]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/ext/bitmap_allocator.h
bitmap_allocator.h: Uglify some names.
[thirdparty/gcc.git] / libstdc++-v3 / include / ext / bitmap_allocator.h
1 // Bitmap Allocator. -*- C++ -*-
2
3 // Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /** @file ext/bitmap_allocator.h
31 * This file is a GNU extension to the Standard C++ Library.
32 */
33
34 #ifndef _BITMAP_ALLOCATOR_H
35 #define _BITMAP_ALLOCATOR_H 1
36
37 #include <cstddef> // For std::size_t, and ptrdiff_t.
38 #include <bits/functexcept.h> // For __throw_bad_alloc().
39 #include <utility> // For std::pair.
40 #include <functional> // For greater_equal, and less_equal.
41 #include <new> // For operator new.
42 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
43 #include <ext/concurrence.h>
44
45
46 /** @brief The constant in the expression below is the alignment
47 * required in bytes.
48 */
49 #define _BALLOC_ALIGN_BYTES 8
50
51 _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
52
53 using std::size_t;
54 using std::ptrdiff_t;
55
56 namespace __balloc
57 {
58 /** @class __mini_vector bitmap_allocator.h bitmap_allocator.h
59 *
60 * @brief __mini_vector<> is a stripped down version of the
61 * full-fledged std::vector<>.
62 *
63 * It is to be used only for built-in types or PODs. Notable
64 * differences are:
65 *
66 * @detail
67 * 1. Not all accessor functions are present.
68 * 2. Used ONLY for PODs.
69 * 3. No Allocator template argument. Uses ::operator new() to get
70 * memory, and ::operator delete() to free it.
71 * Caveat: The dtor does NOT free the memory allocated, so this a
72 * memory-leaking vector!
73 */
74 template<typename _Tp>
75 class __mini_vector
76 {
77 __mini_vector(const __mini_vector&);
78 __mini_vector& operator=(const __mini_vector&);
79
80 public:
81 typedef _Tp value_type;
82 typedef _Tp* pointer;
83 typedef _Tp& reference;
84 typedef const _Tp& const_reference;
85 typedef size_t size_type;
86 typedef ptrdiff_t difference_type;
87 typedef pointer iterator;
88
89 private:
90 pointer _M_start;
91 pointer _M_finish;
92 pointer _M_end_of_storage;
93
94 size_type
95 _M_space_left() const throw()
96 { return _M_end_of_storage - _M_finish; }
97
98 pointer
99 allocate(size_type __n)
100 { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
101
102 void
103 deallocate(pointer __p, size_type)
104 { ::operator delete(__p); }
105
106 public:
107 // Members used: size(), push_back(), pop_back(),
108 // insert(iterator, const_reference), erase(iterator),
109 // begin(), end(), back(), operator[].
110
111 __mini_vector() : _M_start(0), _M_finish(0),
112 _M_end_of_storage(0)
113 { }
114
115 #if 0
116 ~__mini_vector()
117 {
118 if (this->_M_start)
119 {
120 this->deallocate(this->_M_start, this->_M_end_of_storage
121 - this->_M_start);
122 }
123 }
124 #endif
125
126 size_type
127 size() const throw()
128 { return _M_finish - _M_start; }
129
130 iterator
131 begin() const throw()
132 { return this->_M_start; }
133
134 iterator
135 end() const throw()
136 { return this->_M_finish; }
137
138 reference
139 back() const throw()
140 { return *(this->end() - 1); }
141
142 reference
143 operator[](const size_type __pos) const throw()
144 { return this->_M_start[__pos]; }
145
146 void
147 insert(iterator __pos, const_reference __x);
148
149 void
150 push_back(const_reference __x)
151 {
152 if (this->_M_space_left())
153 {
154 *this->end() = __x;
155 ++this->_M_finish;
156 }
157 else
158 this->insert(this->end(), __x);
159 }
160
161 void
162 pop_back() throw()
163 { --this->_M_finish; }
164
165 void
166 erase(iterator __pos) throw();
167
168 void
169 clear() throw()
170 { this->_M_finish = this->_M_start; }
171 };
172
173 // Out of line function definitions.
174 template<typename _Tp>
175 void __mini_vector<_Tp>::
176 insert(iterator __pos, const_reference __x)
177 {
178 if (this->_M_space_left())
179 {
180 size_type __to_move = this->_M_finish - __pos;
181 iterator __dest = this->end();
182 iterator __src = this->end() - 1;
183
184 ++this->_M_finish;
185 while (__to_move)
186 {
187 *__dest = *__src;
188 --__dest; --__src; --__to_move;
189 }
190 *__pos = __x;
191 }
192 else
193 {
194 size_type __new_size = this->size() ? this->size() * 2 : 1;
195 iterator __new_start = this->allocate(__new_size);
196 iterator __first = this->begin();
197 iterator __start = __new_start;
198 while (__first != __pos)
199 {
200 *__start = *__first;
201 ++__start; ++__first;
202 }
203 *__start = __x;
204 ++__start;
205 while (__first != this->end())
206 {
207 *__start = *__first;
208 ++__start; ++__first;
209 }
210 if (this->_M_start)
211 this->deallocate(this->_M_start, this->size());
212
213 this->_M_start = __new_start;
214 this->_M_finish = __start;
215 this->_M_end_of_storage = this->_M_start + __new_size;
216 }
217 }
218
219 template<typename _Tp>
220 void __mini_vector<_Tp>::
221 erase(iterator __pos) throw()
222 {
223 while (__pos + 1 != this->end())
224 {
225 *__pos = __pos[1];
226 ++__pos;
227 }
228 --this->_M_finish;
229 }
230
231
232 template<typename _Tp>
233 struct __mv_iter_traits
234 {
235 typedef typename _Tp::value_type value_type;
236 typedef typename _Tp::difference_type difference_type;
237 };
238
239 template<typename _Tp>
240 struct __mv_iter_traits<_Tp*>
241 {
242 typedef _Tp value_type;
243 typedef ptrdiff_t difference_type;
244 };
245
246 enum
247 {
248 bits_per_byte = 8,
249 bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
250 };
251
252 template<typename _ForwardIterator, typename _Tp, typename _Compare>
253 _ForwardIterator
254 __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
255 const _Tp& __val, _Compare __comp)
256 {
257 typedef typename __mv_iter_traits<_ForwardIterator>::value_type
258 _ValueType;
259 typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
260 _DistanceType;
261
262 _DistanceType __len = __last - __first;
263 _DistanceType __half;
264 _ForwardIterator __middle;
265
266 while (__len > 0)
267 {
268 __half = __len >> 1;
269 __middle = __first;
270 __middle += __half;
271 if (__comp(*__middle, __val))
272 {
273 __first = __middle;
274 ++__first;
275 __len = __len - __half - 1;
276 }
277 else
278 __len = __half;
279 }
280 return __first;
281 }
282
283 template<typename _InputIterator, typename _Predicate>
284 inline _InputIterator
285 __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
286 {
287 while (__first != __last && !__p(*__first))
288 ++__first;
289 return __first;
290 }
291
292 /** @brief The number of Blocks pointed to by the address pair
293 * passed to the function.
294 */
295 template<typename _AddrPair>
296 inline size_t
297 __num_blocks(_AddrPair __ap)
298 { return (__ap.second - __ap.first) + 1; }
299
300 /** @brief The number of Bit-maps pointed to by the address pair
301 * passed to the function.
302 */
303 template<typename _AddrPair>
304 inline size_t
305 __num_bitmaps(_AddrPair __ap)
306 { return __num_blocks(__ap) / size_t(bits_per_block); }
307
308 // _Tp should be a pointer type.
309 template<typename _Tp>
310 class _Inclusive_between
311 : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
312 {
313 typedef _Tp pointer;
314 pointer _M_ptr_value;
315 typedef typename std::pair<_Tp, _Tp> _Block_pair;
316
317 public:
318 _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
319 { }
320
321 bool
322 operator()(_Block_pair __bp) const throw()
323 {
324 if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
325 && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
326 return true;
327 else
328 return false;
329 }
330 };
331
332 // Used to pass a Functor to functions by reference.
333 template<typename _Functor>
334 class _Functor_Ref
335 : public std::unary_function<typename _Functor::argument_type,
336 typename _Functor::result_type>
337 {
338 _Functor& _M_fref;
339
340 public:
341 typedef typename _Functor::argument_type argument_type;
342 typedef typename _Functor::result_type result_type;
343
344 _Functor_Ref(_Functor& __fref) : _M_fref(__fref)
345 { }
346
347 result_type
348 operator()(argument_type __arg)
349 { return _M_fref(__arg); }
350 };
351
352 /** @class _Ffit_finder bitmap_allocator.h bitmap_allocator.h
353 *
354 * @brief The class which acts as a predicate for applying the
355 * first-fit memory allocation policy for the bitmap allocator.
356 */
357 // _Tp should be a pointer type, and _Alloc is the Allocator for
358 // the vector.
359 template<typename _Tp>
360 class _Ffit_finder
361 : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
362 {
363 typedef typename std::pair<_Tp, _Tp> _Block_pair;
364 typedef typename __balloc::__mini_vector<_Block_pair> _BPVector;
365 typedef typename _BPVector::difference_type _Counter_type;
366
367 size_t* _M_pbitmap;
368 _Counter_type _M_data_offset;
369
370 public:
371 _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
372 { }
373
374 bool
375 operator()(_Block_pair __bp) throw()
376 {
377 // Set the _rover to the last physical location bitmap,
378 // which is the bitmap which belongs to the first free
379 // block. Thus, the bitmaps are in exact reverse order of
380 // the actual memory layout. So, we count down the bimaps,
381 // which is the same as moving up the memory.
382
383 // If the used count stored at the start of the Bit Map headers
384 // is equal to the number of Objects that the current Block can
385 // store, then there is definitely no space for another single
386 // object, so just return false.
387 _Counter_type __diff =
388 __gnu_cxx::__balloc::__num_bitmaps(__bp);
389
390 if (*(reinterpret_cast<size_t*>
391 (__bp.first) - (__diff + 1))
392 == __gnu_cxx::__balloc::__num_blocks(__bp))
393 return false;
394
395 size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
396
397 for (_Counter_type __i = 0; __i < __diff; ++__i)
398 {
399 _M_data_offset = __i;
400 if (*__rover)
401 {
402 _M_pbitmap = __rover;
403 return true;
404 }
405 --__rover;
406 }
407 return false;
408 }
409
410
411 size_t*
412 _M_get() const throw()
413 { return _M_pbitmap; }
414
415 _Counter_type
416 _M_offset() const throw()
417 { return _M_data_offset * size_t(bits_per_block); }
418 };
419
420
421 /** @class _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
422 *
423 * @brief The bitmap counter which acts as the bitmap
424 * manipulator, and manages the bit-manipulation functions and
425 * the searching and identification functions on the bit-map.
426 */
427 // _Tp should be a pointer type.
428 template<typename _Tp>
429 class _Bitmap_counter
430 {
431 typedef typename __balloc::__mini_vector<typename std::pair<_Tp, _Tp> >
432 _BPVector;
433 typedef typename _BPVector::size_type _Index_type;
434 typedef _Tp pointer;
435
436 _BPVector& _M_vbp;
437 size_t* _M_curr_bmap;
438 size_t* _M_last_bmap_in_block;
439 _Index_type _M_curr_index;
440
441 public:
442 // Use the 2nd parameter with care. Make sure that such an
443 // entry exists in the vector before passing that particular
444 // index to this ctor.
445 _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
446 { this->_M_reset(__index); }
447
448 void
449 _M_reset(long __index = -1) throw()
450 {
451 if (__index == -1)
452 {
453 _M_curr_bmap = 0;
454 _M_curr_index = static_cast<_Index_type>(-1);
455 return;
456 }
457
458 _M_curr_index = __index;
459 _M_curr_bmap = reinterpret_cast<size_t*>
460 (_M_vbp[_M_curr_index].first) - 1;
461
462 _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
463
464 _M_last_bmap_in_block = _M_curr_bmap
465 - ((_M_vbp[_M_curr_index].second
466 - _M_vbp[_M_curr_index].first + 1)
467 / size_t(bits_per_block) - 1);
468 }
469
470 // Dangerous Function! Use with extreme care. Pass to this
471 // function ONLY those values that are known to be correct,
472 // otherwise this will mess up big time.
473 void
474 _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
475 { _M_curr_bmap = __new_internal_marker; }
476
477 bool
478 _M_finished() const throw()
479 { return(_M_curr_bmap == 0); }
480
481 _Bitmap_counter&
482 operator++() throw()
483 {
484 if (_M_curr_bmap == _M_last_bmap_in_block)
485 {
486 if (++_M_curr_index == _M_vbp.size())
487 _M_curr_bmap = 0;
488 else
489 this->_M_reset(_M_curr_index);
490 }
491 else
492 --_M_curr_bmap;
493 return *this;
494 }
495
496 size_t*
497 _M_get() const throw()
498 { return _M_curr_bmap; }
499
500 pointer
501 _M_base() const throw()
502 { return _M_vbp[_M_curr_index].first; }
503
504 _Index_type
505 _M_offset() const throw()
506 {
507 return size_t(bits_per_block)
508 * ((reinterpret_cast<size_t*>(this->_M_base())
509 - _M_curr_bmap) - 1);
510 }
511
512 _Index_type
513 _M_where() const throw()
514 { return _M_curr_index; }
515 };
516
517 /** @brief Mark a memory address as allocated by re-setting the
518 * corresponding bit in the bit-map.
519 */
520 inline void
521 __bit_allocate(size_t* __pbmap, size_t __pos) throw()
522 {
523 size_t __mask = 1 << __pos;
524 __mask = ~__mask;
525 *__pbmap &= __mask;
526 }
527
528 /** @brief Mark a memory address as free by setting the
529 * corresponding bit in the bit-map.
530 */
531 inline void
532 __bit_free(size_t* __pbmap, size_t __pos) throw()
533 {
534 size_t __mask = 1 << __pos;
535 *__pbmap |= __mask;
536 }
537 } // namespace __balloc
538
539 /** @brief Generic Version of the bsf instruction.
540 */
541 inline size_t
542 _Bit_scan_forward(size_t __num)
543 { return static_cast<size_t>(__builtin_ctzl(__num)); }
544
545 /** @class free_list bitmap_allocator.h bitmap_allocator.h
546 *
547 * @brief The free list class for managing chunks of memory to be
548 * given to and returned by the bitmap_allocator.
549 */
550 class free_list
551 {
552 typedef size_t* value_type;
553 typedef __balloc::__mini_vector<value_type> vector_type;
554 typedef vector_type::iterator iterator;
555 typedef __mutex __mutex_type;
556
557 struct _LT_pointer_compare
558 {
559 bool
560 operator()(const size_t* __pui,
561 const size_t __cui) const throw()
562 { return *__pui < __cui; }
563 };
564
565 #if defined __GTHREADS
566 __mutex_type&
567 _M_get_mutex()
568 {
569 static __mutex_type _S_mutex;
570 return _S_mutex;
571 }
572 #endif
573
574 vector_type&
575 _M_get_free_list()
576 {
577 static vector_type _S_free_list;
578 return _S_free_list;
579 }
580
581 /** @brief Performs validation of memory based on their size.
582 *
583 * @param __addr The pointer to the memory block to be
584 * validated.
585 *
586 * @detail Validates the memory block passed to this function and
587 * appropriately performs the action of managing the free list of
588 * blocks by adding this block to the free list or deleting this
589 * or larger blocks from the free list.
590 */
591 void
592 _M_validate(size_t* __addr) throw()
593 {
594 vector_type& __free_list = _M_get_free_list();
595 const vector_type::size_type __max_size = 64;
596 if (__free_list.size() >= __max_size)
597 {
598 // Ok, the threshold value has been reached. We determine
599 // which block to remove from the list of free blocks.
600 if (*__addr >= *__free_list.back())
601 {
602 // Ok, the new block is greater than or equal to the
603 // last block in the list of free blocks. We just free
604 // the new block.
605 ::operator delete(static_cast<void*>(__addr));
606 return;
607 }
608 else
609 {
610 // Deallocate the last block in the list of free lists,
611 // and insert the new one in it's correct position.
612 ::operator delete(static_cast<void*>(__free_list.back()));
613 __free_list.pop_back();
614 }
615 }
616
617 // Just add the block to the list of free lists unconditionally.
618 iterator __temp = __gnu_cxx::__balloc::__lower_bound
619 (__free_list.begin(), __free_list.end(),
620 *__addr, _LT_pointer_compare());
621
622 // We may insert the new free list before _temp;
623 __free_list.insert(__temp, __addr);
624 }
625
626 /** @brief Decides whether the wastage of memory is acceptable for
627 * the current memory request and returns accordingly.
628 *
629 * @param __block_size The size of the block available in the free
630 * list.
631 *
632 * @param __required_size The required size of the memory block.
633 *
634 * @return true if the wastage incurred is acceptable, else returns
635 * false.
636 */
637 bool
638 _M_should_i_give(size_t __block_size,
639 size_t __required_size) throw()
640 {
641 const size_t __max_wastage_percentage = 36;
642 if (__block_size >= __required_size &&
643 (((__block_size - __required_size) * 100 / __block_size)
644 < __max_wastage_percentage))
645 return true;
646 else
647 return false;
648 }
649
650 public:
651 /** @brief This function returns the block of memory to the
652 * internal free list.
653 *
654 * @param __addr The pointer to the memory block that was given
655 * by a call to the _M_get function.
656 */
657 inline void
658 _M_insert(size_t* __addr) throw()
659 {
660 #if defined __GTHREADS
661 __gnu_cxx::__scoped_lock __bfl_lock(_M_get_mutex());
662 #endif
663 // Call _M_validate to decide what should be done with
664 // this particular free list.
665 this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
666 // See discussion as to why this is 1!
667 }
668
669 /** @brief This function gets a block of memory of the specified
670 * size from the free list.
671 *
672 * @param __sz The size in bytes of the memory required.
673 *
674 * @return A pointer to the new memory block of size at least
675 * equal to that requested.
676 */
677 size_t*
678 _M_get(size_t __sz) throw(std::bad_alloc);
679
680 /** @brief This function just clears the internal Free List, and
681 * gives back all the memory to the OS.
682 */
683 void
684 _M_clear();
685 };
686
687
688 // Forward declare the class.
689 template<typename _Tp>
690 class bitmap_allocator;
691
692 // Specialize for void:
693 template<>
694 class bitmap_allocator<void>
695 {
696 public:
697 typedef void* pointer;
698 typedef const void* const_pointer;
699
700 // Reference-to-void members are impossible.
701 typedef void value_type;
702 template<typename _Tp1>
703 struct rebind
704 {
705 typedef bitmap_allocator<_Tp1> other;
706 };
707 };
708
709 template<typename _Tp>
710 class bitmap_allocator : private free_list
711 {
712 public:
713 typedef size_t size_type;
714 typedef ptrdiff_t difference_type;
715 typedef _Tp* pointer;
716 typedef const _Tp* const_pointer;
717 typedef _Tp& reference;
718 typedef const _Tp& const_reference;
719 typedef _Tp value_type;
720 typedef free_list::__mutex_type __mutex_type;
721
722 template<typename _Tp1>
723 struct rebind
724 {
725 typedef bitmap_allocator<_Tp1> other;
726 };
727
728 private:
729 template<size_t _BSize, size_t _AlignSize>
730 struct aligned_size
731 {
732 enum
733 {
734 modulus = _BSize % _AlignSize,
735 value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
736 };
737 };
738
739 struct _Alloc_block
740 {
741 char __M_unused[aligned_size<sizeof(value_type),
742 _BALLOC_ALIGN_BYTES>::value];
743 };
744
745
746 typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
747
748 typedef typename
749 __balloc::__mini_vector<_Block_pair> _BPVector;
750
751 #if defined _GLIBCXX_DEBUG
752 // Complexity: O(lg(N)). Where, N is the number of block of size
753 // sizeof(value_type).
754 void
755 _S_check_for_free_blocks() throw()
756 {
757 typedef typename
758 __gnu_cxx::__balloc::_Ffit_finder<_Alloc_block*> _FFF;
759 _FFF __fff;
760 typedef typename _BPVector::iterator _BPiter;
761 _BPiter __bpi =
762 __gnu_cxx::__balloc::__find_if
763 (_S_mem_blocks.begin(), _S_mem_blocks.end(),
764 __gnu_cxx::__balloc::_Functor_Ref<_FFF>(__fff));
765
766 _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
767 }
768 #endif
769
770 /** @brief Responsible for exponentially growing the internal
771 * memory pool.
772 *
773 * @throw std::bad_alloc. If memory can not be allocated.
774 *
775 * @detail Complexity: O(1), but internally depends upon the
776 * complexity of the function free_list::_M_get. The part where
777 * the bitmap headers are written has complexity: O(X),where X
778 * is the number of blocks of size sizeof(value_type) within
779 * the newly acquired block. Having a tight bound.
780 */
781 void
782 _S_refill_pool() throw(std::bad_alloc)
783 {
784 #if defined _GLIBCXX_DEBUG
785 _S_check_for_free_blocks();
786 #endif
787
788 const size_t __num_bitmaps = (_S_block_size
789 / size_t(__balloc::bits_per_block));
790 const size_t __size_to_allocate = sizeof(size_t)
791 + _S_block_size * sizeof(_Alloc_block)
792 + __num_bitmaps * sizeof(size_t);
793
794 size_t* __temp =
795 reinterpret_cast<size_t*>
796 (this->_M_get(__size_to_allocate));
797 *__temp = 0;
798 ++__temp;
799
800 // The Header information goes at the Beginning of the Block.
801 _Block_pair __bp =
802 std::make_pair(reinterpret_cast<_Alloc_block*>
803 (__temp + __num_bitmaps),
804 reinterpret_cast<_Alloc_block*>
805 (__temp + __num_bitmaps)
806 + _S_block_size - 1);
807
808 // Fill the Vector with this information.
809 _S_mem_blocks.push_back(__bp);
810
811 size_t __bit_mask = 0; // 0 Indicates all Allocated.
812 __bit_mask = ~__bit_mask; // 1 Indicates all Free.
813
814 for (size_t __i = 0; __i < __num_bitmaps; ++__i)
815 __temp[__i] = __bit_mask;
816
817 _S_block_size *= 2;
818 }
819
820
821 static _BPVector _S_mem_blocks;
822 static size_t _S_block_size;
823 static __gnu_cxx::__balloc::
824 _Bitmap_counter<_Alloc_block*> _S_last_request;
825 static typename _BPVector::size_type _S_last_dealloc_index;
826 #if defined __GTHREADS
827 static __mutex_type _S_mut;
828 #endif
829
830 public:
831
832 /** @brief Allocates memory for a single object of size
833 * sizeof(_Tp).
834 *
835 * @throw std::bad_alloc. If memory can not be allocated.
836 *
837 * @detail Complexity: Worst case complexity is O(N), but that
838 * is hardly ever hit. If and when this particular case is
839 * encountered, the next few cases are guaranteed to have a
840 * worst case complexity of O(1)! That's why this function
841 * performs very well on average. You can consider this
842 * function to have a complexity referred to commonly as:
843 * Amortized Constant time.
844 */
845 pointer
846 _M_allocate_single_object() throw(std::bad_alloc)
847 {
848 #if defined __GTHREADS
849 __gnu_cxx::__scoped_lock __bit_lock(_S_mut);
850 #endif
851
852 // The algorithm is something like this: The last_request
853 // variable points to the last accessed Bit Map. When such a
854 // condition occurs, we try to find a free block in the
855 // current bitmap, or succeeding bitmaps until the last bitmap
856 // is reached. If no free block turns up, we resort to First
857 // Fit method.
858
859 // WARNING: Do not re-order the condition in the while
860 // statement below, because it relies on C++'s short-circuit
861 // evaluation. The return from _S_last_request->_M_get() will
862 // NOT be dereference able if _S_last_request->_M_finished()
863 // returns true. This would inevitably lead to a NULL pointer
864 // dereference if tinkered with.
865 while (_S_last_request._M_finished() == false
866 && (*(_S_last_request._M_get()) == 0))
867 {
868 _S_last_request.operator++();
869 }
870
871 if (__builtin_expect(_S_last_request._M_finished() == true, false))
872 {
873 // Fall Back to First Fit algorithm.
874 typedef typename
875 __gnu_cxx::__balloc::_Ffit_finder<_Alloc_block*> _FFF;
876 _FFF __fff;
877 typedef typename _BPVector::iterator _BPiter;
878 _BPiter __bpi =
879 __gnu_cxx::__balloc::__find_if
880 (_S_mem_blocks.begin(), _S_mem_blocks.end(),
881 __gnu_cxx::__balloc::_Functor_Ref<_FFF>(__fff));
882
883 if (__bpi != _S_mem_blocks.end())
884 {
885 // Search was successful. Ok, now mark the first bit from
886 // the right as 0, meaning Allocated. This bit is obtained
887 // by calling _M_get() on __fff.
888 size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
889 __balloc::__bit_allocate(__fff._M_get(), __nz_bit);
890
891 _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
892
893 // Now, get the address of the bit we marked as allocated.
894 pointer __ret = reinterpret_cast<pointer>
895 (__bpi->first + __fff._M_offset() + __nz_bit);
896 size_t* __puse_count =
897 reinterpret_cast<size_t*>
898 (__bpi->first)
899 - (__gnu_cxx::__balloc::__num_bitmaps(*__bpi) + 1);
900
901 ++(*__puse_count);
902 return __ret;
903 }
904 else
905 {
906 // Search was unsuccessful. We Add more memory to the
907 // pool by calling _S_refill_pool().
908 _S_refill_pool();
909
910 // _M_Reset the _S_last_request structure to the first
911 // free block's bit map.
912 _S_last_request._M_reset(_S_mem_blocks.size() - 1);
913
914 // Now, mark that bit as allocated.
915 }
916 }
917
918 // _S_last_request holds a pointer to a valid bit map, that
919 // points to a free block in memory.
920 size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
921 __balloc::__bit_allocate(_S_last_request._M_get(), __nz_bit);
922
923 pointer __ret = reinterpret_cast<pointer>
924 (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
925
926 size_t* __puse_count = reinterpret_cast<size_t*>
927 (_S_mem_blocks[_S_last_request._M_where()].first)
928 - (__gnu_cxx::__balloc::
929 __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
930
931 ++(*__puse_count);
932 return __ret;
933 }
934
935 /** @brief Deallocates memory that belongs to a single object of
936 * size sizeof(_Tp).
937 *
938 * @detail Complexity: O(lg(N)), but the worst case is not hit
939 * often! This is because containers usually deallocate memory
940 * close to each other and this case is handled in O(1) time by
941 * the deallocate function.
942 */
943 void
944 _M_deallocate_single_object(pointer __p) throw()
945 {
946 #if defined __GTHREADS
947 __gnu_cxx::__scoped_lock __bit_lock(_S_mut);
948 #endif
949 _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
950
951 typedef typename _BPVector::iterator _Iterator;
952 typedef typename _BPVector::difference_type _Difference_type;
953
954 _Difference_type __diff;
955 long __displacement;
956
957 _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
958
959
960 if (__gnu_cxx::__balloc::_Inclusive_between<_Alloc_block*>
961 (__real_p) (_S_mem_blocks[_S_last_dealloc_index]))
962 {
963 _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
964 <= _S_mem_blocks.size() - 1);
965
966 // Initial Assumption was correct!
967 __diff = _S_last_dealloc_index;
968 __displacement = __real_p - _S_mem_blocks[__diff].first;
969 }
970 else
971 {
972 _Iterator _iter = __gnu_cxx::__balloc::
973 __find_if(_S_mem_blocks.begin(),
974 _S_mem_blocks.end(),
975 __gnu_cxx::__balloc::
976 _Inclusive_between<_Alloc_block*>(__real_p));
977
978 _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
979
980 __diff = _iter - _S_mem_blocks.begin();
981 __displacement = __real_p - _S_mem_blocks[__diff].first;
982 _S_last_dealloc_index = __diff;
983 }
984
985 // Get the position of the iterator that has been found.
986 const size_t __rotate = (__displacement
987 % size_t(__balloc::bits_per_block));
988 size_t* __bitmapC =
989 reinterpret_cast<size_t*>
990 (_S_mem_blocks[__diff].first) - 1;
991 __bitmapC -= (__displacement / size_t(__balloc::bits_per_block));
992
993 __balloc::__bit_free(__bitmapC, __rotate);
994 size_t* __puse_count = reinterpret_cast<size_t*>
995 (_S_mem_blocks[__diff].first)
996 - (__gnu_cxx::__balloc::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
997
998 _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
999
1000 --(*__puse_count);
1001
1002 if (__builtin_expect(*__puse_count == 0, false))
1003 {
1004 _S_block_size /= 2;
1005
1006 // We can safely remove this block.
1007 // _Block_pair __bp = _S_mem_blocks[__diff];
1008 this->_M_insert(__puse_count);
1009 _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
1010
1011 // Reset the _S_last_request variable to reflect the
1012 // erased block. We do this to protect future requests
1013 // after the last block has been removed from a particular
1014 // memory Chunk, which in turn has been returned to the
1015 // free list, and hence had been erased from the vector,
1016 // so the size of the vector gets reduced by 1.
1017 if ((_Difference_type)_S_last_request._M_where() >= __diff--)
1018 _S_last_request._M_reset(__diff);
1019
1020 // If the Index into the vector of the region of memory
1021 // that might hold the next address that will be passed to
1022 // deallocated may have been invalidated due to the above
1023 // erase procedure being called on the vector, hence we
1024 // try to restore this invariant too.
1025 if (_S_last_dealloc_index >= _S_mem_blocks.size())
1026 {
1027 _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
1028 _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
1029 }
1030 }
1031 }
1032
1033 public:
1034 bitmap_allocator() throw()
1035 { }
1036
1037 bitmap_allocator(const bitmap_allocator&)
1038 { }
1039
1040 template<typename _Tp1>
1041 bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
1042 { }
1043
1044 ~bitmap_allocator() throw()
1045 { }
1046
1047 pointer
1048 allocate(size_type __n)
1049 {
1050 if (__builtin_expect(__n > this->max_size(), false))
1051 std::__throw_bad_alloc();
1052
1053 if (__builtin_expect(__n == 1, true))
1054 return this->_M_allocate_single_object();
1055 else
1056 {
1057 const size_type __b = __n * sizeof(value_type);
1058 return reinterpret_cast<pointer>(::operator new(__b));
1059 }
1060 }
1061
1062 pointer
1063 allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1064 { return allocate(__n); }
1065
1066 void
1067 deallocate(pointer __p, size_type __n) throw()
1068 {
1069 if (__builtin_expect(__p != 0, true))
1070 {
1071 if (__builtin_expect(__n == 1, true))
1072 this->_M_deallocate_single_object(__p);
1073 else
1074 ::operator delete(__p);
1075 }
1076 }
1077
1078 pointer
1079 address(reference __r) const
1080 { return &__r; }
1081
1082 const_pointer
1083 address(const_reference __r) const
1084 { return &__r; }
1085
1086 size_type
1087 max_size() const throw()
1088 { return size_type(-1) / sizeof(value_type); }
1089
1090 void
1091 construct(pointer __p, const_reference __data)
1092 { ::new(__p) value_type(__data); }
1093
1094 void
1095 destroy(pointer __p)
1096 { __p->~value_type(); }
1097 };
1098
1099 template<typename _Tp1, typename _Tp2>
1100 bool
1101 operator==(const bitmap_allocator<_Tp1>&,
1102 const bitmap_allocator<_Tp2>&) throw()
1103 { return true; }
1104
1105 template<typename _Tp1, typename _Tp2>
1106 bool
1107 operator!=(const bitmap_allocator<_Tp1>&,
1108 const bitmap_allocator<_Tp2>&) throw()
1109 { return false; }
1110
1111 // Static member definitions.
1112 template<typename _Tp>
1113 typename bitmap_allocator<_Tp>::_BPVector
1114 bitmap_allocator<_Tp>::_S_mem_blocks;
1115
1116 template<typename _Tp>
1117 size_t bitmap_allocator<_Tp>::_S_block_size =
1118 2 * size_t(__balloc::bits_per_block);
1119
1120 template<typename _Tp>
1121 typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type
1122 bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1123
1124 template<typename _Tp>
1125 __gnu_cxx::__balloc::_Bitmap_counter
1126 <typename bitmap_allocator<_Tp>::_Alloc_block*>
1127 bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1128
1129 #if defined __GTHREADS
1130 template<typename _Tp>
1131 typename bitmap_allocator<_Tp>::__mutex_type
1132 bitmap_allocator<_Tp>::_S_mut;
1133 #endif
1134
1135 _GLIBCXX_END_NAMESPACE
1136
1137 #endif
1138