]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/tr1/bessel_function.tcc
*: Use headername alias to associate private includes to public includes.
[thirdparty/gcc.git] / libstdc++-v3 / include / tr1 / bessel_function.tcc
1 // Special functions -*- C++ -*-
2
3 // Copyright (C) 2006, 2007, 2008, 2009
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11 //
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16 //
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25
26 /** @file tr1/bessel_function.tcc
27 * This is an internal header file, included by other library headers.
28 * Do not attempt to use it directly. @headername{tr1/cmath}
29 */
30
31 //
32 // ISO C++ 14882 TR1: 5.2 Special functions
33 //
34
35 // Written by Edward Smith-Rowland.
36 //
37 // References:
38 // (1) Handbook of Mathematical Functions,
39 // ed. Milton Abramowitz and Irene A. Stegun,
40 // Dover Publications,
41 // Section 9, pp. 355-434, Section 10 pp. 435-478
42 // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
43 // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
44 // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
45 // 2nd ed, pp. 240-245
46
47 #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
48 #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
49
50 #include "special_function_util.h"
51
52 namespace std
53 {
54 namespace tr1
55 {
56
57 // [5.2] Special functions
58
59 // Implementation-space details.
60 namespace __detail
61 {
62
63 /**
64 * @brief Compute the gamma functions required by the Temme series
65 * expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
66 * @f[
67 * \Gamma_1 = \frac{1}{2\mu}
68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
69 * @f]
70 * and
71 * @f[
72 * \Gamma_2 = \frac{1}{2}
73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
74 * @f]
75 * where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
76 * is the nearest integer to @f$ \nu @f$.
77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
78 * are returned as well.
79 *
80 * The accuracy requirements on this are exquisite.
81 *
82 * @param __mu The input parameter of the gamma functions.
83 * @param __gam1 The output function \f$ \Gamma_1(\mu) \f$
84 * @param __gam2 The output function \f$ \Gamma_2(\mu) \f$
85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f$
87 */
88 template <typename _Tp>
89 void
90 __gamma_temme(const _Tp __mu,
91 _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
92 {
93 #if _GLIBCXX_USE_C99_MATH_TR1
94 __gampl = _Tp(1) / std::tr1::tgamma(_Tp(1) + __mu);
95 __gammi = _Tp(1) / std::tr1::tgamma(_Tp(1) - __mu);
96 #else
97 __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
98 __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
99 #endif
100
101 if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
102 __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
103 else
104 __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
105
106 __gam2 = (__gammi + __gampl) / (_Tp(2));
107
108 return;
109 }
110
111
112 /**
113 * @brief Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
114 * @f$ N_\nu(x) @f$ functions and their first derivatives
115 * @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
116 * These four functions are computed together for numerical
117 * stability.
118 *
119 * @param __nu The order of the Bessel functions.
120 * @param __x The argument of the Bessel functions.
121 * @param __Jnu The output Bessel function of the first kind.
122 * @param __Nnu The output Neumann function (Bessel function of the second kind).
123 * @param __Jpnu The output derivative of the Bessel function of the first kind.
124 * @param __Npnu The output derivative of the Neumann function.
125 */
126 template <typename _Tp>
127 void
128 __bessel_jn(const _Tp __nu, const _Tp __x,
129 _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
130 {
131 if (__x == _Tp(0))
132 {
133 if (__nu == _Tp(0))
134 {
135 __Jnu = _Tp(1);
136 __Jpnu = _Tp(0);
137 }
138 else if (__nu == _Tp(1))
139 {
140 __Jnu = _Tp(0);
141 __Jpnu = _Tp(0.5L);
142 }
143 else
144 {
145 __Jnu = _Tp(0);
146 __Jpnu = _Tp(0);
147 }
148 __Nnu = -std::numeric_limits<_Tp>::infinity();
149 __Npnu = std::numeric_limits<_Tp>::infinity();
150 return;
151 }
152
153 const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
154 // When the multiplier is N i.e.
155 // fp_min = N * min()
156 // Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
157 //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
158 const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
159 const int __max_iter = 15000;
160 const _Tp __x_min = _Tp(2);
161
162 const int __nl = (__x < __x_min
163 ? static_cast<int>(__nu + _Tp(0.5L))
164 : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
165
166 const _Tp __mu = __nu - __nl;
167 const _Tp __mu2 = __mu * __mu;
168 const _Tp __xi = _Tp(1) / __x;
169 const _Tp __xi2 = _Tp(2) * __xi;
170 _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
171 int __isign = 1;
172 _Tp __h = __nu * __xi;
173 if (__h < __fp_min)
174 __h = __fp_min;
175 _Tp __b = __xi2 * __nu;
176 _Tp __d = _Tp(0);
177 _Tp __c = __h;
178 int __i;
179 for (__i = 1; __i <= __max_iter; ++__i)
180 {
181 __b += __xi2;
182 __d = __b - __d;
183 if (std::abs(__d) < __fp_min)
184 __d = __fp_min;
185 __c = __b - _Tp(1) / __c;
186 if (std::abs(__c) < __fp_min)
187 __c = __fp_min;
188 __d = _Tp(1) / __d;
189 const _Tp __del = __c * __d;
190 __h *= __del;
191 if (__d < _Tp(0))
192 __isign = -__isign;
193 if (std::abs(__del - _Tp(1)) < __eps)
194 break;
195 }
196 if (__i > __max_iter)
197 std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
198 "try asymptotic expansion."));
199 _Tp __Jnul = __isign * __fp_min;
200 _Tp __Jpnul = __h * __Jnul;
201 _Tp __Jnul1 = __Jnul;
202 _Tp __Jpnu1 = __Jpnul;
203 _Tp __fact = __nu * __xi;
204 for ( int __l = __nl; __l >= 1; --__l )
205 {
206 const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
207 __fact -= __xi;
208 __Jpnul = __fact * __Jnutemp - __Jnul;
209 __Jnul = __Jnutemp;
210 }
211 if (__Jnul == _Tp(0))
212 __Jnul = __eps;
213 _Tp __f= __Jpnul / __Jnul;
214 _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
215 if (__x < __x_min)
216 {
217 const _Tp __x2 = __x / _Tp(2);
218 const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
219 _Tp __fact = (std::abs(__pimu) < __eps
220 ? _Tp(1) : __pimu / std::sin(__pimu));
221 _Tp __d = -std::log(__x2);
222 _Tp __e = __mu * __d;
223 _Tp __fact2 = (std::abs(__e) < __eps
224 ? _Tp(1) : std::sinh(__e) / __e);
225 _Tp __gam1, __gam2, __gampl, __gammi;
226 __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
227 _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
228 * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
229 __e = std::exp(__e);
230 _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
231 _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
232 const _Tp __pimu2 = __pimu / _Tp(2);
233 _Tp __fact3 = (std::abs(__pimu2) < __eps
234 ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
235 _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
236 _Tp __c = _Tp(1);
237 __d = -__x2 * __x2;
238 _Tp __sum = __ff + __r * __q;
239 _Tp __sum1 = __p;
240 for (__i = 1; __i <= __max_iter; ++__i)
241 {
242 __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
243 __c *= __d / _Tp(__i);
244 __p /= _Tp(__i) - __mu;
245 __q /= _Tp(__i) + __mu;
246 const _Tp __del = __c * (__ff + __r * __q);
247 __sum += __del;
248 const _Tp __del1 = __c * __p - __i * __del;
249 __sum1 += __del1;
250 if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
251 break;
252 }
253 if ( __i > __max_iter )
254 std::__throw_runtime_error(__N("Bessel y series failed to converge "
255 "in __bessel_jn."));
256 __Nmu = -__sum;
257 __Nnu1 = -__sum1 * __xi2;
258 __Npmu = __mu * __xi * __Nmu - __Nnu1;
259 __Jmu = __w / (__Npmu - __f * __Nmu);
260 }
261 else
262 {
263 _Tp __a = _Tp(0.25L) - __mu2;
264 _Tp __q = _Tp(1);
265 _Tp __p = -__xi / _Tp(2);
266 _Tp __br = _Tp(2) * __x;
267 _Tp __bi = _Tp(2);
268 _Tp __fact = __a * __xi / (__p * __p + __q * __q);
269 _Tp __cr = __br + __q * __fact;
270 _Tp __ci = __bi + __p * __fact;
271 _Tp __den = __br * __br + __bi * __bi;
272 _Tp __dr = __br / __den;
273 _Tp __di = -__bi / __den;
274 _Tp __dlr = __cr * __dr - __ci * __di;
275 _Tp __dli = __cr * __di + __ci * __dr;
276 _Tp __temp = __p * __dlr - __q * __dli;
277 __q = __p * __dli + __q * __dlr;
278 __p = __temp;
279 int __i;
280 for (__i = 2; __i <= __max_iter; ++__i)
281 {
282 __a += _Tp(2 * (__i - 1));
283 __bi += _Tp(2);
284 __dr = __a * __dr + __br;
285 __di = __a * __di + __bi;
286 if (std::abs(__dr) + std::abs(__di) < __fp_min)
287 __dr = __fp_min;
288 __fact = __a / (__cr * __cr + __ci * __ci);
289 __cr = __br + __cr * __fact;
290 __ci = __bi - __ci * __fact;
291 if (std::abs(__cr) + std::abs(__ci) < __fp_min)
292 __cr = __fp_min;
293 __den = __dr * __dr + __di * __di;
294 __dr /= __den;
295 __di /= -__den;
296 __dlr = __cr * __dr - __ci * __di;
297 __dli = __cr * __di + __ci * __dr;
298 __temp = __p * __dlr - __q * __dli;
299 __q = __p * __dli + __q * __dlr;
300 __p = __temp;
301 if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
302 break;
303 }
304 if (__i > __max_iter)
305 std::__throw_runtime_error(__N("Lentz's method failed "
306 "in __bessel_jn."));
307 const _Tp __gam = (__p - __f) / __q;
308 __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
309 #if _GLIBCXX_USE_C99_MATH_TR1
310 __Jmu = std::tr1::copysign(__Jmu, __Jnul);
311 #else
312 if (__Jmu * __Jnul < _Tp(0))
313 __Jmu = -__Jmu;
314 #endif
315 __Nmu = __gam * __Jmu;
316 __Npmu = (__p + __q / __gam) * __Nmu;
317 __Nnu1 = __mu * __xi * __Nmu - __Npmu;
318 }
319 __fact = __Jmu / __Jnul;
320 __Jnu = __fact * __Jnul1;
321 __Jpnu = __fact * __Jpnu1;
322 for (__i = 1; __i <= __nl; ++__i)
323 {
324 const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
325 __Nmu = __Nnu1;
326 __Nnu1 = __Nnutemp;
327 }
328 __Nnu = __Nmu;
329 __Npnu = __nu * __xi * __Nmu - __Nnu1;
330
331 return;
332 }
333
334
335 /**
336 * @brief This routine computes the asymptotic cylindrical Bessel
337 * and Neumann functions of order nu: \f$ J_{\nu} \f$,
338 * \f$ N_{\nu} \f$.
339 *
340 * References:
341 * (1) Handbook of Mathematical Functions,
342 * ed. Milton Abramowitz and Irene A. Stegun,
343 * Dover Publications,
344 * Section 9 p. 364, Equations 9.2.5-9.2.10
345 *
346 * @param __nu The order of the Bessel functions.
347 * @param __x The argument of the Bessel functions.
348 * @param __Jnu The output Bessel function of the first kind.
349 * @param __Nnu The output Neumann function (Bessel function of the second kind).
350 */
351 template <typename _Tp>
352 void
353 __cyl_bessel_jn_asymp(const _Tp __nu, const _Tp __x,
354 _Tp & __Jnu, _Tp & __Nnu)
355 {
356 const _Tp __coef = std::sqrt(_Tp(2)
357 / (__numeric_constants<_Tp>::__pi() * __x));
358 const _Tp __mu = _Tp(4) * __nu * __nu;
359 const _Tp __mum1 = __mu - _Tp(1);
360 const _Tp __mum9 = __mu - _Tp(9);
361 const _Tp __mum25 = __mu - _Tp(25);
362 const _Tp __mum49 = __mu - _Tp(49);
363 const _Tp __xx = _Tp(64) * __x * __x;
364 const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
365 * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
366 const _Tp __Q = __mum1 / (_Tp(8) * __x)
367 * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));
368
369 const _Tp __chi = __x - (__nu + _Tp(0.5L))
370 * __numeric_constants<_Tp>::__pi_2();
371 const _Tp __c = std::cos(__chi);
372 const _Tp __s = std::sin(__chi);
373
374 __Jnu = __coef * (__c * __P - __s * __Q);
375 __Nnu = __coef * (__s * __P + __c * __Q);
376
377 return;
378 }
379
380
381 /**
382 * @brief This routine returns the cylindrical Bessel functions
383 * of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
384 * by series expansion.
385 *
386 * The modified cylindrical Bessel function is:
387 * @f[
388 * Z_{\nu}(x) = \sum_{k=0}^{\infty}
389 * \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
390 * @f]
391 * where \f$ \sigma = +1 \f$ or\f$ -1 \f$ for
392 * \f$ Z = I \f$ or \f$ J \f$ respectively.
393 *
394 * See Abramowitz & Stegun, 9.1.10
395 * Abramowitz & Stegun, 9.6.7
396 * (1) Handbook of Mathematical Functions,
397 * ed. Milton Abramowitz and Irene A. Stegun,
398 * Dover Publications,
399 * Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
400 *
401 * @param __nu The order of the Bessel function.
402 * @param __x The argument of the Bessel function.
403 * @param __sgn The sign of the alternate terms
404 * -1 for the Bessel function of the first kind.
405 * +1 for the modified Bessel function of the first kind.
406 * @return The output Bessel function.
407 */
408 template <typename _Tp>
409 _Tp
410 __cyl_bessel_ij_series(const _Tp __nu, const _Tp __x, const _Tp __sgn,
411 const unsigned int __max_iter)
412 {
413
414 const _Tp __x2 = __x / _Tp(2);
415 _Tp __fact = __nu * std::log(__x2);
416 #if _GLIBCXX_USE_C99_MATH_TR1
417 __fact -= std::tr1::lgamma(__nu + _Tp(1));
418 #else
419 __fact -= __log_gamma(__nu + _Tp(1));
420 #endif
421 __fact = std::exp(__fact);
422 const _Tp __xx4 = __sgn * __x2 * __x2;
423 _Tp __Jn = _Tp(1);
424 _Tp __term = _Tp(1);
425
426 for (unsigned int __i = 1; __i < __max_iter; ++__i)
427 {
428 __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
429 __Jn += __term;
430 if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
431 break;
432 }
433
434 return __fact * __Jn;
435 }
436
437
438 /**
439 * @brief Return the Bessel function of order \f$ \nu \f$:
440 * \f$ J_{\nu}(x) \f$.
441 *
442 * The cylindrical Bessel function is:
443 * @f[
444 * J_{\nu}(x) = \sum_{k=0}^{\infty}
445 * \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
446 * @f]
447 *
448 * @param __nu The order of the Bessel function.
449 * @param __x The argument of the Bessel function.
450 * @return The output Bessel function.
451 */
452 template<typename _Tp>
453 _Tp
454 __cyl_bessel_j(const _Tp __nu, const _Tp __x)
455 {
456 if (__nu < _Tp(0) || __x < _Tp(0))
457 std::__throw_domain_error(__N("Bad argument "
458 "in __cyl_bessel_j."));
459 else if (__isnan(__nu) || __isnan(__x))
460 return std::numeric_limits<_Tp>::quiet_NaN();
461 else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
462 return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
463 else if (__x > _Tp(1000))
464 {
465 _Tp __J_nu, __N_nu;
466 __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
467 return __J_nu;
468 }
469 else
470 {
471 _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
472 __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
473 return __J_nu;
474 }
475 }
476
477
478 /**
479 * @brief Return the Neumann function of order \f$ \nu \f$:
480 * \f$ N_{\nu}(x) \f$.
481 *
482 * The Neumann function is defined by:
483 * @f[
484 * N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
485 * {\sin \nu\pi}
486 * @f]
487 * where for integral \f$ \nu = n \f$ a limit is taken:
488 * \f$ lim_{\nu \to n} \f$.
489 *
490 * @param __nu The order of the Neumann function.
491 * @param __x The argument of the Neumann function.
492 * @return The output Neumann function.
493 */
494 template<typename _Tp>
495 _Tp
496 __cyl_neumann_n(const _Tp __nu, const _Tp __x)
497 {
498 if (__nu < _Tp(0) || __x < _Tp(0))
499 std::__throw_domain_error(__N("Bad argument "
500 "in __cyl_neumann_n."));
501 else if (__isnan(__nu) || __isnan(__x))
502 return std::numeric_limits<_Tp>::quiet_NaN();
503 else if (__x > _Tp(1000))
504 {
505 _Tp __J_nu, __N_nu;
506 __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
507 return __N_nu;
508 }
509 else
510 {
511 _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
512 __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
513 return __N_nu;
514 }
515 }
516
517
518 /**
519 * @brief Compute the spherical Bessel @f$ j_n(x) @f$
520 * and Neumann @f$ n_n(x) @f$ functions and their first
521 * derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
522 * respectively.
523 *
524 * @param __n The order of the spherical Bessel function.
525 * @param __x The argument of the spherical Bessel function.
526 * @param __j_n The output spherical Bessel function.
527 * @param __n_n The output spherical Neumann function.
528 * @param __jp_n The output derivative of the spherical Bessel function.
529 * @param __np_n The output derivative of the spherical Neumann function.
530 */
531 template <typename _Tp>
532 void
533 __sph_bessel_jn(const unsigned int __n, const _Tp __x,
534 _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
535 {
536 const _Tp __nu = _Tp(__n) + _Tp(0.5L);
537
538 _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
539 __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
540
541 const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
542 / std::sqrt(__x);
543
544 __j_n = __factor * __J_nu;
545 __n_n = __factor * __N_nu;
546 __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
547 __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
548
549 return;
550 }
551
552
553 /**
554 * @brief Return the spherical Bessel function
555 * @f$ j_n(x) @f$ of order n.
556 *
557 * The spherical Bessel function is defined by:
558 * @f[
559 * j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
560 * @f]
561 *
562 * @param __n The order of the spherical Bessel function.
563 * @param __x The argument of the spherical Bessel function.
564 * @return The output spherical Bessel function.
565 */
566 template <typename _Tp>
567 _Tp
568 __sph_bessel(const unsigned int __n, const _Tp __x)
569 {
570 if (__x < _Tp(0))
571 std::__throw_domain_error(__N("Bad argument "
572 "in __sph_bessel."));
573 else if (__isnan(__x))
574 return std::numeric_limits<_Tp>::quiet_NaN();
575 else if (__x == _Tp(0))
576 {
577 if (__n == 0)
578 return _Tp(1);
579 else
580 return _Tp(0);
581 }
582 else
583 {
584 _Tp __j_n, __n_n, __jp_n, __np_n;
585 __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
586 return __j_n;
587 }
588 }
589
590
591 /**
592 * @brief Return the spherical Neumann function
593 * @f$ n_n(x) @f$.
594 *
595 * The spherical Neumann function is defined by:
596 * @f[
597 * n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
598 * @f]
599 *
600 * @param __n The order of the spherical Neumann function.
601 * @param __x The argument of the spherical Neumann function.
602 * @return The output spherical Neumann function.
603 */
604 template <typename _Tp>
605 _Tp
606 __sph_neumann(const unsigned int __n, const _Tp __x)
607 {
608 if (__x < _Tp(0))
609 std::__throw_domain_error(__N("Bad argument "
610 "in __sph_neumann."));
611 else if (__isnan(__x))
612 return std::numeric_limits<_Tp>::quiet_NaN();
613 else if (__x == _Tp(0))
614 return -std::numeric_limits<_Tp>::infinity();
615 else
616 {
617 _Tp __j_n, __n_n, __jp_n, __np_n;
618 __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
619 return __n_n;
620 }
621 }
622
623 } // namespace std::tr1::__detail
624 }
625 }
626
627 #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC