]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/std/future
future (future_error(error_code)): Construct base class with error_code's message.
[thirdparty/gcc.git] / libstdc++-v3 / include / std / future
1 // <future> -*- C++ -*-
2
3 // Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file include/future
26 * This is a Standard C++ Library header.
27 */
28
29 #ifndef _GLIBCXX_FUTURE
30 #define _GLIBCXX_FUTURE 1
31
32 #pragma GCC system_header
33
34 #if __cplusplus < 201103L
35 # include <bits/c++0x_warning.h>
36 #else
37
38 #include <functional>
39 #include <mutex>
40 #include <thread>
41 #include <condition_variable>
42 #include <system_error>
43 #include <atomic>
44 #include <bits/atomic_futex.h>
45 #include <bits/functexcept.h>
46 #include <bits/unique_ptr.h>
47 #include <bits/shared_ptr.h>
48 #include <bits/uses_allocator.h>
49 #include <bits/allocated_ptr.h>
50 #include <ext/aligned_buffer.h>
51
52 namespace std _GLIBCXX_VISIBILITY(default)
53 {
54 _GLIBCXX_BEGIN_NAMESPACE_VERSION
55
56 /**
57 * @defgroup futures Futures
58 * @ingroup concurrency
59 *
60 * Classes for futures support.
61 * @{
62 */
63
64 /// Error code for futures
65 enum class future_errc
66 {
67 future_already_retrieved = 1,
68 promise_already_satisfied,
69 no_state,
70 broken_promise
71 };
72
73 /// Specialization.
74 template<>
75 struct is_error_code_enum<future_errc> : public true_type { };
76
77 /// Points to a statically-allocated object derived from error_category.
78 const error_category&
79 future_category() noexcept;
80
81 /// Overload for make_error_code.
82 inline error_code
83 make_error_code(future_errc __errc) noexcept
84 { return error_code(static_cast<int>(__errc), future_category()); }
85
86 /// Overload for make_error_condition.
87 inline error_condition
88 make_error_condition(future_errc __errc) noexcept
89 { return error_condition(static_cast<int>(__errc), future_category()); }
90
91 /**
92 * @brief Exception type thrown by futures.
93 * @ingroup exceptions
94 */
95 class future_error : public logic_error
96 {
97 error_code _M_code;
98
99 public:
100 explicit future_error(error_code __ec)
101 : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
102 { }
103
104 virtual ~future_error() noexcept;
105
106 virtual const char*
107 what() const noexcept;
108
109 const error_code&
110 code() const noexcept { return _M_code; }
111 };
112
113 // Forward declarations.
114 template<typename _Res>
115 class future;
116
117 template<typename _Res>
118 class shared_future;
119
120 template<typename _Signature>
121 class packaged_task;
122
123 template<typename _Res>
124 class promise;
125
126 /// Launch code for futures
127 enum class launch
128 {
129 async = 1,
130 deferred = 2
131 };
132
133 constexpr launch operator&(launch __x, launch __y)
134 {
135 return static_cast<launch>(
136 static_cast<int>(__x) & static_cast<int>(__y));
137 }
138
139 constexpr launch operator|(launch __x, launch __y)
140 {
141 return static_cast<launch>(
142 static_cast<int>(__x) | static_cast<int>(__y));
143 }
144
145 constexpr launch operator^(launch __x, launch __y)
146 {
147 return static_cast<launch>(
148 static_cast<int>(__x) ^ static_cast<int>(__y));
149 }
150
151 constexpr launch operator~(launch __x)
152 { return static_cast<launch>(~static_cast<int>(__x)); }
153
154 inline launch& operator&=(launch& __x, launch __y)
155 { return __x = __x & __y; }
156
157 inline launch& operator|=(launch& __x, launch __y)
158 { return __x = __x | __y; }
159
160 inline launch& operator^=(launch& __x, launch __y)
161 { return __x = __x ^ __y; }
162
163 /// Status code for futures
164 enum class future_status
165 {
166 ready,
167 timeout,
168 deferred
169 };
170
171 template<typename _Fn, typename... _Args>
172 future<typename result_of<_Fn(_Args...)>::type>
173 async(launch __policy, _Fn&& __fn, _Args&&... __args);
174
175 template<typename _Fn, typename... _Args>
176 future<typename result_of<_Fn(_Args...)>::type>
177 async(_Fn&& __fn, _Args&&... __args);
178
179 #if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) \
180 && (ATOMIC_INT_LOCK_FREE > 1)
181
182 /// Base class and enclosing scope.
183 struct __future_base
184 {
185 /// Base class for results.
186 struct _Result_base
187 {
188 exception_ptr _M_error;
189
190 _Result_base(const _Result_base&) = delete;
191 _Result_base& operator=(const _Result_base&) = delete;
192
193 // _M_destroy() allows derived classes to control deallocation
194 virtual void _M_destroy() = 0;
195
196 struct _Deleter
197 {
198 void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
199 };
200
201 protected:
202 _Result_base();
203 virtual ~_Result_base();
204 };
205
206 /// A unique_ptr for result objects.
207 template<typename _Res>
208 using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;
209
210 /// A result object that has storage for an object of type _Res.
211 template<typename _Res>
212 struct _Result : _Result_base
213 {
214 private:
215 __gnu_cxx::__aligned_buffer<_Res> _M_storage;
216 bool _M_initialized;
217
218 public:
219 typedef _Res result_type;
220
221 _Result() noexcept : _M_initialized() { }
222
223 ~_Result()
224 {
225 if (_M_initialized)
226 _M_value().~_Res();
227 }
228
229 // Return lvalue, future will add const or rvalue-reference
230 _Res&
231 _M_value() noexcept { return *_M_storage._M_ptr(); }
232
233 void
234 _M_set(const _Res& __res)
235 {
236 ::new (_M_storage._M_addr()) _Res(__res);
237 _M_initialized = true;
238 }
239
240 void
241 _M_set(_Res&& __res)
242 {
243 ::new (_M_storage._M_addr()) _Res(std::move(__res));
244 _M_initialized = true;
245 }
246
247 private:
248 void _M_destroy() { delete this; }
249 };
250
251 /// A result object that uses an allocator.
252 template<typename _Res, typename _Alloc>
253 struct _Result_alloc final : _Result<_Res>, _Alloc
254 {
255 using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;
256
257 explicit
258 _Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
259 { }
260
261 private:
262 void _M_destroy()
263 {
264 __allocator_type __a(*this);
265 __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
266 this->~_Result_alloc();
267 }
268 };
269
270 // Create a result object that uses an allocator.
271 template<typename _Res, typename _Allocator>
272 static _Ptr<_Result_alloc<_Res, _Allocator>>
273 _S_allocate_result(const _Allocator& __a)
274 {
275 using __result_type = _Result_alloc<_Res, _Allocator>;
276 typename __result_type::__allocator_type __a2(__a);
277 auto __guard = std::__allocate_guarded(__a2);
278 __result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
279 __guard = nullptr;
280 return _Ptr<__result_type>(__p);
281 }
282
283 // Keep it simple for std::allocator.
284 template<typename _Res, typename _Tp>
285 static _Ptr<_Result<_Res>>
286 _S_allocate_result(const std::allocator<_Tp>& __a)
287 {
288 return _Ptr<_Result<_Res>>(new _Result<_Res>);
289 }
290
291 // Base class for various types of shared state created by an
292 // asynchronous provider (such as a std::promise) and shared with one
293 // or more associated futures.
294 class _State_baseV2
295 {
296 typedef _Ptr<_Result_base> _Ptr_type;
297
298 enum _Status : unsigned {
299 __not_ready,
300 __ready
301 };
302
303 _Ptr_type _M_result;
304 __atomic_futex_unsigned<> _M_status;
305 atomic_flag _M_retrieved = ATOMIC_FLAG_INIT;
306 once_flag _M_once;
307
308 public:
309 _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
310 { }
311 _State_baseV2(const _State_baseV2&) = delete;
312 _State_baseV2& operator=(const _State_baseV2&) = delete;
313 virtual ~_State_baseV2() = default;
314
315 _Result_base&
316 wait()
317 {
318 // Run any deferred function or join any asynchronous thread:
319 _M_complete_async();
320 // Acquire MO makes sure this synchronizes with the thread that made
321 // the future ready.
322 _M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
323 return *_M_result;
324 }
325
326 template<typename _Rep, typename _Period>
327 future_status
328 wait_for(const chrono::duration<_Rep, _Period>& __rel)
329 {
330 // First, check if the future has been made ready. Use acquire MO
331 // to synchronize with the thread that made it ready.
332 if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
333 return future_status::ready;
334 if (_M_is_deferred_future())
335 return future_status::deferred;
336 if (_M_status._M_load_when_equal_for(_Status::__ready,
337 memory_order_acquire, __rel))
338 {
339 // _GLIBCXX_RESOLVE_LIB_DEFECTS
340 // 2100. timed waiting functions must also join
341 // This call is a no-op by default except on an async future,
342 // in which case the async thread is joined. It's also not a
343 // no-op for a deferred future, but such a future will never
344 // reach this point because it returns future_status::deferred
345 // instead of waiting for the future to become ready (see
346 // above). Async futures synchronize in this call, so we need
347 // no further synchronization here.
348 _M_complete_async();
349
350 return future_status::ready;
351 }
352 return future_status::timeout;
353 }
354
355 template<typename _Clock, typename _Duration>
356 future_status
357 wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
358 {
359 // First, check if the future has been made ready. Use acquire MO
360 // to synchronize with the thread that made it ready.
361 if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
362 return future_status::ready;
363 if (_M_is_deferred_future())
364 return future_status::deferred;
365 if (_M_status._M_load_when_equal_until(_Status::__ready,
366 memory_order_acquire, __abs))
367 {
368 // _GLIBCXX_RESOLVE_LIB_DEFECTS
369 // 2100. timed waiting functions must also join
370 // See wait_for(...) above.
371 _M_complete_async();
372
373 return future_status::ready;
374 }
375 return future_status::timeout;
376 }
377
378 // Provide a result to the shared state and make it ready.
379 // Calls at most once: _M_result = __res();
380 void
381 _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
382 {
383 bool __did_set = false;
384 // all calls to this function are serialized,
385 // side-effects of invoking __res only happen once
386 call_once(_M_once, &_State_baseV2::_M_do_set, this,
387 std::__addressof(__res), std::__addressof(__did_set));
388 if (__did_set)
389 // Use release MO to synchronize with observers of the ready state.
390 _M_status._M_store_notify_all(_Status::__ready,
391 memory_order_release);
392 else if (!__ignore_failure)
393 __throw_future_error(int(future_errc::promise_already_satisfied));
394 }
395
396 // Provide a result to the shared state but delay making it ready
397 // until the calling thread exits.
398 // Calls at most once: _M_result = __res();
399 void
400 _M_set_delayed_result(function<_Ptr_type()> __res,
401 weak_ptr<_State_baseV2> __self)
402 {
403 bool __did_set = false;
404 unique_ptr<_Make_ready> __mr{new _Make_ready};
405 // all calls to this function are serialized,
406 // side-effects of invoking __res only happen once
407 call_once(_M_once, &_State_baseV2::_M_do_set, this,
408 std::__addressof(__res), std::__addressof(__did_set));
409 if (!__did_set)
410 __throw_future_error(int(future_errc::promise_already_satisfied));
411 __mr->_M_shared_state = std::move(__self);
412 __mr->_M_set();
413 __mr.release();
414 }
415
416 // Abandon this shared state.
417 void
418 _M_break_promise(_Ptr_type __res)
419 {
420 if (static_cast<bool>(__res))
421 {
422 error_code __ec(make_error_code(future_errc::broken_promise));
423 __res->_M_error = make_exception_ptr(future_error(__ec));
424 // This function is only called when the last asynchronous result
425 // provider is abandoning this shared state, so noone can be
426 // trying to make the shared state ready at the same time, and
427 // we can access _M_result directly instead of through call_once.
428 _M_result.swap(__res);
429 // Use release MO to synchronize with observers of the ready state.
430 _M_status._M_store_notify_all(_Status::__ready,
431 memory_order_release);
432 }
433 }
434
435 // Called when this object is first passed to a future.
436 void
437 _M_set_retrieved_flag()
438 {
439 if (_M_retrieved.test_and_set())
440 __throw_future_error(int(future_errc::future_already_retrieved));
441 }
442
443 template<typename _Res, typename _Arg>
444 struct _Setter;
445
446 // set lvalues
447 template<typename _Res, typename _Arg>
448 struct _Setter<_Res, _Arg&>
449 {
450 // check this is only used by promise<R>::set_value(const R&)
451 // or promise<R&>::set_value(R&)
452 static_assert(is_same<_Res, _Arg&>::value // promise<R&>
453 || is_same<const _Res, _Arg>::value, // promise<R>
454 "Invalid specialisation");
455
456 // Used by std::promise to copy construct the result.
457 typename promise<_Res>::_Ptr_type operator()() const
458 {
459 _State_baseV2::_S_check(_M_promise->_M_future);
460 _M_promise->_M_storage->_M_set(*_M_arg);
461 return std::move(_M_promise->_M_storage);
462 }
463 promise<_Res>* _M_promise;
464 _Arg* _M_arg;
465 };
466
467 // set rvalues
468 template<typename _Res>
469 struct _Setter<_Res, _Res&&>
470 {
471 // Used by std::promise to move construct the result.
472 typename promise<_Res>::_Ptr_type operator()() const
473 {
474 _State_baseV2::_S_check(_M_promise->_M_future);
475 _M_promise->_M_storage->_M_set(std::move(*_M_arg));
476 return std::move(_M_promise->_M_storage);
477 }
478 promise<_Res>* _M_promise;
479 _Res* _M_arg;
480 };
481
482 struct __exception_ptr_tag { };
483
484 // set exceptions
485 template<typename _Res>
486 struct _Setter<_Res, __exception_ptr_tag>
487 {
488 // Used by std::promise to store an exception as the result.
489 typename promise<_Res>::_Ptr_type operator()() const
490 {
491 _State_baseV2::_S_check(_M_promise->_M_future);
492 _M_promise->_M_storage->_M_error = *_M_ex;
493 return std::move(_M_promise->_M_storage);
494 }
495
496 promise<_Res>* _M_promise;
497 exception_ptr* _M_ex;
498 };
499
500 template<typename _Res, typename _Arg>
501 static _Setter<_Res, _Arg&&>
502 __setter(promise<_Res>* __prom, _Arg&& __arg)
503 {
504 return _Setter<_Res, _Arg&&>{ __prom, &__arg };
505 }
506
507 template<typename _Res>
508 static _Setter<_Res, __exception_ptr_tag>
509 __setter(exception_ptr& __ex, promise<_Res>* __prom)
510 {
511 return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
512 }
513
514 template<typename _Tp>
515 static void
516 _S_check(const shared_ptr<_Tp>& __p)
517 {
518 if (!static_cast<bool>(__p))
519 __throw_future_error((int)future_errc::no_state);
520 }
521
522 private:
523 // The function invoked with std::call_once(_M_once, ...).
524 void
525 _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
526 {
527 _Ptr_type __res = (*__f)();
528 // Notify the caller that we did try to set; if we do not throw an
529 // exception, the caller will be aware that it did set (e.g., see
530 // _M_set_result).
531 *__did_set = true;
532 _M_result.swap(__res); // nothrow
533 }
534
535 // Wait for completion of async function.
536 virtual void _M_complete_async() { }
537
538 // Return true if state corresponds to a deferred function.
539 virtual bool _M_is_deferred_future() const { return false; }
540
541 struct _Make_ready final : __at_thread_exit_elt
542 {
543 weak_ptr<_State_baseV2> _M_shared_state;
544 static void _S_run(void*);
545 void _M_set();
546 };
547 };
548
549 #ifdef _GLIBCXX_ASYNC_ABI_COMPAT
550 class _State_base;
551 class _Async_state_common;
552 #else
553 using _State_base = _State_baseV2;
554 class _Async_state_commonV2;
555 #endif
556
557 template<typename _BoundFn, typename = typename _BoundFn::result_type>
558 class _Deferred_state;
559
560 template<typename _BoundFn, typename = typename _BoundFn::result_type>
561 class _Async_state_impl;
562
563 template<typename _Signature>
564 class _Task_state_base;
565
566 template<typename _Fn, typename _Alloc, typename _Signature>
567 class _Task_state;
568
569 template<typename _BoundFn>
570 static std::shared_ptr<_State_base>
571 _S_make_deferred_state(_BoundFn&& __fn);
572
573 template<typename _BoundFn>
574 static std::shared_ptr<_State_base>
575 _S_make_async_state(_BoundFn&& __fn);
576
577 template<typename _Res_ptr, typename _Fn,
578 typename _Res = typename _Res_ptr::element_type::result_type>
579 struct _Task_setter;
580
581 template<typename _Res_ptr, typename _BoundFn>
582 static _Task_setter<_Res_ptr, _BoundFn>
583 _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
584 {
585 return { std::__addressof(__ptr), std::__addressof(__call) };
586 }
587 };
588
589 /// Partial specialization for reference types.
590 template<typename _Res>
591 struct __future_base::_Result<_Res&> : __future_base::_Result_base
592 {
593 typedef _Res& result_type;
594
595 _Result() noexcept : _M_value_ptr() { }
596
597 void
598 _M_set(_Res& __res) noexcept
599 { _M_value_ptr = std::addressof(__res); }
600
601 _Res& _M_get() noexcept { return *_M_value_ptr; }
602
603 private:
604 _Res* _M_value_ptr;
605
606 void _M_destroy() { delete this; }
607 };
608
609 /// Explicit specialization for void.
610 template<>
611 struct __future_base::_Result<void> : __future_base::_Result_base
612 {
613 typedef void result_type;
614
615 private:
616 void _M_destroy() { delete this; }
617 };
618
619 #ifndef _GLIBCXX_ASYNC_ABI_COMPAT
620
621 // Allow _Setter objects to be stored locally in std::function
622 template<typename _Res, typename _Arg>
623 struct __is_location_invariant
624 <__future_base::_State_base::_Setter<_Res, _Arg>>
625 : true_type { };
626
627 // Allow _Task_setter objects to be stored locally in std::function
628 template<typename _Res_ptr, typename _Fn, typename _Res>
629 struct __is_location_invariant
630 <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
631 : true_type { };
632
633 /// Common implementation for future and shared_future.
634 template<typename _Res>
635 class __basic_future : public __future_base
636 {
637 protected:
638 typedef shared_ptr<_State_base> __state_type;
639 typedef __future_base::_Result<_Res>& __result_type;
640
641 private:
642 __state_type _M_state;
643
644 public:
645 // Disable copying.
646 __basic_future(const __basic_future&) = delete;
647 __basic_future& operator=(const __basic_future&) = delete;
648
649 bool
650 valid() const noexcept { return static_cast<bool>(_M_state); }
651
652 void
653 wait() const
654 {
655 _State_base::_S_check(_M_state);
656 _M_state->wait();
657 }
658
659 template<typename _Rep, typename _Period>
660 future_status
661 wait_for(const chrono::duration<_Rep, _Period>& __rel) const
662 {
663 _State_base::_S_check(_M_state);
664 return _M_state->wait_for(__rel);
665 }
666
667 template<typename _Clock, typename _Duration>
668 future_status
669 wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
670 {
671 _State_base::_S_check(_M_state);
672 return _M_state->wait_until(__abs);
673 }
674
675 protected:
676 /// Wait for the state to be ready and rethrow any stored exception
677 __result_type
678 _M_get_result() const
679 {
680 _State_base::_S_check(_M_state);
681 _Result_base& __res = _M_state->wait();
682 if (!(__res._M_error == 0))
683 rethrow_exception(__res._M_error);
684 return static_cast<__result_type>(__res);
685 }
686
687 void _M_swap(__basic_future& __that) noexcept
688 {
689 _M_state.swap(__that._M_state);
690 }
691
692 // Construction of a future by promise::get_future()
693 explicit
694 __basic_future(const __state_type& __state) : _M_state(__state)
695 {
696 _State_base::_S_check(_M_state);
697 _M_state->_M_set_retrieved_flag();
698 }
699
700 // Copy construction from a shared_future
701 explicit
702 __basic_future(const shared_future<_Res>&) noexcept;
703
704 // Move construction from a shared_future
705 explicit
706 __basic_future(shared_future<_Res>&&) noexcept;
707
708 // Move construction from a future
709 explicit
710 __basic_future(future<_Res>&&) noexcept;
711
712 constexpr __basic_future() noexcept : _M_state() { }
713
714 struct _Reset
715 {
716 explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
717 ~_Reset() { _M_fut._M_state.reset(); }
718 __basic_future& _M_fut;
719 };
720 };
721
722
723 /// Primary template for future.
724 template<typename _Res>
725 class future : public __basic_future<_Res>
726 {
727 friend class promise<_Res>;
728 template<typename> friend class packaged_task;
729 template<typename _Fn, typename... _Args>
730 friend future<typename result_of<_Fn(_Args...)>::type>
731 async(launch, _Fn&&, _Args&&...);
732
733 typedef __basic_future<_Res> _Base_type;
734 typedef typename _Base_type::__state_type __state_type;
735
736 explicit
737 future(const __state_type& __state) : _Base_type(__state) { }
738
739 public:
740 constexpr future() noexcept : _Base_type() { }
741
742 /// Move constructor
743 future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
744
745 // Disable copying
746 future(const future&) = delete;
747 future& operator=(const future&) = delete;
748
749 future& operator=(future&& __fut) noexcept
750 {
751 future(std::move(__fut))._M_swap(*this);
752 return *this;
753 }
754
755 /// Retrieving the value
756 _Res
757 get()
758 {
759 typename _Base_type::_Reset __reset(*this);
760 return std::move(this->_M_get_result()._M_value());
761 }
762
763 shared_future<_Res> share();
764 };
765
766 /// Partial specialization for future<R&>
767 template<typename _Res>
768 class future<_Res&> : public __basic_future<_Res&>
769 {
770 friend class promise<_Res&>;
771 template<typename> friend class packaged_task;
772 template<typename _Fn, typename... _Args>
773 friend future<typename result_of<_Fn(_Args...)>::type>
774 async(launch, _Fn&&, _Args&&...);
775
776 typedef __basic_future<_Res&> _Base_type;
777 typedef typename _Base_type::__state_type __state_type;
778
779 explicit
780 future(const __state_type& __state) : _Base_type(__state) { }
781
782 public:
783 constexpr future() noexcept : _Base_type() { }
784
785 /// Move constructor
786 future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
787
788 // Disable copying
789 future(const future&) = delete;
790 future& operator=(const future&) = delete;
791
792 future& operator=(future&& __fut) noexcept
793 {
794 future(std::move(__fut))._M_swap(*this);
795 return *this;
796 }
797
798 /// Retrieving the value
799 _Res&
800 get()
801 {
802 typename _Base_type::_Reset __reset(*this);
803 return this->_M_get_result()._M_get();
804 }
805
806 shared_future<_Res&> share();
807 };
808
809 /// Explicit specialization for future<void>
810 template<>
811 class future<void> : public __basic_future<void>
812 {
813 friend class promise<void>;
814 template<typename> friend class packaged_task;
815 template<typename _Fn, typename... _Args>
816 friend future<typename result_of<_Fn(_Args...)>::type>
817 async(launch, _Fn&&, _Args&&...);
818
819 typedef __basic_future<void> _Base_type;
820 typedef typename _Base_type::__state_type __state_type;
821
822 explicit
823 future(const __state_type& __state) : _Base_type(__state) { }
824
825 public:
826 constexpr future() noexcept : _Base_type() { }
827
828 /// Move constructor
829 future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
830
831 // Disable copying
832 future(const future&) = delete;
833 future& operator=(const future&) = delete;
834
835 future& operator=(future&& __fut) noexcept
836 {
837 future(std::move(__fut))._M_swap(*this);
838 return *this;
839 }
840
841 /// Retrieving the value
842 void
843 get()
844 {
845 typename _Base_type::_Reset __reset(*this);
846 this->_M_get_result();
847 }
848
849 shared_future<void> share();
850 };
851
852
853 /// Primary template for shared_future.
854 template<typename _Res>
855 class shared_future : public __basic_future<_Res>
856 {
857 typedef __basic_future<_Res> _Base_type;
858
859 public:
860 constexpr shared_future() noexcept : _Base_type() { }
861
862 /// Copy constructor
863 shared_future(const shared_future& __sf) : _Base_type(__sf) { }
864
865 /// Construct from a future rvalue
866 shared_future(future<_Res>&& __uf) noexcept
867 : _Base_type(std::move(__uf))
868 { }
869
870 /// Construct from a shared_future rvalue
871 shared_future(shared_future&& __sf) noexcept
872 : _Base_type(std::move(__sf))
873 { }
874
875 shared_future& operator=(const shared_future& __sf)
876 {
877 shared_future(__sf)._M_swap(*this);
878 return *this;
879 }
880
881 shared_future& operator=(shared_future&& __sf) noexcept
882 {
883 shared_future(std::move(__sf))._M_swap(*this);
884 return *this;
885 }
886
887 /// Retrieving the value
888 const _Res&
889 get() const { return this->_M_get_result()._M_value(); }
890 };
891
892 /// Partial specialization for shared_future<R&>
893 template<typename _Res>
894 class shared_future<_Res&> : public __basic_future<_Res&>
895 {
896 typedef __basic_future<_Res&> _Base_type;
897
898 public:
899 constexpr shared_future() noexcept : _Base_type() { }
900
901 /// Copy constructor
902 shared_future(const shared_future& __sf) : _Base_type(__sf) { }
903
904 /// Construct from a future rvalue
905 shared_future(future<_Res&>&& __uf) noexcept
906 : _Base_type(std::move(__uf))
907 { }
908
909 /// Construct from a shared_future rvalue
910 shared_future(shared_future&& __sf) noexcept
911 : _Base_type(std::move(__sf))
912 { }
913
914 shared_future& operator=(const shared_future& __sf)
915 {
916 shared_future(__sf)._M_swap(*this);
917 return *this;
918 }
919
920 shared_future& operator=(shared_future&& __sf) noexcept
921 {
922 shared_future(std::move(__sf))._M_swap(*this);
923 return *this;
924 }
925
926 /// Retrieving the value
927 _Res&
928 get() const { return this->_M_get_result()._M_get(); }
929 };
930
931 /// Explicit specialization for shared_future<void>
932 template<>
933 class shared_future<void> : public __basic_future<void>
934 {
935 typedef __basic_future<void> _Base_type;
936
937 public:
938 constexpr shared_future() noexcept : _Base_type() { }
939
940 /// Copy constructor
941 shared_future(const shared_future& __sf) : _Base_type(__sf) { }
942
943 /// Construct from a future rvalue
944 shared_future(future<void>&& __uf) noexcept
945 : _Base_type(std::move(__uf))
946 { }
947
948 /// Construct from a shared_future rvalue
949 shared_future(shared_future&& __sf) noexcept
950 : _Base_type(std::move(__sf))
951 { }
952
953 shared_future& operator=(const shared_future& __sf)
954 {
955 shared_future(__sf)._M_swap(*this);
956 return *this;
957 }
958
959 shared_future& operator=(shared_future&& __sf) noexcept
960 {
961 shared_future(std::move(__sf))._M_swap(*this);
962 return *this;
963 }
964
965 // Retrieving the value
966 void
967 get() const { this->_M_get_result(); }
968 };
969
970 // Now we can define the protected __basic_future constructors.
971 template<typename _Res>
972 inline __basic_future<_Res>::
973 __basic_future(const shared_future<_Res>& __sf) noexcept
974 : _M_state(__sf._M_state)
975 { }
976
977 template<typename _Res>
978 inline __basic_future<_Res>::
979 __basic_future(shared_future<_Res>&& __sf) noexcept
980 : _M_state(std::move(__sf._M_state))
981 { }
982
983 template<typename _Res>
984 inline __basic_future<_Res>::
985 __basic_future(future<_Res>&& __uf) noexcept
986 : _M_state(std::move(__uf._M_state))
987 { }
988
989 template<typename _Res>
990 inline shared_future<_Res>
991 future<_Res>::share()
992 { return shared_future<_Res>(std::move(*this)); }
993
994 template<typename _Res>
995 inline shared_future<_Res&>
996 future<_Res&>::share()
997 { return shared_future<_Res&>(std::move(*this)); }
998
999 inline shared_future<void>
1000 future<void>::share()
1001 { return shared_future<void>(std::move(*this)); }
1002
1003 /// Primary template for promise
1004 template<typename _Res>
1005 class promise
1006 {
1007 typedef __future_base::_State_base _State;
1008 typedef __future_base::_Result<_Res> _Res_type;
1009 typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1010 template<typename, typename> friend class _State::_Setter;
1011
1012 shared_ptr<_State> _M_future;
1013 _Ptr_type _M_storage;
1014
1015 public:
1016 promise()
1017 : _M_future(std::make_shared<_State>()),
1018 _M_storage(new _Res_type())
1019 { }
1020
1021 promise(promise&& __rhs) noexcept
1022 : _M_future(std::move(__rhs._M_future)),
1023 _M_storage(std::move(__rhs._M_storage))
1024 { }
1025
1026 template<typename _Allocator>
1027 promise(allocator_arg_t, const _Allocator& __a)
1028 : _M_future(std::allocate_shared<_State>(__a)),
1029 _M_storage(__future_base::_S_allocate_result<_Res>(__a))
1030 { }
1031
1032 template<typename _Allocator>
1033 promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1034 : _M_future(std::move(__rhs._M_future)),
1035 _M_storage(std::move(__rhs._M_storage))
1036 { }
1037
1038 promise(const promise&) = delete;
1039
1040 ~promise()
1041 {
1042 if (static_cast<bool>(_M_future) && !_M_future.unique())
1043 _M_future->_M_break_promise(std::move(_M_storage));
1044 }
1045
1046 // Assignment
1047 promise&
1048 operator=(promise&& __rhs) noexcept
1049 {
1050 promise(std::move(__rhs)).swap(*this);
1051 return *this;
1052 }
1053
1054 promise& operator=(const promise&) = delete;
1055
1056 void
1057 swap(promise& __rhs) noexcept
1058 {
1059 _M_future.swap(__rhs._M_future);
1060 _M_storage.swap(__rhs._M_storage);
1061 }
1062
1063 // Retrieving the result
1064 future<_Res>
1065 get_future()
1066 { return future<_Res>(_M_future); }
1067
1068 // Setting the result
1069 void
1070 set_value(const _Res& __r)
1071 { _M_future->_M_set_result(_State::__setter(this, __r)); }
1072
1073 void
1074 set_value(_Res&& __r)
1075 { _M_future->_M_set_result(_State::__setter(this, std::move(__r))); }
1076
1077 void
1078 set_exception(exception_ptr __p)
1079 { _M_future->_M_set_result(_State::__setter(__p, this)); }
1080
1081 void
1082 set_value_at_thread_exit(const _Res& __r)
1083 {
1084 _M_future->_M_set_delayed_result(_State::__setter(this, __r),
1085 _M_future);
1086 }
1087
1088 void
1089 set_value_at_thread_exit(_Res&& __r)
1090 {
1091 _M_future->_M_set_delayed_result(
1092 _State::__setter(this, std::move(__r)), _M_future);
1093 }
1094
1095 void
1096 set_exception_at_thread_exit(exception_ptr __p)
1097 {
1098 _M_future->_M_set_delayed_result(_State::__setter(__p, this),
1099 _M_future);
1100 }
1101 };
1102
1103 template<typename _Res>
1104 inline void
1105 swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
1106 { __x.swap(__y); }
1107
1108 template<typename _Res, typename _Alloc>
1109 struct uses_allocator<promise<_Res>, _Alloc>
1110 : public true_type { };
1111
1112
1113 /// Partial specialization for promise<R&>
1114 template<typename _Res>
1115 class promise<_Res&>
1116 {
1117 typedef __future_base::_State_base _State;
1118 typedef __future_base::_Result<_Res&> _Res_type;
1119 typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1120 template<typename, typename> friend class _State::_Setter;
1121
1122 shared_ptr<_State> _M_future;
1123 _Ptr_type _M_storage;
1124
1125 public:
1126 promise()
1127 : _M_future(std::make_shared<_State>()),
1128 _M_storage(new _Res_type())
1129 { }
1130
1131 promise(promise&& __rhs) noexcept
1132 : _M_future(std::move(__rhs._M_future)),
1133 _M_storage(std::move(__rhs._M_storage))
1134 { }
1135
1136 template<typename _Allocator>
1137 promise(allocator_arg_t, const _Allocator& __a)
1138 : _M_future(std::allocate_shared<_State>(__a)),
1139 _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
1140 { }
1141
1142 template<typename _Allocator>
1143 promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1144 : _M_future(std::move(__rhs._M_future)),
1145 _M_storage(std::move(__rhs._M_storage))
1146 { }
1147
1148 promise(const promise&) = delete;
1149
1150 ~promise()
1151 {
1152 if (static_cast<bool>(_M_future) && !_M_future.unique())
1153 _M_future->_M_break_promise(std::move(_M_storage));
1154 }
1155
1156 // Assignment
1157 promise&
1158 operator=(promise&& __rhs) noexcept
1159 {
1160 promise(std::move(__rhs)).swap(*this);
1161 return *this;
1162 }
1163
1164 promise& operator=(const promise&) = delete;
1165
1166 void
1167 swap(promise& __rhs) noexcept
1168 {
1169 _M_future.swap(__rhs._M_future);
1170 _M_storage.swap(__rhs._M_storage);
1171 }
1172
1173 // Retrieving the result
1174 future<_Res&>
1175 get_future()
1176 { return future<_Res&>(_M_future); }
1177
1178 // Setting the result
1179 void
1180 set_value(_Res& __r)
1181 { _M_future->_M_set_result(_State::__setter(this, __r)); }
1182
1183 void
1184 set_exception(exception_ptr __p)
1185 { _M_future->_M_set_result(_State::__setter(__p, this)); }
1186
1187 void
1188 set_value_at_thread_exit(_Res& __r)
1189 {
1190 _M_future->_M_set_delayed_result(_State::__setter(this, __r),
1191 _M_future);
1192 }
1193
1194 void
1195 set_exception_at_thread_exit(exception_ptr __p)
1196 {
1197 _M_future->_M_set_delayed_result(_State::__setter(__p, this),
1198 _M_future);
1199 }
1200 };
1201
1202 /// Explicit specialization for promise<void>
1203 template<>
1204 class promise<void>
1205 {
1206 typedef __future_base::_State_base _State;
1207 typedef __future_base::_Result<void> _Res_type;
1208 typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1209 template<typename, typename> friend class _State::_Setter;
1210
1211 shared_ptr<_State> _M_future;
1212 _Ptr_type _M_storage;
1213
1214 public:
1215 promise()
1216 : _M_future(std::make_shared<_State>()),
1217 _M_storage(new _Res_type())
1218 { }
1219
1220 promise(promise&& __rhs) noexcept
1221 : _M_future(std::move(__rhs._M_future)),
1222 _M_storage(std::move(__rhs._M_storage))
1223 { }
1224
1225 template<typename _Allocator>
1226 promise(allocator_arg_t, const _Allocator& __a)
1227 : _M_future(std::allocate_shared<_State>(__a)),
1228 _M_storage(__future_base::_S_allocate_result<void>(__a))
1229 { }
1230
1231 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1232 // 2095. missing constructors needed for uses-allocator construction
1233 template<typename _Allocator>
1234 promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1235 : _M_future(std::move(__rhs._M_future)),
1236 _M_storage(std::move(__rhs._M_storage))
1237 { }
1238
1239 promise(const promise&) = delete;
1240
1241 ~promise()
1242 {
1243 if (static_cast<bool>(_M_future) && !_M_future.unique())
1244 _M_future->_M_break_promise(std::move(_M_storage));
1245 }
1246
1247 // Assignment
1248 promise&
1249 operator=(promise&& __rhs) noexcept
1250 {
1251 promise(std::move(__rhs)).swap(*this);
1252 return *this;
1253 }
1254
1255 promise& operator=(const promise&) = delete;
1256
1257 void
1258 swap(promise& __rhs) noexcept
1259 {
1260 _M_future.swap(__rhs._M_future);
1261 _M_storage.swap(__rhs._M_storage);
1262 }
1263
1264 // Retrieving the result
1265 future<void>
1266 get_future()
1267 { return future<void>(_M_future); }
1268
1269 // Setting the result
1270 void set_value();
1271
1272 void
1273 set_exception(exception_ptr __p)
1274 { _M_future->_M_set_result(_State::__setter(__p, this)); }
1275
1276 void
1277 set_value_at_thread_exit();
1278
1279 void
1280 set_exception_at_thread_exit(exception_ptr __p)
1281 {
1282 _M_future->_M_set_delayed_result(_State::__setter(__p, this),
1283 _M_future);
1284 }
1285 };
1286
1287 // set void
1288 template<>
1289 struct __future_base::_State_base::_Setter<void, void>
1290 {
1291 promise<void>::_Ptr_type operator()() const
1292 {
1293 _State_base::_S_check(_M_promise->_M_future);
1294 return std::move(_M_promise->_M_storage);
1295 }
1296
1297 promise<void>* _M_promise;
1298 };
1299
1300 inline void
1301 promise<void>::set_value()
1302 { _M_future->_M_set_result(_State::_Setter<void, void>{ this }); }
1303
1304 inline void
1305 promise<void>::set_value_at_thread_exit()
1306 {
1307 _M_future->_M_set_delayed_result(_State::_Setter<void, void>{this},
1308 _M_future);
1309 }
1310
1311 template<typename _Ptr_type, typename _Fn, typename _Res>
1312 struct __future_base::_Task_setter
1313 {
1314 // Invoke the function and provide the result to the caller.
1315 _Ptr_type operator()() const
1316 {
1317 __try
1318 {
1319 (*_M_result)->_M_set((*_M_fn)());
1320 }
1321 __catch(const __cxxabiv1::__forced_unwind&)
1322 {
1323 __throw_exception_again; // will cause broken_promise
1324 }
1325 __catch(...)
1326 {
1327 (*_M_result)->_M_error = current_exception();
1328 }
1329 return std::move(*_M_result);
1330 }
1331 _Ptr_type* _M_result;
1332 _Fn* _M_fn;
1333 };
1334
1335 template<typename _Ptr_type, typename _Fn>
1336 struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
1337 {
1338 _Ptr_type operator()() const
1339 {
1340 __try
1341 {
1342 (*_M_fn)();
1343 }
1344 __catch(const __cxxabiv1::__forced_unwind&)
1345 {
1346 __throw_exception_again; // will cause broken_promise
1347 }
1348 __catch(...)
1349 {
1350 (*_M_result)->_M_error = current_exception();
1351 }
1352 return std::move(*_M_result);
1353 }
1354 _Ptr_type* _M_result;
1355 _Fn* _M_fn;
1356 };
1357
1358 // Holds storage for a packaged_task's result.
1359 template<typename _Res, typename... _Args>
1360 struct __future_base::_Task_state_base<_Res(_Args...)>
1361 : __future_base::_State_base
1362 {
1363 typedef _Res _Res_type;
1364
1365 template<typename _Alloc>
1366 _Task_state_base(const _Alloc& __a)
1367 : _M_result(_S_allocate_result<_Res>(__a))
1368 { }
1369
1370 // Invoke the stored task and make the state ready.
1371 virtual void
1372 _M_run(_Args&&... __args) = 0;
1373
1374 // Invoke the stored task and make the state ready at thread exit.
1375 virtual void
1376 _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;
1377
1378 virtual shared_ptr<_Task_state_base>
1379 _M_reset() = 0;
1380
1381 typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1382 _Ptr_type _M_result;
1383 };
1384
1385 // Holds a packaged_task's stored task.
1386 template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1387 struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
1388 : __future_base::_Task_state_base<_Res(_Args...)>
1389 {
1390 template<typename _Fn2>
1391 _Task_state(_Fn2&& __fn, const _Alloc& __a)
1392 : _Task_state_base<_Res(_Args...)>(__a),
1393 _M_impl(std::forward<_Fn2>(__fn), __a)
1394 { }
1395
1396 private:
1397 virtual void
1398 _M_run(_Args&&... __args)
1399 {
1400 // bound arguments decay so wrap lvalue references
1401 auto __boundfn = std::__bind_simple(std::ref(_M_impl._M_fn),
1402 _S_maybe_wrap_ref(std::forward<_Args>(__args))...);
1403 this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
1404 }
1405
1406 virtual void
1407 _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
1408 {
1409 // bound arguments decay so wrap lvalue references
1410 auto __boundfn = std::__bind_simple(std::ref(_M_impl._M_fn),
1411 _S_maybe_wrap_ref(std::forward<_Args>(__args))...);
1412 this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
1413 std::move(__self));
1414 }
1415
1416 virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
1417 _M_reset();
1418
1419 template<typename _Tp>
1420 static reference_wrapper<_Tp>
1421 _S_maybe_wrap_ref(_Tp& __t)
1422 { return std::ref(__t); }
1423
1424 template<typename _Tp>
1425 static
1426 typename enable_if<!is_lvalue_reference<_Tp>::value, _Tp>::type&&
1427 _S_maybe_wrap_ref(_Tp&& __t)
1428 { return std::forward<_Tp>(__t); }
1429
1430 struct _Impl : _Alloc
1431 {
1432 template<typename _Fn2>
1433 _Impl(_Fn2&& __fn, const _Alloc& __a)
1434 : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
1435 _Fn _M_fn;
1436 } _M_impl;
1437 };
1438
1439 template<typename _Signature, typename _Fn, typename _Alloc>
1440 static shared_ptr<__future_base::_Task_state_base<_Signature>>
1441 __create_task_state(_Fn&& __fn, const _Alloc& __a)
1442 {
1443 typedef typename decay<_Fn>::type _Fn2;
1444 typedef __future_base::_Task_state<_Fn2, _Alloc, _Signature> _State;
1445 return std::allocate_shared<_State>(__a, std::forward<_Fn>(__fn), __a);
1446 }
1447
1448 template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1449 shared_ptr<__future_base::_Task_state_base<_Res(_Args...)>>
1450 __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)>::_M_reset()
1451 {
1452 return __create_task_state<_Res(_Args...)>(std::move(_M_impl._M_fn),
1453 static_cast<_Alloc&>(_M_impl));
1454 }
1455
1456 template<typename _Task, typename _Fn, bool
1457 = is_same<_Task, typename decay<_Fn>::type>::value>
1458 struct __constrain_pkgdtask
1459 { typedef void __type; };
1460
1461 template<typename _Task, typename _Fn>
1462 struct __constrain_pkgdtask<_Task, _Fn, true>
1463 { };
1464
1465 /// packaged_task
1466 template<typename _Res, typename... _ArgTypes>
1467 class packaged_task<_Res(_ArgTypes...)>
1468 {
1469 typedef __future_base::_Task_state_base<_Res(_ArgTypes...)> _State_type;
1470 shared_ptr<_State_type> _M_state;
1471
1472 public:
1473 // Construction and destruction
1474 packaged_task() noexcept { }
1475
1476 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1477 // 2095. missing constructors needed for uses-allocator construction
1478 template<typename _Allocator>
1479 packaged_task(allocator_arg_t, const _Allocator& __a) noexcept
1480 { }
1481
1482 template<typename _Fn, typename = typename
1483 __constrain_pkgdtask<packaged_task, _Fn>::__type>
1484 explicit
1485 packaged_task(_Fn&& __fn)
1486 : packaged_task(allocator_arg, std::allocator<int>(),
1487 std::forward<_Fn>(__fn))
1488 { }
1489
1490 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1491 // 2097. packaged_task constructors should be constrained
1492 template<typename _Fn, typename _Alloc, typename = typename
1493 __constrain_pkgdtask<packaged_task, _Fn>::__type>
1494 explicit
1495 packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
1496 : _M_state(__create_task_state<_Res(_ArgTypes...)>(
1497 std::forward<_Fn>(__fn), __a))
1498 { }
1499
1500 ~packaged_task()
1501 {
1502 if (static_cast<bool>(_M_state) && !_M_state.unique())
1503 _M_state->_M_break_promise(std::move(_M_state->_M_result));
1504 }
1505
1506 // No copy
1507 packaged_task(const packaged_task&) = delete;
1508 packaged_task& operator=(const packaged_task&) = delete;
1509
1510 template<typename _Allocator>
1511 packaged_task(allocator_arg_t, const _Allocator&,
1512 const packaged_task&) = delete;
1513
1514 // Move support
1515 packaged_task(packaged_task&& __other) noexcept
1516 { this->swap(__other); }
1517
1518 template<typename _Allocator>
1519 packaged_task(allocator_arg_t, const _Allocator&,
1520 packaged_task&& __other) noexcept
1521 { this->swap(__other); }
1522
1523 packaged_task& operator=(packaged_task&& __other) noexcept
1524 {
1525 packaged_task(std::move(__other)).swap(*this);
1526 return *this;
1527 }
1528
1529 void
1530 swap(packaged_task& __other) noexcept
1531 { _M_state.swap(__other._M_state); }
1532
1533 bool
1534 valid() const noexcept
1535 { return static_cast<bool>(_M_state); }
1536
1537 // Result retrieval
1538 future<_Res>
1539 get_future()
1540 { return future<_Res>(_M_state); }
1541
1542 // Execution
1543 void
1544 operator()(_ArgTypes... __args)
1545 {
1546 __future_base::_State_base::_S_check(_M_state);
1547 _M_state->_M_run(std::forward<_ArgTypes>(__args)...);
1548 }
1549
1550 void
1551 make_ready_at_thread_exit(_ArgTypes... __args)
1552 {
1553 __future_base::_State_base::_S_check(_M_state);
1554 _M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
1555 }
1556
1557 void
1558 reset()
1559 {
1560 __future_base::_State_base::_S_check(_M_state);
1561 packaged_task __tmp;
1562 __tmp._M_state = _M_state;
1563 _M_state = _M_state->_M_reset();
1564 }
1565 };
1566
1567 /// swap
1568 template<typename _Res, typename... _ArgTypes>
1569 inline void
1570 swap(packaged_task<_Res(_ArgTypes...)>& __x,
1571 packaged_task<_Res(_ArgTypes...)>& __y) noexcept
1572 { __x.swap(__y); }
1573
1574 template<typename _Res, typename _Alloc>
1575 struct uses_allocator<packaged_task<_Res>, _Alloc>
1576 : public true_type { };
1577
1578
1579 // Shared state created by std::async().
1580 // Holds a deferred function and storage for its result.
1581 template<typename _BoundFn, typename _Res>
1582 class __future_base::_Deferred_state final
1583 : public __future_base::_State_base
1584 {
1585 public:
1586 explicit
1587 _Deferred_state(_BoundFn&& __fn)
1588 : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1589 { }
1590
1591 private:
1592 typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1593 _Ptr_type _M_result;
1594 _BoundFn _M_fn;
1595
1596 // Run the deferred function.
1597 virtual void
1598 _M_complete_async()
1599 {
1600 // Multiple threads can call a waiting function on the future and
1601 // reach this point at the same time. The call_once in _M_set_result
1602 // ensures only the first one run the deferred function, stores the
1603 // result in _M_result, swaps that with the base _M_result and makes
1604 // the state ready. Tell _M_set_result to ignore failure so all later
1605 // calls do nothing.
1606 _M_set_result(_S_task_setter(_M_result, _M_fn), true);
1607 }
1608
1609 // Caller should check whether the state is ready first, because this
1610 // function will return true even after the deferred function has run.
1611 virtual bool _M_is_deferred_future() const { return true; }
1612 };
1613
1614 // Common functionality hoisted out of the _Async_state_impl template.
1615 class __future_base::_Async_state_commonV2
1616 : public __future_base::_State_base
1617 {
1618 protected:
1619 ~_Async_state_commonV2() = default;
1620
1621 // Make waiting functions block until the thread completes, as if joined.
1622 //
1623 // This function is used by wait() to satisfy the first requirement below
1624 // and by wait_for() / wait_until() to satisfy the second.
1625 //
1626 // [futures.async]:
1627 //
1628 // — a call to a waiting function on an asynchronous return object that
1629 // shares the shared state created by this async call shall block until
1630 // the associated thread has completed, as if joined, or else time out.
1631 //
1632 // — the associated thread completion synchronizes with the return from
1633 // the first function that successfully detects the ready status of the
1634 // shared state or with the return from the last function that releases
1635 // the shared state, whichever happens first.
1636 virtual void _M_complete_async() { _M_join(); }
1637
1638 void _M_join() { std::call_once(_M_once, &thread::join, ref(_M_thread)); }
1639
1640 thread _M_thread;
1641 once_flag _M_once;
1642 };
1643
1644 // Shared state created by std::async().
1645 // Starts a new thread that runs a function and makes the shared state ready.
1646 template<typename _BoundFn, typename _Res>
1647 class __future_base::_Async_state_impl final
1648 : public __future_base::_Async_state_commonV2
1649 {
1650 public:
1651 explicit
1652 _Async_state_impl(_BoundFn&& __fn)
1653 : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1654 {
1655 _M_thread = std::thread{ [this] {
1656 __try
1657 {
1658 _M_set_result(_S_task_setter(_M_result, _M_fn));
1659 }
1660 __catch (const __cxxabiv1::__forced_unwind&)
1661 {
1662 // make the shared state ready on thread cancellation
1663 if (static_cast<bool>(_M_result))
1664 this->_M_break_promise(std::move(_M_result));
1665 __throw_exception_again;
1666 }
1667 } };
1668 }
1669
1670 // Must not destroy _M_result and _M_fn until the thread finishes.
1671 // Call join() directly rather than through _M_join() because no other
1672 // thread can be referring to this state if it is being destroyed.
1673 ~_Async_state_impl() { if (_M_thread.joinable()) _M_thread.join(); }
1674
1675 private:
1676 typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1677 _Ptr_type _M_result;
1678 _BoundFn _M_fn;
1679 };
1680
1681 template<typename _BoundFn>
1682 inline std::shared_ptr<__future_base::_State_base>
1683 __future_base::_S_make_deferred_state(_BoundFn&& __fn)
1684 {
1685 typedef typename remove_reference<_BoundFn>::type __fn_type;
1686 typedef _Deferred_state<__fn_type> __state_type;
1687 return std::make_shared<__state_type>(std::move(__fn));
1688 }
1689
1690 template<typename _BoundFn>
1691 inline std::shared_ptr<__future_base::_State_base>
1692 __future_base::_S_make_async_state(_BoundFn&& __fn)
1693 {
1694 typedef typename remove_reference<_BoundFn>::type __fn_type;
1695 typedef _Async_state_impl<__fn_type> __state_type;
1696 return std::make_shared<__state_type>(std::move(__fn));
1697 }
1698
1699
1700 /// async
1701 template<typename _Fn, typename... _Args>
1702 future<typename result_of<_Fn(_Args...)>::type>
1703 async(launch __policy, _Fn&& __fn, _Args&&... __args)
1704 {
1705 typedef typename result_of<_Fn(_Args...)>::type result_type;
1706 std::shared_ptr<__future_base::_State_base> __state;
1707 if ((__policy & (launch::async|launch::deferred)) == launch::async)
1708 {
1709 __state = __future_base::_S_make_async_state(std::__bind_simple(
1710 std::forward<_Fn>(__fn), std::forward<_Args>(__args)...));
1711 }
1712 else
1713 {
1714 __state = __future_base::_S_make_deferred_state(std::__bind_simple(
1715 std::forward<_Fn>(__fn), std::forward<_Args>(__args)...));
1716 }
1717 return future<result_type>(__state);
1718 }
1719
1720 /// async, potential overload
1721 template<typename _Fn, typename... _Args>
1722 inline future<typename result_of<_Fn(_Args...)>::type>
1723 async(_Fn&& __fn, _Args&&... __args)
1724 {
1725 return async(launch::async|launch::deferred, std::forward<_Fn>(__fn),
1726 std::forward<_Args>(__args)...);
1727 }
1728
1729 #endif // _GLIBCXX_ASYNC_ABI_COMPAT
1730 #endif // _GLIBCXX_HAS_GTHREADS && _GLIBCXX_USE_C99_STDINT_TR1
1731 // && ATOMIC_INT_LOCK_FREE
1732
1733 // @} group futures
1734 _GLIBCXX_END_NAMESPACE_VERSION
1735 } // namespace
1736
1737 #endif // C++11
1738
1739 #endif // _GLIBCXX_FUTURE