position, __i, __j);
1045 }
1046
1047 /**
1048 * @brief Insert range from another %list.
1049 * @param position Iterator referencing the element to insert before.
1050 * @param x Source list.
1051 * @param first Iterator referencing the start of range in x.
1052 * @param last Iterator referencing the end of range in x.
1053 *
1054 * Removes elements in the range [first,last) and inserts them
1055 * before @a position in constant time.
1056 *
1057 * Undefined if @a position is in [first,last).
1058 */
1059 void
1060 splice(iterator __position, list& __x, iterator __first, iterator __last)
1061 {
1062 if (__first != __last)
1063 {
1064 if (this != &__x)
1065 _M_check_equal_allocators(__x);
1066
1067 this->_M_transfer(__position, __first, __last);
1068 }
1069 }
1070
1071 /**
1072 * @brief Remove all elements equal to value.
1073 * @param value The value to remove.
1074 *
1075 * Removes every element in the list equal to @a value.
1076 * Remaining elements stay in list order. Note that this
1077 * function only erases the elements, and that if the elements
1078 * themselves are pointers, the pointed-to memory is not
1079 * touched in any way. Managing the pointer is the user's
1080 * responsibilty.
1081 */
1082 void
1083 remove(const _Tp& __value);
1084
1085 /**
1086 * @brief Remove all elements satisfying a predicate.
1087 * @param Predicate Unary predicate function or object.
1088 *
1089 * Removes every element in the list for which the predicate
1090 * returns true. Remaining elements stay in list order. Note
1091 * that this function only erases the elements, and that if the
1092 * elements themselves are pointers, the pointed-to memory is
1093 * not touched in any way. Managing the pointer is the user's
1094 * responsibilty.
1095 */
1096 template<typename _Predicate>
1097 void
1098 remove_if(_Predicate);
1099
1100 /**
1101 * @brief Remove consecutive duplicate elements.
1102 *
1103 * For each consecutive set of elements with the same value,
1104 * remove all but the first one. Remaining elements stay in
1105 * list order. Note that this function only erases the
1106 * elements, and that if the elements themselves are pointers,
1107 * the pointed-to memory is not touched in any way. Managing
1108 * the pointer is the user's responsibilty.
1109 */
1110 void
1111 unique();
1112
1113 /**
1114 * @brief Remove consecutive elements satisfying a predicate.
1115 * @param BinaryPredicate Binary predicate function or object.
1116 *
1117 * For each consecutive set of elements [first,last) that
1118 * satisfy predicate(first,i) where i is an iterator in
1119 * [first,last), remove all but the first one. Remaining
1120 * elements stay in list order. Note that this function only
1121 * erases the elements, and that if the elements themselves are
1122 * pointers, the pointed-to memory is not touched in any way.
1123 * Managing the pointer is the user's responsibilty.
1124 */
1125 template<typename _BinaryPredicate>
1126 void
1127 unique(_BinaryPredicate);
1128
1129 /**
1130 * @brief Merge sorted lists.
1131 * @param x Sorted list to merge.
1132 *
1133 * Assumes that both @a x and this list are sorted according to
1134 * operator<(). Merges elements of @a x into this list in
1135 * sorted order, leaving @a x empty when complete. Elements in
1136 * this list precede elements in @a x that are equal.
1137 */
1138 void
1139 merge(list& __x);
1140
1141 /**
1142 * @brief Merge sorted lists according to comparison function.
1143 * @param x Sorted list to merge.
1144 * @param StrictWeakOrdering Comparison function definining
1145 * sort order.
1146 *
1147 * Assumes that both @a x and this list are sorted according to
1148 * StrictWeakOrdering. Merges elements of @a x into this list
1149 * in sorted order, leaving @a x empty when complete. Elements
1150 * in this list precede elements in @a x that are equivalent
1151 * according to StrictWeakOrdering().
1152 */
1153 template<typename _StrictWeakOrdering>
1154 void
1155 merge(list&, _StrictWeakOrdering);
1156
1157 /**
1158 * @brief Reverse the elements in list.
1159 *
1160 * Reverse the order of elements in the list in linear time.
1161 */
1162 void
1163 reverse()
1164 { this->_M_impl._M_node.reverse(); }
1165
1166 /**
1167 * @brief Sort the elements.
1168 *
1169 * Sorts the elements of this list in NlogN time. Equivalent
1170 * elements remain in list order.
1171 */
1172 void
1173 sort();
1174
1175 /**
1176 * @brief Sort the elements according to comparison function.
1177 *
1178 * Sorts the elements of this list in NlogN time. Equivalent
1179 * elements remain in list order.
1180 */
1181 template<typename _StrictWeakOrdering>
1182 void
1183 sort(_StrictWeakOrdering);
1184
1185 protected:
1186 // Internal constructor functions follow.
1187
1188 // Called by the range constructor to implement [23.1.1]/9
1189
1190 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1191 // 438. Ambiguity in the "do the right thing" clause
1192 template<typename _Integer>
1193 void
1194 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1195 { _M_fill_initialize(static_cast<size_type>(__n), __x); }
1196
1197 // Called by the range constructor to implement [23.1.1]/9
1198 template<typename _InputIterator>
1199 void
1200 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1201 __false_type)
1202 {
1203 for (; __first != __last; ++__first)
1204 push_back(*__first);
1205 }
1206
1207 // Called by list(n,v,a), and the range constructor when it turns out
1208 // to be the same thing.
1209 void
1210 _M_fill_initialize(size_type __n, const value_type& __x)
1211 {
1212 for (; __n > 0; --__n)
1213 push_back(__x);
1214 }
1215
1216
1217 // Internal assign functions follow.
1218
1219 // Called by the range assign to implement [23.1.1]/9
1220
1221 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1222 // 438. Ambiguity in the "do the right thing" clause
1223 template<typename _Integer>
1224 void
1225 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1226 { _M_fill_assign(__n, __val); }
1227
1228 // Called by the range assign to implement [23.1.1]/9
1229 template<typename _InputIterator>
1230 void
1231 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1232 __false_type);
1233
1234 // Called by assign(n,t), and the range assign when it turns out
1235 // to be the same thing.
1236 void
1237 _M_fill_assign(size_type __n, const value_type& __val);
1238
1239
1240 // Moves the elements from [first,last) before position.
1241 void
1242 _M_transfer(iterator __position, iterator __first, iterator __last)
1243 { __position._M_node->transfer(__first._M_node, __last._M_node); }
1244
1245 // Inserts new element at position given and with value given.
1246 void
1247 _M_insert(iterator __position, const value_type& __x)
1248 {
1249 _Node* __tmp = _M_create_node(__x);
1250 __tmp->hook(__position._M_node);
1251 }
1252
1253 // Erases element at position given.
1254 void
1255 _M_erase(iterator __position)
1256 {
1257 __position._M_node->unhook();
1258 _Node* __n = static_cast<_Node*>(__position._M_node);
1259 _M_get_Tp_allocator().destroy(&__n->_M_data);
1260 _M_put_node(__n);
1261 }
1262
1263 // To implement the splice (and merge) bits of N1599.
1264 void
1265 _M_check_equal_allocators(list& __x)
1266 {
1267 if (_M_get_Node_allocator() != __x._M_get_Node_allocator())
1268 __throw_runtime_error(__N("list::_M_check_equal_allocators"));
1269 }
1270 };
1271
1272 /**
1273 * @brief List equality comparison.
1274 * @param x A %list.
1275 * @param y A %list of the same type as @a x.
1276 * @return True iff the size and elements of the lists are equal.
1277 *
1278 * This is an equivalence relation. It is linear in the size of
1279 * the lists. Lists are considered equivalent if their sizes are
1280 * equal, and if corresponding elements compare equal.
1281 */
1282 template<typename _Tp, typename _Alloc>
1283 inline bool
1284 operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1285 {
1286 typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1287 const_iterator __end1 = __x.end();
1288 const_iterator __end2 = __y.end();
1289
1290 const_iterator __i1 = __x.begin();
1291 const_iterator __i2 = __y.begin();
1292 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1293 {
1294 ++__i1;
1295 ++__i2;
1296 }
1297 return __i1 == __end1 && __i2 == __end2;
1298 }
1299
1300 /**
1301 * @brief List ordering relation.
1302 * @param x A %list.
1303 * @param y A %list of the same type as @a x.
1304 * @return True iff @a x is lexicographically less than @a y.
1305 *
1306 * This is a total ordering relation. It is linear in the size of the
1307 * lists. The elements must be comparable with @c <.
1308 *
1309 * See std::lexicographical_compare() for how the determination is made.
1310 */
1311 template<typename _Tp, typename _Alloc>
1312 inline bool
1313 operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1314 { return std::lexicographical_compare(__x.begin(), __x.end(),
1315 __y.begin(), __y.end()); }
1316
1317 /// Based on operator==
1318 template<typename _Tp, typename _Alloc>
1319 inline bool
1320 operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1321 { return !(__x == __y); }
1322
1323 /// Based on operator<
1324 template<typename _Tp, typename _Alloc>
1325 inline bool
1326 operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1327 { return __y < __x; }
1328
1329 /// Based on operator<
1330 template<typename _Tp, typename _Alloc>
1331 inline bool
1332 operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1333 { return !(__y < __x); }
1334
1335 /// Based on operator<
1336 template<typename _Tp, typename _Alloc>
1337 inline bool
1338 operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1339 { return !(__x < __y); }
1340
1341 /// See std::list::swap().
1342 template<typename _Tp, typename _Alloc>
1343 inline void
1344 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1345 { __x.swap(__y); }
1346
1347 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1348 template<typename _Tp, typename _Alloc>
1349 inline void
1350 swap(list<_Tp, _Alloc>&& __x, list<_Tp, _Alloc>& __y)
1351 { __x.swap(__y); }
1352
1353 template<typename _Tp, typename _Alloc>
1354 inline void
1355 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>&& __y)
1356 { __x.swap(__y); }
1357 #endif
1358
1359 _GLIBCXX_END_NESTED_NAMESPACE
1360
1361 #endif /* _STL_LIST_H */