]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/std/future
Return deferred future if thread cannot be run
[thirdparty/gcc.git] / libstdc++-v3 / include / std / future
1 // <future> -*- C++ -*-
2
3 // Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file include/future
26 * This is a Standard C++ Library header.
27 */
28
29 #ifndef _GLIBCXX_FUTURE
30 #define _GLIBCXX_FUTURE 1
31
32 #pragma GCC system_header
33
34 #if __cplusplus < 201103L
35 # include <bits/c++0x_warning.h>
36 #else
37
38 #include <functional>
39 #include <mutex>
40 #include <thread>
41 #include <condition_variable>
42 #include <system_error>
43 #include <atomic>
44 #include <bits/atomic_futex.h>
45 #include <bits/functexcept.h>
46 #include <bits/unique_ptr.h>
47 #include <bits/shared_ptr.h>
48 #include <bits/uses_allocator.h>
49 #include <bits/allocated_ptr.h>
50 #include <ext/aligned_buffer.h>
51
52 namespace std _GLIBCXX_VISIBILITY(default)
53 {
54 _GLIBCXX_BEGIN_NAMESPACE_VERSION
55
56 /**
57 * @defgroup futures Futures
58 * @ingroup concurrency
59 *
60 * Classes for futures support.
61 * @{
62 */
63
64 /// Error code for futures
65 enum class future_errc
66 {
67 future_already_retrieved = 1,
68 promise_already_satisfied,
69 no_state,
70 broken_promise
71 };
72
73 /// Specialization.
74 template<>
75 struct is_error_code_enum<future_errc> : public true_type { };
76
77 /// Points to a statically-allocated object derived from error_category.
78 const error_category&
79 future_category() noexcept;
80
81 /// Overload for make_error_code.
82 inline error_code
83 make_error_code(future_errc __errc) noexcept
84 { return error_code(static_cast<int>(__errc), future_category()); }
85
86 /// Overload for make_error_condition.
87 inline error_condition
88 make_error_condition(future_errc __errc) noexcept
89 { return error_condition(static_cast<int>(__errc), future_category()); }
90
91 /**
92 * @brief Exception type thrown by futures.
93 * @ingroup exceptions
94 */
95 class future_error : public logic_error
96 {
97 error_code _M_code;
98
99 public:
100 explicit future_error(error_code __ec)
101 : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
102 { }
103
104 virtual ~future_error() noexcept;
105
106 virtual const char*
107 what() const noexcept;
108
109 const error_code&
110 code() const noexcept { return _M_code; }
111 };
112
113 // Forward declarations.
114 template<typename _Res>
115 class future;
116
117 template<typename _Res>
118 class shared_future;
119
120 template<typename _Signature>
121 class packaged_task;
122
123 template<typename _Res>
124 class promise;
125
126 /// Launch code for futures
127 enum class launch
128 {
129 async = 1,
130 deferred = 2
131 };
132
133 constexpr launch operator&(launch __x, launch __y)
134 {
135 return static_cast<launch>(
136 static_cast<int>(__x) & static_cast<int>(__y));
137 }
138
139 constexpr launch operator|(launch __x, launch __y)
140 {
141 return static_cast<launch>(
142 static_cast<int>(__x) | static_cast<int>(__y));
143 }
144
145 constexpr launch operator^(launch __x, launch __y)
146 {
147 return static_cast<launch>(
148 static_cast<int>(__x) ^ static_cast<int>(__y));
149 }
150
151 constexpr launch operator~(launch __x)
152 { return static_cast<launch>(~static_cast<int>(__x)); }
153
154 inline launch& operator&=(launch& __x, launch __y)
155 { return __x = __x & __y; }
156
157 inline launch& operator|=(launch& __x, launch __y)
158 { return __x = __x | __y; }
159
160 inline launch& operator^=(launch& __x, launch __y)
161 { return __x = __x ^ __y; }
162
163 /// Status code for futures
164 enum class future_status
165 {
166 ready,
167 timeout,
168 deferred
169 };
170
171 // _GLIBCXX_RESOLVE_LIB_DEFECTS
172 // 2021. Further incorrect usages of result_of
173 template<typename _Fn, typename... _Args>
174 using __async_result_of = typename result_of<
175 typename decay<_Fn>::type(typename decay<_Args>::type...)>::type;
176
177 template<typename _Fn, typename... _Args>
178 future<__async_result_of<_Fn, _Args...>>
179 async(launch __policy, _Fn&& __fn, _Args&&... __args);
180
181 template<typename _Fn, typename... _Args>
182 future<__async_result_of<_Fn, _Args...>>
183 async(_Fn&& __fn, _Args&&... __args);
184
185 #if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) \
186 && (ATOMIC_INT_LOCK_FREE > 1)
187
188 /// Base class and enclosing scope.
189 struct __future_base
190 {
191 /// Base class for results.
192 struct _Result_base
193 {
194 exception_ptr _M_error;
195
196 _Result_base(const _Result_base&) = delete;
197 _Result_base& operator=(const _Result_base&) = delete;
198
199 // _M_destroy() allows derived classes to control deallocation
200 virtual void _M_destroy() = 0;
201
202 struct _Deleter
203 {
204 void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
205 };
206
207 protected:
208 _Result_base();
209 virtual ~_Result_base();
210 };
211
212 /// A unique_ptr for result objects.
213 template<typename _Res>
214 using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;
215
216 /// A result object that has storage for an object of type _Res.
217 template<typename _Res>
218 struct _Result : _Result_base
219 {
220 private:
221 __gnu_cxx::__aligned_buffer<_Res> _M_storage;
222 bool _M_initialized;
223
224 public:
225 typedef _Res result_type;
226
227 _Result() noexcept : _M_initialized() { }
228
229 ~_Result()
230 {
231 if (_M_initialized)
232 _M_value().~_Res();
233 }
234
235 // Return lvalue, future will add const or rvalue-reference
236 _Res&
237 _M_value() noexcept { return *_M_storage._M_ptr(); }
238
239 void
240 _M_set(const _Res& __res)
241 {
242 ::new (_M_storage._M_addr()) _Res(__res);
243 _M_initialized = true;
244 }
245
246 void
247 _M_set(_Res&& __res)
248 {
249 ::new (_M_storage._M_addr()) _Res(std::move(__res));
250 _M_initialized = true;
251 }
252
253 private:
254 void _M_destroy() { delete this; }
255 };
256
257 /// A result object that uses an allocator.
258 template<typename _Res, typename _Alloc>
259 struct _Result_alloc final : _Result<_Res>, _Alloc
260 {
261 using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;
262
263 explicit
264 _Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
265 { }
266
267 private:
268 void _M_destroy()
269 {
270 __allocator_type __a(*this);
271 __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
272 this->~_Result_alloc();
273 }
274 };
275
276 // Create a result object that uses an allocator.
277 template<typename _Res, typename _Allocator>
278 static _Ptr<_Result_alloc<_Res, _Allocator>>
279 _S_allocate_result(const _Allocator& __a)
280 {
281 using __result_type = _Result_alloc<_Res, _Allocator>;
282 typename __result_type::__allocator_type __a2(__a);
283 auto __guard = std::__allocate_guarded(__a2);
284 __result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
285 __guard = nullptr;
286 return _Ptr<__result_type>(__p);
287 }
288
289 // Keep it simple for std::allocator.
290 template<typename _Res, typename _Tp>
291 static _Ptr<_Result<_Res>>
292 _S_allocate_result(const std::allocator<_Tp>& __a)
293 {
294 return _Ptr<_Result<_Res>>(new _Result<_Res>);
295 }
296
297 // Base class for various types of shared state created by an
298 // asynchronous provider (such as a std::promise) and shared with one
299 // or more associated futures.
300 class _State_baseV2
301 {
302 typedef _Ptr<_Result_base> _Ptr_type;
303
304 enum _Status : unsigned {
305 __not_ready,
306 __ready
307 };
308
309 _Ptr_type _M_result;
310 __atomic_futex_unsigned<> _M_status;
311 atomic_flag _M_retrieved = ATOMIC_FLAG_INIT;
312 once_flag _M_once;
313
314 public:
315 _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
316 { }
317 _State_baseV2(const _State_baseV2&) = delete;
318 _State_baseV2& operator=(const _State_baseV2&) = delete;
319 virtual ~_State_baseV2() = default;
320
321 _Result_base&
322 wait()
323 {
324 // Run any deferred function or join any asynchronous thread:
325 _M_complete_async();
326 // Acquire MO makes sure this synchronizes with the thread that made
327 // the future ready.
328 _M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
329 return *_M_result;
330 }
331
332 template<typename _Rep, typename _Period>
333 future_status
334 wait_for(const chrono::duration<_Rep, _Period>& __rel)
335 {
336 // First, check if the future has been made ready. Use acquire MO
337 // to synchronize with the thread that made it ready.
338 if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
339 return future_status::ready;
340 if (_M_is_deferred_future())
341 return future_status::deferred;
342 if (_M_status._M_load_when_equal_for(_Status::__ready,
343 memory_order_acquire, __rel))
344 {
345 // _GLIBCXX_RESOLVE_LIB_DEFECTS
346 // 2100. timed waiting functions must also join
347 // This call is a no-op by default except on an async future,
348 // in which case the async thread is joined. It's also not a
349 // no-op for a deferred future, but such a future will never
350 // reach this point because it returns future_status::deferred
351 // instead of waiting for the future to become ready (see
352 // above). Async futures synchronize in this call, so we need
353 // no further synchronization here.
354 _M_complete_async();
355
356 return future_status::ready;
357 }
358 return future_status::timeout;
359 }
360
361 template<typename _Clock, typename _Duration>
362 future_status
363 wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
364 {
365 // First, check if the future has been made ready. Use acquire MO
366 // to synchronize with the thread that made it ready.
367 if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
368 return future_status::ready;
369 if (_M_is_deferred_future())
370 return future_status::deferred;
371 if (_M_status._M_load_when_equal_until(_Status::__ready,
372 memory_order_acquire, __abs))
373 {
374 // _GLIBCXX_RESOLVE_LIB_DEFECTS
375 // 2100. timed waiting functions must also join
376 // See wait_for(...) above.
377 _M_complete_async();
378
379 return future_status::ready;
380 }
381 return future_status::timeout;
382 }
383
384 // Provide a result to the shared state and make it ready.
385 // Calls at most once: _M_result = __res();
386 void
387 _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
388 {
389 bool __did_set = false;
390 // all calls to this function are serialized,
391 // side-effects of invoking __res only happen once
392 call_once(_M_once, &_State_baseV2::_M_do_set, this,
393 std::__addressof(__res), std::__addressof(__did_set));
394 if (__did_set)
395 // Use release MO to synchronize with observers of the ready state.
396 _M_status._M_store_notify_all(_Status::__ready,
397 memory_order_release);
398 else if (!__ignore_failure)
399 __throw_future_error(int(future_errc::promise_already_satisfied));
400 }
401
402 // Provide a result to the shared state but delay making it ready
403 // until the calling thread exits.
404 // Calls at most once: _M_result = __res();
405 void
406 _M_set_delayed_result(function<_Ptr_type()> __res,
407 weak_ptr<_State_baseV2> __self)
408 {
409 bool __did_set = false;
410 unique_ptr<_Make_ready> __mr{new _Make_ready};
411 // all calls to this function are serialized,
412 // side-effects of invoking __res only happen once
413 call_once(_M_once, &_State_baseV2::_M_do_set, this,
414 std::__addressof(__res), std::__addressof(__did_set));
415 if (!__did_set)
416 __throw_future_error(int(future_errc::promise_already_satisfied));
417 __mr->_M_shared_state = std::move(__self);
418 __mr->_M_set();
419 __mr.release();
420 }
421
422 // Abandon this shared state.
423 void
424 _M_break_promise(_Ptr_type __res)
425 {
426 if (static_cast<bool>(__res))
427 {
428 error_code __ec(make_error_code(future_errc::broken_promise));
429 __res->_M_error = make_exception_ptr(future_error(__ec));
430 // This function is only called when the last asynchronous result
431 // provider is abandoning this shared state, so noone can be
432 // trying to make the shared state ready at the same time, and
433 // we can access _M_result directly instead of through call_once.
434 _M_result.swap(__res);
435 // Use release MO to synchronize with observers of the ready state.
436 _M_status._M_store_notify_all(_Status::__ready,
437 memory_order_release);
438 }
439 }
440
441 // Called when this object is first passed to a future.
442 void
443 _M_set_retrieved_flag()
444 {
445 if (_M_retrieved.test_and_set())
446 __throw_future_error(int(future_errc::future_already_retrieved));
447 }
448
449 template<typename _Res, typename _Arg>
450 struct _Setter;
451
452 // set lvalues
453 template<typename _Res, typename _Arg>
454 struct _Setter<_Res, _Arg&>
455 {
456 // check this is only used by promise<R>::set_value(const R&)
457 // or promise<R&>::set_value(R&)
458 static_assert(is_same<_Res, _Arg&>::value // promise<R&>
459 || is_same<const _Res, _Arg>::value, // promise<R>
460 "Invalid specialisation");
461
462 // Used by std::promise to copy construct the result.
463 typename promise<_Res>::_Ptr_type operator()() const
464 {
465 _State_baseV2::_S_check(_M_promise->_M_future);
466 _M_promise->_M_storage->_M_set(*_M_arg);
467 return std::move(_M_promise->_M_storage);
468 }
469 promise<_Res>* _M_promise;
470 _Arg* _M_arg;
471 };
472
473 // set rvalues
474 template<typename _Res>
475 struct _Setter<_Res, _Res&&>
476 {
477 // Used by std::promise to move construct the result.
478 typename promise<_Res>::_Ptr_type operator()() const
479 {
480 _State_baseV2::_S_check(_M_promise->_M_future);
481 _M_promise->_M_storage->_M_set(std::move(*_M_arg));
482 return std::move(_M_promise->_M_storage);
483 }
484 promise<_Res>* _M_promise;
485 _Res* _M_arg;
486 };
487
488 struct __exception_ptr_tag { };
489
490 // set exceptions
491 template<typename _Res>
492 struct _Setter<_Res, __exception_ptr_tag>
493 {
494 // Used by std::promise to store an exception as the result.
495 typename promise<_Res>::_Ptr_type operator()() const
496 {
497 _State_baseV2::_S_check(_M_promise->_M_future);
498 _M_promise->_M_storage->_M_error = *_M_ex;
499 return std::move(_M_promise->_M_storage);
500 }
501
502 promise<_Res>* _M_promise;
503 exception_ptr* _M_ex;
504 };
505
506 template<typename _Res, typename _Arg>
507 static _Setter<_Res, _Arg&&>
508 __setter(promise<_Res>* __prom, _Arg&& __arg)
509 {
510 return _Setter<_Res, _Arg&&>{ __prom, &__arg };
511 }
512
513 template<typename _Res>
514 static _Setter<_Res, __exception_ptr_tag>
515 __setter(exception_ptr& __ex, promise<_Res>* __prom)
516 {
517 return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
518 }
519
520 template<typename _Tp>
521 static void
522 _S_check(const shared_ptr<_Tp>& __p)
523 {
524 if (!static_cast<bool>(__p))
525 __throw_future_error((int)future_errc::no_state);
526 }
527
528 private:
529 // The function invoked with std::call_once(_M_once, ...).
530 void
531 _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
532 {
533 _Ptr_type __res = (*__f)();
534 // Notify the caller that we did try to set; if we do not throw an
535 // exception, the caller will be aware that it did set (e.g., see
536 // _M_set_result).
537 *__did_set = true;
538 _M_result.swap(__res); // nothrow
539 }
540
541 // Wait for completion of async function.
542 virtual void _M_complete_async() { }
543
544 // Return true if state corresponds to a deferred function.
545 virtual bool _M_is_deferred_future() const { return false; }
546
547 struct _Make_ready final : __at_thread_exit_elt
548 {
549 weak_ptr<_State_baseV2> _M_shared_state;
550 static void _S_run(void*);
551 void _M_set();
552 };
553 };
554
555 #ifdef _GLIBCXX_ASYNC_ABI_COMPAT
556 class _State_base;
557 class _Async_state_common;
558 #else
559 using _State_base = _State_baseV2;
560 class _Async_state_commonV2;
561 #endif
562
563 template<typename _BoundFn, typename = typename _BoundFn::result_type>
564 class _Deferred_state;
565
566 template<typename _BoundFn, typename = typename _BoundFn::result_type>
567 class _Async_state_impl;
568
569 template<typename _Signature>
570 class _Task_state_base;
571
572 template<typename _Fn, typename _Alloc, typename _Signature>
573 class _Task_state;
574
575 template<typename _BoundFn>
576 static std::shared_ptr<_State_base>
577 _S_make_deferred_state(_BoundFn&& __fn);
578
579 template<typename _BoundFn>
580 static std::shared_ptr<_State_base>
581 _S_make_async_state(_BoundFn&& __fn);
582
583 template<typename _Res_ptr, typename _Fn,
584 typename _Res = typename _Res_ptr::element_type::result_type>
585 struct _Task_setter;
586
587 template<typename _Res_ptr, typename _BoundFn>
588 static _Task_setter<_Res_ptr, _BoundFn>
589 _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
590 {
591 return { std::__addressof(__ptr), std::__addressof(__call) };
592 }
593 };
594
595 /// Partial specialization for reference types.
596 template<typename _Res>
597 struct __future_base::_Result<_Res&> : __future_base::_Result_base
598 {
599 typedef _Res& result_type;
600
601 _Result() noexcept : _M_value_ptr() { }
602
603 void
604 _M_set(_Res& __res) noexcept
605 { _M_value_ptr = std::addressof(__res); }
606
607 _Res& _M_get() noexcept { return *_M_value_ptr; }
608
609 private:
610 _Res* _M_value_ptr;
611
612 void _M_destroy() { delete this; }
613 };
614
615 /// Explicit specialization for void.
616 template<>
617 struct __future_base::_Result<void> : __future_base::_Result_base
618 {
619 typedef void result_type;
620
621 private:
622 void _M_destroy() { delete this; }
623 };
624
625 #ifndef _GLIBCXX_ASYNC_ABI_COMPAT
626
627 // Allow _Setter objects to be stored locally in std::function
628 template<typename _Res, typename _Arg>
629 struct __is_location_invariant
630 <__future_base::_State_base::_Setter<_Res, _Arg>>
631 : true_type { };
632
633 // Allow _Task_setter objects to be stored locally in std::function
634 template<typename _Res_ptr, typename _Fn, typename _Res>
635 struct __is_location_invariant
636 <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
637 : true_type { };
638
639 /// Common implementation for future and shared_future.
640 template<typename _Res>
641 class __basic_future : public __future_base
642 {
643 protected:
644 typedef shared_ptr<_State_base> __state_type;
645 typedef __future_base::_Result<_Res>& __result_type;
646
647 private:
648 __state_type _M_state;
649
650 public:
651 // Disable copying.
652 __basic_future(const __basic_future&) = delete;
653 __basic_future& operator=(const __basic_future&) = delete;
654
655 bool
656 valid() const noexcept { return static_cast<bool>(_M_state); }
657
658 void
659 wait() const
660 {
661 _State_base::_S_check(_M_state);
662 _M_state->wait();
663 }
664
665 template<typename _Rep, typename _Period>
666 future_status
667 wait_for(const chrono::duration<_Rep, _Period>& __rel) const
668 {
669 _State_base::_S_check(_M_state);
670 return _M_state->wait_for(__rel);
671 }
672
673 template<typename _Clock, typename _Duration>
674 future_status
675 wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
676 {
677 _State_base::_S_check(_M_state);
678 return _M_state->wait_until(__abs);
679 }
680
681 protected:
682 /// Wait for the state to be ready and rethrow any stored exception
683 __result_type
684 _M_get_result() const
685 {
686 _State_base::_S_check(_M_state);
687 _Result_base& __res = _M_state->wait();
688 if (!(__res._M_error == 0))
689 rethrow_exception(__res._M_error);
690 return static_cast<__result_type>(__res);
691 }
692
693 void _M_swap(__basic_future& __that) noexcept
694 {
695 _M_state.swap(__that._M_state);
696 }
697
698 // Construction of a future by promise::get_future()
699 explicit
700 __basic_future(const __state_type& __state) : _M_state(__state)
701 {
702 _State_base::_S_check(_M_state);
703 _M_state->_M_set_retrieved_flag();
704 }
705
706 // Copy construction from a shared_future
707 explicit
708 __basic_future(const shared_future<_Res>&) noexcept;
709
710 // Move construction from a shared_future
711 explicit
712 __basic_future(shared_future<_Res>&&) noexcept;
713
714 // Move construction from a future
715 explicit
716 __basic_future(future<_Res>&&) noexcept;
717
718 constexpr __basic_future() noexcept : _M_state() { }
719
720 struct _Reset
721 {
722 explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
723 ~_Reset() { _M_fut._M_state.reset(); }
724 __basic_future& _M_fut;
725 };
726 };
727
728
729 /// Primary template for future.
730 template<typename _Res>
731 class future : public __basic_future<_Res>
732 {
733 friend class promise<_Res>;
734 template<typename> friend class packaged_task;
735 template<typename _Fn, typename... _Args>
736 friend future<__async_result_of<_Fn, _Args...>>
737 async(launch, _Fn&&, _Args&&...);
738
739 typedef __basic_future<_Res> _Base_type;
740 typedef typename _Base_type::__state_type __state_type;
741
742 explicit
743 future(const __state_type& __state) : _Base_type(__state) { }
744
745 public:
746 constexpr future() noexcept : _Base_type() { }
747
748 /// Move constructor
749 future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
750
751 // Disable copying
752 future(const future&) = delete;
753 future& operator=(const future&) = delete;
754
755 future& operator=(future&& __fut) noexcept
756 {
757 future(std::move(__fut))._M_swap(*this);
758 return *this;
759 }
760
761 /// Retrieving the value
762 _Res
763 get()
764 {
765 typename _Base_type::_Reset __reset(*this);
766 return std::move(this->_M_get_result()._M_value());
767 }
768
769 shared_future<_Res> share();
770 };
771
772 /// Partial specialization for future<R&>
773 template<typename _Res>
774 class future<_Res&> : public __basic_future<_Res&>
775 {
776 friend class promise<_Res&>;
777 template<typename> friend class packaged_task;
778 template<typename _Fn, typename... _Args>
779 friend future<__async_result_of<_Fn, _Args...>>
780 async(launch, _Fn&&, _Args&&...);
781
782 typedef __basic_future<_Res&> _Base_type;
783 typedef typename _Base_type::__state_type __state_type;
784
785 explicit
786 future(const __state_type& __state) : _Base_type(__state) { }
787
788 public:
789 constexpr future() noexcept : _Base_type() { }
790
791 /// Move constructor
792 future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
793
794 // Disable copying
795 future(const future&) = delete;
796 future& operator=(const future&) = delete;
797
798 future& operator=(future&& __fut) noexcept
799 {
800 future(std::move(__fut))._M_swap(*this);
801 return *this;
802 }
803
804 /// Retrieving the value
805 _Res&
806 get()
807 {
808 typename _Base_type::_Reset __reset(*this);
809 return this->_M_get_result()._M_get();
810 }
811
812 shared_future<_Res&> share();
813 };
814
815 /// Explicit specialization for future<void>
816 template<>
817 class future<void> : public __basic_future<void>
818 {
819 friend class promise<void>;
820 template<typename> friend class packaged_task;
821 template<typename _Fn, typename... _Args>
822 friend future<__async_result_of<_Fn, _Args...>>
823 async(launch, _Fn&&, _Args&&...);
824
825 typedef __basic_future<void> _Base_type;
826 typedef typename _Base_type::__state_type __state_type;
827
828 explicit
829 future(const __state_type& __state) : _Base_type(__state) { }
830
831 public:
832 constexpr future() noexcept : _Base_type() { }
833
834 /// Move constructor
835 future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
836
837 // Disable copying
838 future(const future&) = delete;
839 future& operator=(const future&) = delete;
840
841 future& operator=(future&& __fut) noexcept
842 {
843 future(std::move(__fut))._M_swap(*this);
844 return *this;
845 }
846
847 /// Retrieving the value
848 void
849 get()
850 {
851 typename _Base_type::_Reset __reset(*this);
852 this->_M_get_result();
853 }
854
855 shared_future<void> share();
856 };
857
858
859 /// Primary template for shared_future.
860 template<typename _Res>
861 class shared_future : public __basic_future<_Res>
862 {
863 typedef __basic_future<_Res> _Base_type;
864
865 public:
866 constexpr shared_future() noexcept : _Base_type() { }
867
868 /// Copy constructor
869 shared_future(const shared_future& __sf) : _Base_type(__sf) { }
870
871 /// Construct from a future rvalue
872 shared_future(future<_Res>&& __uf) noexcept
873 : _Base_type(std::move(__uf))
874 { }
875
876 /// Construct from a shared_future rvalue
877 shared_future(shared_future&& __sf) noexcept
878 : _Base_type(std::move(__sf))
879 { }
880
881 shared_future& operator=(const shared_future& __sf)
882 {
883 shared_future(__sf)._M_swap(*this);
884 return *this;
885 }
886
887 shared_future& operator=(shared_future&& __sf) noexcept
888 {
889 shared_future(std::move(__sf))._M_swap(*this);
890 return *this;
891 }
892
893 /// Retrieving the value
894 const _Res&
895 get() const { return this->_M_get_result()._M_value(); }
896 };
897
898 /// Partial specialization for shared_future<R&>
899 template<typename _Res>
900 class shared_future<_Res&> : public __basic_future<_Res&>
901 {
902 typedef __basic_future<_Res&> _Base_type;
903
904 public:
905 constexpr shared_future() noexcept : _Base_type() { }
906
907 /// Copy constructor
908 shared_future(const shared_future& __sf) : _Base_type(__sf) { }
909
910 /// Construct from a future rvalue
911 shared_future(future<_Res&>&& __uf) noexcept
912 : _Base_type(std::move(__uf))
913 { }
914
915 /// Construct from a shared_future rvalue
916 shared_future(shared_future&& __sf) noexcept
917 : _Base_type(std::move(__sf))
918 { }
919
920 shared_future& operator=(const shared_future& __sf)
921 {
922 shared_future(__sf)._M_swap(*this);
923 return *this;
924 }
925
926 shared_future& operator=(shared_future&& __sf) noexcept
927 {
928 shared_future(std::move(__sf))._M_swap(*this);
929 return *this;
930 }
931
932 /// Retrieving the value
933 _Res&
934 get() const { return this->_M_get_result()._M_get(); }
935 };
936
937 /// Explicit specialization for shared_future<void>
938 template<>
939 class shared_future<void> : public __basic_future<void>
940 {
941 typedef __basic_future<void> _Base_type;
942
943 public:
944 constexpr shared_future() noexcept : _Base_type() { }
945
946 /// Copy constructor
947 shared_future(const shared_future& __sf) : _Base_type(__sf) { }
948
949 /// Construct from a future rvalue
950 shared_future(future<void>&& __uf) noexcept
951 : _Base_type(std::move(__uf))
952 { }
953
954 /// Construct from a shared_future rvalue
955 shared_future(shared_future&& __sf) noexcept
956 : _Base_type(std::move(__sf))
957 { }
958
959 shared_future& operator=(const shared_future& __sf)
960 {
961 shared_future(__sf)._M_swap(*this);
962 return *this;
963 }
964
965 shared_future& operator=(shared_future&& __sf) noexcept
966 {
967 shared_future(std::move(__sf))._M_swap(*this);
968 return *this;
969 }
970
971 // Retrieving the value
972 void
973 get() const { this->_M_get_result(); }
974 };
975
976 // Now we can define the protected __basic_future constructors.
977 template<typename _Res>
978 inline __basic_future<_Res>::
979 __basic_future(const shared_future<_Res>& __sf) noexcept
980 : _M_state(__sf._M_state)
981 { }
982
983 template<typename _Res>
984 inline __basic_future<_Res>::
985 __basic_future(shared_future<_Res>&& __sf) noexcept
986 : _M_state(std::move(__sf._M_state))
987 { }
988
989 template<typename _Res>
990 inline __basic_future<_Res>::
991 __basic_future(future<_Res>&& __uf) noexcept
992 : _M_state(std::move(__uf._M_state))
993 { }
994
995 template<typename _Res>
996 inline shared_future<_Res>
997 future<_Res>::share()
998 { return shared_future<_Res>(std::move(*this)); }
999
1000 template<typename _Res>
1001 inline shared_future<_Res&>
1002 future<_Res&>::share()
1003 { return shared_future<_Res&>(std::move(*this)); }
1004
1005 inline shared_future<void>
1006 future<void>::share()
1007 { return shared_future<void>(std::move(*this)); }
1008
1009 /// Primary template for promise
1010 template<typename _Res>
1011 class promise
1012 {
1013 typedef __future_base::_State_base _State;
1014 typedef __future_base::_Result<_Res> _Res_type;
1015 typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1016 template<typename, typename> friend class _State::_Setter;
1017
1018 shared_ptr<_State> _M_future;
1019 _Ptr_type _M_storage;
1020
1021 public:
1022 promise()
1023 : _M_future(std::make_shared<_State>()),
1024 _M_storage(new _Res_type())
1025 { }
1026
1027 promise(promise&& __rhs) noexcept
1028 : _M_future(std::move(__rhs._M_future)),
1029 _M_storage(std::move(__rhs._M_storage))
1030 { }
1031
1032 template<typename _Allocator>
1033 promise(allocator_arg_t, const _Allocator& __a)
1034 : _M_future(std::allocate_shared<_State>(__a)),
1035 _M_storage(__future_base::_S_allocate_result<_Res>(__a))
1036 { }
1037
1038 template<typename _Allocator>
1039 promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1040 : _M_future(std::move(__rhs._M_future)),
1041 _M_storage(std::move(__rhs._M_storage))
1042 { }
1043
1044 promise(const promise&) = delete;
1045
1046 ~promise()
1047 {
1048 if (static_cast<bool>(_M_future) && !_M_future.unique())
1049 _M_future->_M_break_promise(std::move(_M_storage));
1050 }
1051
1052 // Assignment
1053 promise&
1054 operator=(promise&& __rhs) noexcept
1055 {
1056 promise(std::move(__rhs)).swap(*this);
1057 return *this;
1058 }
1059
1060 promise& operator=(const promise&) = delete;
1061
1062 void
1063 swap(promise& __rhs) noexcept
1064 {
1065 _M_future.swap(__rhs._M_future);
1066 _M_storage.swap(__rhs._M_storage);
1067 }
1068
1069 // Retrieving the result
1070 future<_Res>
1071 get_future()
1072 { return future<_Res>(_M_future); }
1073
1074 // Setting the result
1075 void
1076 set_value(const _Res& __r)
1077 { _M_future->_M_set_result(_State::__setter(this, __r)); }
1078
1079 void
1080 set_value(_Res&& __r)
1081 { _M_future->_M_set_result(_State::__setter(this, std::move(__r))); }
1082
1083 void
1084 set_exception(exception_ptr __p)
1085 { _M_future->_M_set_result(_State::__setter(__p, this)); }
1086
1087 void
1088 set_value_at_thread_exit(const _Res& __r)
1089 {
1090 _M_future->_M_set_delayed_result(_State::__setter(this, __r),
1091 _M_future);
1092 }
1093
1094 void
1095 set_value_at_thread_exit(_Res&& __r)
1096 {
1097 _M_future->_M_set_delayed_result(
1098 _State::__setter(this, std::move(__r)), _M_future);
1099 }
1100
1101 void
1102 set_exception_at_thread_exit(exception_ptr __p)
1103 {
1104 _M_future->_M_set_delayed_result(_State::__setter(__p, this),
1105 _M_future);
1106 }
1107 };
1108
1109 template<typename _Res>
1110 inline void
1111 swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
1112 { __x.swap(__y); }
1113
1114 template<typename _Res, typename _Alloc>
1115 struct uses_allocator<promise<_Res>, _Alloc>
1116 : public true_type { };
1117
1118
1119 /// Partial specialization for promise<R&>
1120 template<typename _Res>
1121 class promise<_Res&>
1122 {
1123 typedef __future_base::_State_base _State;
1124 typedef __future_base::_Result<_Res&> _Res_type;
1125 typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1126 template<typename, typename> friend class _State::_Setter;
1127
1128 shared_ptr<_State> _M_future;
1129 _Ptr_type _M_storage;
1130
1131 public:
1132 promise()
1133 : _M_future(std::make_shared<_State>()),
1134 _M_storage(new _Res_type())
1135 { }
1136
1137 promise(promise&& __rhs) noexcept
1138 : _M_future(std::move(__rhs._M_future)),
1139 _M_storage(std::move(__rhs._M_storage))
1140 { }
1141
1142 template<typename _Allocator>
1143 promise(allocator_arg_t, const _Allocator& __a)
1144 : _M_future(std::allocate_shared<_State>(__a)),
1145 _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
1146 { }
1147
1148 template<typename _Allocator>
1149 promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1150 : _M_future(std::move(__rhs._M_future)),
1151 _M_storage(std::move(__rhs._M_storage))
1152 { }
1153
1154 promise(const promise&) = delete;
1155
1156 ~promise()
1157 {
1158 if (static_cast<bool>(_M_future) && !_M_future.unique())
1159 _M_future->_M_break_promise(std::move(_M_storage));
1160 }
1161
1162 // Assignment
1163 promise&
1164 operator=(promise&& __rhs) noexcept
1165 {
1166 promise(std::move(__rhs)).swap(*this);
1167 return *this;
1168 }
1169
1170 promise& operator=(const promise&) = delete;
1171
1172 void
1173 swap(promise& __rhs) noexcept
1174 {
1175 _M_future.swap(__rhs._M_future);
1176 _M_storage.swap(__rhs._M_storage);
1177 }
1178
1179 // Retrieving the result
1180 future<_Res&>
1181 get_future()
1182 { return future<_Res&>(_M_future); }
1183
1184 // Setting the result
1185 void
1186 set_value(_Res& __r)
1187 { _M_future->_M_set_result(_State::__setter(this, __r)); }
1188
1189 void
1190 set_exception(exception_ptr __p)
1191 { _M_future->_M_set_result(_State::__setter(__p, this)); }
1192
1193 void
1194 set_value_at_thread_exit(_Res& __r)
1195 {
1196 _M_future->_M_set_delayed_result(_State::__setter(this, __r),
1197 _M_future);
1198 }
1199
1200 void
1201 set_exception_at_thread_exit(exception_ptr __p)
1202 {
1203 _M_future->_M_set_delayed_result(_State::__setter(__p, this),
1204 _M_future);
1205 }
1206 };
1207
1208 /// Explicit specialization for promise<void>
1209 template<>
1210 class promise<void>
1211 {
1212 typedef __future_base::_State_base _State;
1213 typedef __future_base::_Result<void> _Res_type;
1214 typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1215 template<typename, typename> friend class _State::_Setter;
1216
1217 shared_ptr<_State> _M_future;
1218 _Ptr_type _M_storage;
1219
1220 public:
1221 promise()
1222 : _M_future(std::make_shared<_State>()),
1223 _M_storage(new _Res_type())
1224 { }
1225
1226 promise(promise&& __rhs) noexcept
1227 : _M_future(std::move(__rhs._M_future)),
1228 _M_storage(std::move(__rhs._M_storage))
1229 { }
1230
1231 template<typename _Allocator>
1232 promise(allocator_arg_t, const _Allocator& __a)
1233 : _M_future(std::allocate_shared<_State>(__a)),
1234 _M_storage(__future_base::_S_allocate_result<void>(__a))
1235 { }
1236
1237 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1238 // 2095. missing constructors needed for uses-allocator construction
1239 template<typename _Allocator>
1240 promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1241 : _M_future(std::move(__rhs._M_future)),
1242 _M_storage(std::move(__rhs._M_storage))
1243 { }
1244
1245 promise(const promise&) = delete;
1246
1247 ~promise()
1248 {
1249 if (static_cast<bool>(_M_future) && !_M_future.unique())
1250 _M_future->_M_break_promise(std::move(_M_storage));
1251 }
1252
1253 // Assignment
1254 promise&
1255 operator=(promise&& __rhs) noexcept
1256 {
1257 promise(std::move(__rhs)).swap(*this);
1258 return *this;
1259 }
1260
1261 promise& operator=(const promise&) = delete;
1262
1263 void
1264 swap(promise& __rhs) noexcept
1265 {
1266 _M_future.swap(__rhs._M_future);
1267 _M_storage.swap(__rhs._M_storage);
1268 }
1269
1270 // Retrieving the result
1271 future<void>
1272 get_future()
1273 { return future<void>(_M_future); }
1274
1275 // Setting the result
1276 void set_value();
1277
1278 void
1279 set_exception(exception_ptr __p)
1280 { _M_future->_M_set_result(_State::__setter(__p, this)); }
1281
1282 void
1283 set_value_at_thread_exit();
1284
1285 void
1286 set_exception_at_thread_exit(exception_ptr __p)
1287 {
1288 _M_future->_M_set_delayed_result(_State::__setter(__p, this),
1289 _M_future);
1290 }
1291 };
1292
1293 // set void
1294 template<>
1295 struct __future_base::_State_base::_Setter<void, void>
1296 {
1297 promise<void>::_Ptr_type operator()() const
1298 {
1299 _State_base::_S_check(_M_promise->_M_future);
1300 return std::move(_M_promise->_M_storage);
1301 }
1302
1303 promise<void>* _M_promise;
1304 };
1305
1306 inline void
1307 promise<void>::set_value()
1308 { _M_future->_M_set_result(_State::_Setter<void, void>{ this }); }
1309
1310 inline void
1311 promise<void>::set_value_at_thread_exit()
1312 {
1313 _M_future->_M_set_delayed_result(_State::_Setter<void, void>{this},
1314 _M_future);
1315 }
1316
1317 template<typename _Ptr_type, typename _Fn, typename _Res>
1318 struct __future_base::_Task_setter
1319 {
1320 // Invoke the function and provide the result to the caller.
1321 _Ptr_type operator()() const
1322 {
1323 __try
1324 {
1325 (*_M_result)->_M_set((*_M_fn)());
1326 }
1327 __catch(const __cxxabiv1::__forced_unwind&)
1328 {
1329 __throw_exception_again; // will cause broken_promise
1330 }
1331 __catch(...)
1332 {
1333 (*_M_result)->_M_error = current_exception();
1334 }
1335 return std::move(*_M_result);
1336 }
1337 _Ptr_type* _M_result;
1338 _Fn* _M_fn;
1339 };
1340
1341 template<typename _Ptr_type, typename _Fn>
1342 struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
1343 {
1344 _Ptr_type operator()() const
1345 {
1346 __try
1347 {
1348 (*_M_fn)();
1349 }
1350 __catch(const __cxxabiv1::__forced_unwind&)
1351 {
1352 __throw_exception_again; // will cause broken_promise
1353 }
1354 __catch(...)
1355 {
1356 (*_M_result)->_M_error = current_exception();
1357 }
1358 return std::move(*_M_result);
1359 }
1360 _Ptr_type* _M_result;
1361 _Fn* _M_fn;
1362 };
1363
1364 // Holds storage for a packaged_task's result.
1365 template<typename _Res, typename... _Args>
1366 struct __future_base::_Task_state_base<_Res(_Args...)>
1367 : __future_base::_State_base
1368 {
1369 typedef _Res _Res_type;
1370
1371 template<typename _Alloc>
1372 _Task_state_base(const _Alloc& __a)
1373 : _M_result(_S_allocate_result<_Res>(__a))
1374 { }
1375
1376 // Invoke the stored task and make the state ready.
1377 virtual void
1378 _M_run(_Args&&... __args) = 0;
1379
1380 // Invoke the stored task and make the state ready at thread exit.
1381 virtual void
1382 _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;
1383
1384 virtual shared_ptr<_Task_state_base>
1385 _M_reset() = 0;
1386
1387 typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1388 _Ptr_type _M_result;
1389 };
1390
1391 // Holds a packaged_task's stored task.
1392 template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1393 struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
1394 : __future_base::_Task_state_base<_Res(_Args...)>
1395 {
1396 template<typename _Fn2>
1397 _Task_state(_Fn2&& __fn, const _Alloc& __a)
1398 : _Task_state_base<_Res(_Args...)>(__a),
1399 _M_impl(std::forward<_Fn2>(__fn), __a)
1400 { }
1401
1402 private:
1403 virtual void
1404 _M_run(_Args&&... __args)
1405 {
1406 // bound arguments decay so wrap lvalue references
1407 auto __boundfn = std::__bind_simple(std::ref(_M_impl._M_fn),
1408 _S_maybe_wrap_ref(std::forward<_Args>(__args))...);
1409 this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
1410 }
1411
1412 virtual void
1413 _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
1414 {
1415 // bound arguments decay so wrap lvalue references
1416 auto __boundfn = std::__bind_simple(std::ref(_M_impl._M_fn),
1417 _S_maybe_wrap_ref(std::forward<_Args>(__args))...);
1418 this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
1419 std::move(__self));
1420 }
1421
1422 virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
1423 _M_reset();
1424
1425 template<typename _Tp>
1426 static reference_wrapper<_Tp>
1427 _S_maybe_wrap_ref(_Tp& __t)
1428 { return std::ref(__t); }
1429
1430 template<typename _Tp>
1431 static
1432 typename enable_if<!is_lvalue_reference<_Tp>::value, _Tp>::type&&
1433 _S_maybe_wrap_ref(_Tp&& __t)
1434 { return std::forward<_Tp>(__t); }
1435
1436 struct _Impl : _Alloc
1437 {
1438 template<typename _Fn2>
1439 _Impl(_Fn2&& __fn, const _Alloc& __a)
1440 : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
1441 _Fn _M_fn;
1442 } _M_impl;
1443 };
1444
1445 template<typename _Signature, typename _Fn, typename _Alloc>
1446 static shared_ptr<__future_base::_Task_state_base<_Signature>>
1447 __create_task_state(_Fn&& __fn, const _Alloc& __a)
1448 {
1449 typedef typename decay<_Fn>::type _Fn2;
1450 typedef __future_base::_Task_state<_Fn2, _Alloc, _Signature> _State;
1451 return std::allocate_shared<_State>(__a, std::forward<_Fn>(__fn), __a);
1452 }
1453
1454 template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1455 shared_ptr<__future_base::_Task_state_base<_Res(_Args...)>>
1456 __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)>::_M_reset()
1457 {
1458 return __create_task_state<_Res(_Args...)>(std::move(_M_impl._M_fn),
1459 static_cast<_Alloc&>(_M_impl));
1460 }
1461
1462 template<typename _Task, typename _Fn, bool
1463 = is_same<_Task, typename decay<_Fn>::type>::value>
1464 struct __constrain_pkgdtask
1465 { typedef void __type; };
1466
1467 template<typename _Task, typename _Fn>
1468 struct __constrain_pkgdtask<_Task, _Fn, true>
1469 { };
1470
1471 /// packaged_task
1472 template<typename _Res, typename... _ArgTypes>
1473 class packaged_task<_Res(_ArgTypes...)>
1474 {
1475 typedef __future_base::_Task_state_base<_Res(_ArgTypes...)> _State_type;
1476 shared_ptr<_State_type> _M_state;
1477
1478 public:
1479 // Construction and destruction
1480 packaged_task() noexcept { }
1481
1482 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1483 // 2095. missing constructors needed for uses-allocator construction
1484 template<typename _Allocator>
1485 packaged_task(allocator_arg_t, const _Allocator& __a) noexcept
1486 { }
1487
1488 template<typename _Fn, typename = typename
1489 __constrain_pkgdtask<packaged_task, _Fn>::__type>
1490 explicit
1491 packaged_task(_Fn&& __fn)
1492 : packaged_task(allocator_arg, std::allocator<int>(),
1493 std::forward<_Fn>(__fn))
1494 { }
1495
1496 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1497 // 2097. packaged_task constructors should be constrained
1498 // 2407. [this constructor should not be] explicit
1499 template<typename _Fn, typename _Alloc, typename = typename
1500 __constrain_pkgdtask<packaged_task, _Fn>::__type>
1501 packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
1502 : _M_state(__create_task_state<_Res(_ArgTypes...)>(
1503 std::forward<_Fn>(__fn), __a))
1504 { }
1505
1506 ~packaged_task()
1507 {
1508 if (static_cast<bool>(_M_state) && !_M_state.unique())
1509 _M_state->_M_break_promise(std::move(_M_state->_M_result));
1510 }
1511
1512 // No copy
1513 packaged_task(const packaged_task&) = delete;
1514 packaged_task& operator=(const packaged_task&) = delete;
1515
1516 template<typename _Allocator>
1517 packaged_task(allocator_arg_t, const _Allocator&,
1518 const packaged_task&) = delete;
1519
1520 // Move support
1521 packaged_task(packaged_task&& __other) noexcept
1522 { this->swap(__other); }
1523
1524 template<typename _Allocator>
1525 packaged_task(allocator_arg_t, const _Allocator&,
1526 packaged_task&& __other) noexcept
1527 { this->swap(__other); }
1528
1529 packaged_task& operator=(packaged_task&& __other) noexcept
1530 {
1531 packaged_task(std::move(__other)).swap(*this);
1532 return *this;
1533 }
1534
1535 void
1536 swap(packaged_task& __other) noexcept
1537 { _M_state.swap(__other._M_state); }
1538
1539 bool
1540 valid() const noexcept
1541 { return static_cast<bool>(_M_state); }
1542
1543 // Result retrieval
1544 future<_Res>
1545 get_future()
1546 { return future<_Res>(_M_state); }
1547
1548 // Execution
1549 void
1550 operator()(_ArgTypes... __args)
1551 {
1552 __future_base::_State_base::_S_check(_M_state);
1553 _M_state->_M_run(std::forward<_ArgTypes>(__args)...);
1554 }
1555
1556 void
1557 make_ready_at_thread_exit(_ArgTypes... __args)
1558 {
1559 __future_base::_State_base::_S_check(_M_state);
1560 _M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
1561 }
1562
1563 void
1564 reset()
1565 {
1566 __future_base::_State_base::_S_check(_M_state);
1567 packaged_task __tmp;
1568 __tmp._M_state = _M_state;
1569 _M_state = _M_state->_M_reset();
1570 }
1571 };
1572
1573 /// swap
1574 template<typename _Res, typename... _ArgTypes>
1575 inline void
1576 swap(packaged_task<_Res(_ArgTypes...)>& __x,
1577 packaged_task<_Res(_ArgTypes...)>& __y) noexcept
1578 { __x.swap(__y); }
1579
1580 template<typename _Res, typename _Alloc>
1581 struct uses_allocator<packaged_task<_Res>, _Alloc>
1582 : public true_type { };
1583
1584
1585 // Shared state created by std::async().
1586 // Holds a deferred function and storage for its result.
1587 template<typename _BoundFn, typename _Res>
1588 class __future_base::_Deferred_state final
1589 : public __future_base::_State_base
1590 {
1591 public:
1592 explicit
1593 _Deferred_state(_BoundFn&& __fn)
1594 : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1595 { }
1596
1597 private:
1598 typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1599 _Ptr_type _M_result;
1600 _BoundFn _M_fn;
1601
1602 // Run the deferred function.
1603 virtual void
1604 _M_complete_async()
1605 {
1606 // Multiple threads can call a waiting function on the future and
1607 // reach this point at the same time. The call_once in _M_set_result
1608 // ensures only the first one run the deferred function, stores the
1609 // result in _M_result, swaps that with the base _M_result and makes
1610 // the state ready. Tell _M_set_result to ignore failure so all later
1611 // calls do nothing.
1612 _M_set_result(_S_task_setter(_M_result, _M_fn), true);
1613 }
1614
1615 // Caller should check whether the state is ready first, because this
1616 // function will return true even after the deferred function has run.
1617 virtual bool _M_is_deferred_future() const { return true; }
1618 };
1619
1620 // Common functionality hoisted out of the _Async_state_impl template.
1621 class __future_base::_Async_state_commonV2
1622 : public __future_base::_State_base
1623 {
1624 protected:
1625 ~_Async_state_commonV2() = default;
1626
1627 // Make waiting functions block until the thread completes, as if joined.
1628 //
1629 // This function is used by wait() to satisfy the first requirement below
1630 // and by wait_for() / wait_until() to satisfy the second.
1631 //
1632 // [futures.async]:
1633 //
1634 // — a call to a waiting function on an asynchronous return object that
1635 // shares the shared state created by this async call shall block until
1636 // the associated thread has completed, as if joined, or else time out.
1637 //
1638 // — the associated thread completion synchronizes with the return from
1639 // the first function that successfully detects the ready status of the
1640 // shared state or with the return from the last function that releases
1641 // the shared state, whichever happens first.
1642 virtual void _M_complete_async() { _M_join(); }
1643
1644 void _M_join() { std::call_once(_M_once, &thread::join, ref(_M_thread)); }
1645
1646 thread _M_thread;
1647 once_flag _M_once;
1648 };
1649
1650 // Shared state created by std::async().
1651 // Starts a new thread that runs a function and makes the shared state ready.
1652 template<typename _BoundFn, typename _Res>
1653 class __future_base::_Async_state_impl final
1654 : public __future_base::_Async_state_commonV2
1655 {
1656 public:
1657 explicit
1658 _Async_state_impl(_BoundFn&& __fn)
1659 : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1660 {
1661 _M_thread = std::thread{ [this] {
1662 __try
1663 {
1664 _M_set_result(_S_task_setter(_M_result, _M_fn));
1665 }
1666 __catch (const __cxxabiv1::__forced_unwind&)
1667 {
1668 // make the shared state ready on thread cancellation
1669 if (static_cast<bool>(_M_result))
1670 this->_M_break_promise(std::move(_M_result));
1671 __throw_exception_again;
1672 }
1673 } };
1674 }
1675
1676 // Must not destroy _M_result and _M_fn until the thread finishes.
1677 // Call join() directly rather than through _M_join() because no other
1678 // thread can be referring to this state if it is being destroyed.
1679 ~_Async_state_impl() { if (_M_thread.joinable()) _M_thread.join(); }
1680
1681 private:
1682 typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1683 _Ptr_type _M_result;
1684 _BoundFn _M_fn;
1685 };
1686
1687 template<typename _BoundFn>
1688 inline std::shared_ptr<__future_base::_State_base>
1689 __future_base::_S_make_deferred_state(_BoundFn&& __fn)
1690 {
1691 typedef typename remove_reference<_BoundFn>::type __fn_type;
1692 typedef _Deferred_state<__fn_type> __state_type;
1693 return std::make_shared<__state_type>(std::move(__fn));
1694 }
1695
1696 template<typename _BoundFn>
1697 inline std::shared_ptr<__future_base::_State_base>
1698 __future_base::_S_make_async_state(_BoundFn&& __fn)
1699 {
1700 typedef typename remove_reference<_BoundFn>::type __fn_type;
1701 typedef _Async_state_impl<__fn_type> __state_type;
1702 return std::make_shared<__state_type>(std::move(__fn));
1703 }
1704
1705
1706 /// async
1707 template<typename _Fn, typename... _Args>
1708 future<__async_result_of<_Fn, _Args...>>
1709 async(launch __policy, _Fn&& __fn, _Args&&... __args)
1710 {
1711 std::shared_ptr<__future_base::_State_base> __state;
1712 if ((__policy & launch::async) == launch::async)
1713 {
1714 __try
1715 {
1716 __state = __future_base::_S_make_async_state(std::__bind_simple(
1717 std::forward<_Fn>(__fn), std::forward<_Args>(__args)...));
1718 }
1719 #if __cpp_exceptions
1720 catch(const system_error& __e)
1721 {
1722 if (__e.code() != errc::resource_unavailable_try_again
1723 || (__policy & launch::deferred) != launch::deferred)
1724 throw;
1725 }
1726 #endif
1727 }
1728 if (!__state)
1729 {
1730 __state = __future_base::_S_make_deferred_state(std::__bind_simple(
1731 std::forward<_Fn>(__fn), std::forward<_Args>(__args)...));
1732 }
1733 return future<__async_result_of<_Fn, _Args...>>(__state);
1734 }
1735
1736 /// async, potential overload
1737 template<typename _Fn, typename... _Args>
1738 inline future<__async_result_of<_Fn, _Args...>>
1739 async(_Fn&& __fn, _Args&&... __args)
1740 {
1741 return std::async(launch::async|launch::deferred,
1742 std::forward<_Fn>(__fn),
1743 std::forward<_Args>(__args)...);
1744 }
1745
1746 #endif // _GLIBCXX_ASYNC_ABI_COMPAT
1747 #endif // _GLIBCXX_HAS_GTHREADS && _GLIBCXX_USE_C99_STDINT_TR1
1748 // && ATOMIC_INT_LOCK_FREE
1749
1750 // @} group futures
1751 _GLIBCXX_END_NAMESPACE_VERSION
1752 } // namespace
1753
1754 #endif // C++11
1755
1756 #endif // _GLIBCXX_FUTURE