]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/tr1/hashtable.h
hashtable.h: Fold in include/tr1_impl/hashtable.h contents.
[thirdparty/gcc.git] / libstdc++-v3 / include / tr1 / hashtable.h
1 // TR1 hashtable.h header -*- C++ -*-
2
3 // Copyright (C) 2007, 2009, 2010 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file tr1/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * You should not attempt to use it directly.
28 */
29
30 #ifndef _GLIBCXX_TR1_HASHTABLE_H
31 #define _GLIBCXX_TR1_HASHTABLE_H 1
32
33 #pragma GCC system_header
34
35 #include <tr1/hashtable_policy.h>
36
37 namespace std
38 {
39 namespace tr1
40 {
41 // Class template _Hashtable, class definition.
42
43 // Meaning of class template _Hashtable's template parameters
44
45 // _Key and _Value: arbitrary CopyConstructible types.
46
47 // _Allocator: an allocator type ([lib.allocator.requirements]) whose
48 // value type is Value. As a conforming extension, we allow for
49 // value type != Value.
50
51 // _ExtractKey: function object that takes a object of type Value
52 // and returns a value of type _Key.
53
54 // _Equal: function object that takes two objects of type k and returns
55 // a bool-like value that is true if the two objects are considered equal.
56
57 // _H1: the hash function. A unary function object with argument type
58 // Key and result type size_t. Return values should be distributed
59 // over the entire range [0, numeric_limits<size_t>:::max()].
60
61 // _H2: the range-hashing function (in the terminology of Tavori and
62 // Dreizin). A binary function object whose argument types and result
63 // type are all size_t. Given arguments r and N, the return value is
64 // in the range [0, N).
65
66 // _Hash: the ranged hash function (Tavori and Dreizin). A binary function
67 // whose argument types are _Key and size_t and whose result type is
68 // size_t. Given arguments k and N, the return value is in the range
69 // [0, N). Default: hash(k, N) = h2(h1(k), N). If _Hash is anything other
70 // than the default, _H1 and _H2 are ignored.
71
72 // _RehashPolicy: Policy class with three members, all of which govern
73 // the bucket count. _M_next_bkt(n) returns a bucket count no smaller
74 // than n. _M_bkt_for_elements(n) returns a bucket count appropriate
75 // for an element count of n. _M_need_rehash(n_bkt, n_elt, n_ins)
76 // determines whether, if the current bucket count is n_bkt and the
77 // current element count is n_elt, we need to increase the bucket
78 // count. If so, returns make_pair(true, n), where n is the new
79 // bucket count. If not, returns make_pair(false, <anything>).
80
81 // ??? Right now it is hard-wired that the number of buckets never
82 // shrinks. Should we allow _RehashPolicy to change that?
83
84 // __cache_hash_code: bool. true if we store the value of the hash
85 // function along with the value. This is a time-space tradeoff.
86 // Storing it may improve lookup speed by reducing the number of times
87 // we need to call the Equal function.
88
89 // __constant_iterators: bool. true if iterator and const_iterator are
90 // both constant iterator types. This is true for unordered_set and
91 // unordered_multiset, false for unordered_map and unordered_multimap.
92
93 // __unique_keys: bool. true if the return value of _Hashtable::count(k)
94 // is always at most one, false if it may be an arbitrary number. This
95 // true for unordered_set and unordered_map, false for unordered_multiset
96 // and unordered_multimap.
97
98 template<typename _Key, typename _Value, typename _Allocator,
99 typename _ExtractKey, typename _Equal,
100 typename _H1, typename _H2, typename _Hash,
101 typename _RehashPolicy,
102 bool __cache_hash_code,
103 bool __constant_iterators,
104 bool __unique_keys>
105 class _Hashtable
106 : public __detail::_Rehash_base<_RehashPolicy,
107 _Hashtable<_Key, _Value, _Allocator,
108 _ExtractKey,
109 _Equal, _H1, _H2, _Hash,
110 _RehashPolicy,
111 __cache_hash_code,
112 __constant_iterators,
113 __unique_keys> >,
114 public __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
115 _H1, _H2, _Hash, __cache_hash_code>,
116 public __detail::_Map_base<_Key, _Value, _ExtractKey, __unique_keys,
117 _Hashtable<_Key, _Value, _Allocator,
118 _ExtractKey,
119 _Equal, _H1, _H2, _Hash,
120 _RehashPolicy,
121 __cache_hash_code,
122 __constant_iterators,
123 __unique_keys> >
124 {
125 public:
126 typedef _Allocator allocator_type;
127 typedef _Value value_type;
128 typedef _Key key_type;
129 typedef _Equal key_equal;
130 // mapped_type, if present, comes from _Map_base.
131 // hasher, if present, comes from _Hash_code_base.
132 typedef typename _Allocator::difference_type difference_type;
133 typedef typename _Allocator::size_type size_type;
134 typedef typename _Allocator::pointer pointer;
135 typedef typename _Allocator::const_pointer const_pointer;
136 typedef typename _Allocator::reference reference;
137 typedef typename _Allocator::const_reference const_reference;
138
139 typedef __detail::_Node_iterator<value_type, __constant_iterators,
140 __cache_hash_code>
141 local_iterator;
142 typedef __detail::_Node_const_iterator<value_type,
143 __constant_iterators,
144 __cache_hash_code>
145 const_local_iterator;
146
147 typedef __detail::_Hashtable_iterator<value_type, __constant_iterators,
148 __cache_hash_code>
149 iterator;
150 typedef __detail::_Hashtable_const_iterator<value_type,
151 __constant_iterators,
152 __cache_hash_code>
153 const_iterator;
154
155 template<typename _Key2, typename _Value2, typename _Ex2, bool __unique2,
156 typename _Hashtable2>
157 friend struct __detail::_Map_base;
158
159 private:
160 typedef __detail::_Hash_node<_Value, __cache_hash_code> _Node;
161 typedef typename _Allocator::template rebind<_Node>::other
162 _Node_allocator_type;
163 typedef typename _Allocator::template rebind<_Node*>::other
164 _Bucket_allocator_type;
165
166 typedef typename _Allocator::template rebind<_Value>::other
167 _Value_allocator_type;
168
169 _Node_allocator_type _M_node_allocator;
170 _Node** _M_buckets;
171 size_type _M_bucket_count;
172 size_type _M_element_count;
173 _RehashPolicy _M_rehash_policy;
174
175 _Node*
176 _M_allocate_node(const value_type& __v);
177
178 void
179 _M_deallocate_node(_Node* __n);
180
181 void
182 _M_deallocate_nodes(_Node**, size_type);
183
184 _Node**
185 _M_allocate_buckets(size_type __n);
186
187 void
188 _M_deallocate_buckets(_Node**, size_type __n);
189
190 public:
191 // Constructor, destructor, assignment, swap
192 _Hashtable(size_type __bucket_hint,
193 const _H1&, const _H2&, const _Hash&,
194 const _Equal&, const _ExtractKey&,
195 const allocator_type&);
196
197 template<typename _InputIterator>
198 _Hashtable(_InputIterator __first, _InputIterator __last,
199 size_type __bucket_hint,
200 const _H1&, const _H2&, const _Hash&,
201 const _Equal&, const _ExtractKey&,
202 const allocator_type&);
203
204 _Hashtable(const _Hashtable&);
205
206 _Hashtable&
207 operator=(const _Hashtable&);
208
209 ~_Hashtable();
210
211 void swap(_Hashtable&);
212
213 // Basic container operations
214 iterator
215 begin()
216 {
217 iterator __i(_M_buckets);
218 if (!__i._M_cur_node)
219 __i._M_incr_bucket();
220 return __i;
221 }
222
223 const_iterator
224 begin() const
225 {
226 const_iterator __i(_M_buckets);
227 if (!__i._M_cur_node)
228 __i._M_incr_bucket();
229 return __i;
230 }
231
232 iterator
233 end()
234 { return iterator(_M_buckets + _M_bucket_count); }
235
236 const_iterator
237 end() const
238 { return const_iterator(_M_buckets + _M_bucket_count); }
239
240 size_type
241 size() const
242 { return _M_element_count; }
243
244 bool
245 empty() const
246 { return size() == 0; }
247
248 allocator_type
249 get_allocator() const
250 { return allocator_type(_M_node_allocator); }
251
252 _Value_allocator_type
253 _M_get_Value_allocator() const
254 { return _Value_allocator_type(_M_node_allocator); }
255
256 size_type
257 max_size() const
258 { return _M_node_allocator.max_size(); }
259
260 // Observers
261 key_equal
262 key_eq() const
263 { return this->_M_eq; }
264
265 // hash_function, if present, comes from _Hash_code_base.
266
267 // Bucket operations
268 size_type
269 bucket_count() const
270 { return _M_bucket_count; }
271
272 size_type
273 max_bucket_count() const
274 { return max_size(); }
275
276 size_type
277 bucket_size(size_type __n) const
278 { return std::distance(begin(__n), end(__n)); }
279
280 size_type
281 bucket(const key_type& __k) const
282 {
283 return this->_M_bucket_index(__k, this->_M_hash_code(__k),
284 bucket_count());
285 }
286
287 local_iterator
288 begin(size_type __n)
289 { return local_iterator(_M_buckets[__n]); }
290
291 local_iterator
292 end(size_type)
293 { return local_iterator(0); }
294
295 const_local_iterator
296 begin(size_type __n) const
297 { return const_local_iterator(_M_buckets[__n]); }
298
299 const_local_iterator
300 end(size_type) const
301 { return const_local_iterator(0); }
302
303 float
304 load_factor() const
305 {
306 return static_cast<float>(size()) / static_cast<float>(bucket_count());
307 }
308
309 // max_load_factor, if present, comes from _Rehash_base.
310
311 // Generalization of max_load_factor. Extension, not found in TR1. Only
312 // useful if _RehashPolicy is something other than the default.
313 const _RehashPolicy&
314 __rehash_policy() const
315 { return _M_rehash_policy; }
316
317 void
318 __rehash_policy(const _RehashPolicy&);
319
320 // Lookup.
321 iterator
322 find(const key_type& __k);
323
324 const_iterator
325 find(const key_type& __k) const;
326
327 size_type
328 count(const key_type& __k) const;
329
330 std::pair<iterator, iterator>
331 equal_range(const key_type& __k);
332
333 std::pair<const_iterator, const_iterator>
334 equal_range(const key_type& __k) const;
335
336 private: // Find, insert and erase helper functions
337 // ??? This dispatching is a workaround for the fact that we don't
338 // have partial specialization of member templates; it would be
339 // better to just specialize insert on __unique_keys. There may be a
340 // cleaner workaround.
341 typedef typename __gnu_cxx::__conditional_type<__unique_keys,
342 std::pair<iterator, bool>, iterator>::__type
343 _Insert_Return_Type;
344
345 typedef typename __gnu_cxx::__conditional_type<__unique_keys,
346 std::_Select1st<_Insert_Return_Type>,
347 std::_Identity<_Insert_Return_Type>
348 >::__type
349 _Insert_Conv_Type;
350
351 _Node*
352 _M_find_node(_Node*, const key_type&,
353 typename _Hashtable::_Hash_code_type) const;
354
355 iterator
356 _M_insert_bucket(const value_type&, size_type,
357 typename _Hashtable::_Hash_code_type);
358
359 std::pair<iterator, bool>
360 _M_insert(const value_type&, std::tr1::true_type);
361
362 iterator
363 _M_insert(const value_type&, std::tr1::false_type);
364
365 void
366 _M_erase_node(_Node*, _Node**);
367
368 public:
369 // Insert and erase
370 _Insert_Return_Type
371 insert(const value_type& __v)
372 { return _M_insert(__v, std::tr1::integral_constant<bool,
373 __unique_keys>()); }
374
375 iterator
376 insert(iterator, const value_type& __v)
377 { return iterator(_Insert_Conv_Type()(this->insert(__v))); }
378
379 const_iterator
380 insert(const_iterator, const value_type& __v)
381 { return const_iterator(_Insert_Conv_Type()(this->insert(__v))); }
382
383 template<typename _InputIterator>
384 void
385 insert(_InputIterator __first, _InputIterator __last);
386
387 iterator
388 erase(iterator);
389
390 const_iterator
391 erase(const_iterator);
392
393 size_type
394 erase(const key_type&);
395
396 iterator
397 erase(iterator, iterator);
398
399 const_iterator
400 erase(const_iterator, const_iterator);
401
402 void
403 clear();
404
405 // Set number of buckets to be appropriate for container of n element.
406 void rehash(size_type __n);
407
408 private:
409 // Unconditionally change size of bucket array to n.
410 void _M_rehash(size_type __n);
411 };
412
413
414 // Definitions of class template _Hashtable's out-of-line member functions.
415 template<typename _Key, typename _Value,
416 typename _Allocator, typename _ExtractKey, typename _Equal,
417 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
418 bool __chc, bool __cit, bool __uk>
419 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
420 _H1, _H2, _Hash, _RehashPolicy,
421 __chc, __cit, __uk>::_Node*
422 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
423 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
424 _M_allocate_node(const value_type& __v)
425 {
426 _Node* __n = _M_node_allocator.allocate(1);
427 __try
428 {
429 _M_get_Value_allocator().construct(&__n->_M_v, __v);
430 __n->_M_next = 0;
431 return __n;
432 }
433 __catch(...)
434 {
435 _M_node_allocator.deallocate(__n, 1);
436 __throw_exception_again;
437 }
438 }
439
440 template<typename _Key, typename _Value,
441 typename _Allocator, typename _ExtractKey, typename _Equal,
442 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
443 bool __chc, bool __cit, bool __uk>
444 void
445 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
446 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
447 _M_deallocate_node(_Node* __n)
448 {
449 _M_get_Value_allocator().destroy(&__n->_M_v);
450 _M_node_allocator.deallocate(__n, 1);
451 }
452
453 template<typename _Key, typename _Value,
454 typename _Allocator, typename _ExtractKey, typename _Equal,
455 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
456 bool __chc, bool __cit, bool __uk>
457 void
458 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
459 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
460 _M_deallocate_nodes(_Node** __array, size_type __n)
461 {
462 for (size_type __i = 0; __i < __n; ++__i)
463 {
464 _Node* __p = __array[__i];
465 while (__p)
466 {
467 _Node* __tmp = __p;
468 __p = __p->_M_next;
469 _M_deallocate_node(__tmp);
470 }
471 __array[__i] = 0;
472 }
473 }
474
475 template<typename _Key, typename _Value,
476 typename _Allocator, typename _ExtractKey, typename _Equal,
477 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
478 bool __chc, bool __cit, bool __uk>
479 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
480 _H1, _H2, _Hash, _RehashPolicy,
481 __chc, __cit, __uk>::_Node**
482 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
483 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
484 _M_allocate_buckets(size_type __n)
485 {
486 _Bucket_allocator_type __alloc(_M_node_allocator);
487
488 // We allocate one extra bucket to hold a sentinel, an arbitrary
489 // non-null pointer. Iterator increment relies on this.
490 _Node** __p = __alloc.allocate(__n + 1);
491 std::fill(__p, __p + __n, (_Node*) 0);
492 __p[__n] = reinterpret_cast<_Node*>(0x1000);
493 return __p;
494 }
495
496 template<typename _Key, typename _Value,
497 typename _Allocator, typename _ExtractKey, typename _Equal,
498 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
499 bool __chc, bool __cit, bool __uk>
500 void
501 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
502 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
503 _M_deallocate_buckets(_Node** __p, size_type __n)
504 {
505 _Bucket_allocator_type __alloc(_M_node_allocator);
506 __alloc.deallocate(__p, __n + 1);
507 }
508
509 template<typename _Key, typename _Value,
510 typename _Allocator, typename _ExtractKey, typename _Equal,
511 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
512 bool __chc, bool __cit, bool __uk>
513 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
514 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
515 _Hashtable(size_type __bucket_hint,
516 const _H1& __h1, const _H2& __h2, const _Hash& __h,
517 const _Equal& __eq, const _ExtractKey& __exk,
518 const allocator_type& __a)
519 : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(),
520 __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
521 _H1, _H2, _Hash, __chc>(__exk, __eq,
522 __h1, __h2, __h),
523 __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(),
524 _M_node_allocator(__a),
525 _M_bucket_count(0),
526 _M_element_count(0),
527 _M_rehash_policy()
528 {
529 _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
530 _M_buckets = _M_allocate_buckets(_M_bucket_count);
531 }
532
533 template<typename _Key, typename _Value,
534 typename _Allocator, typename _ExtractKey, typename _Equal,
535 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
536 bool __chc, bool __cit, bool __uk>
537 template<typename _InputIterator>
538 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
539 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
540 _Hashtable(_InputIterator __f, _InputIterator __l,
541 size_type __bucket_hint,
542 const _H1& __h1, const _H2& __h2, const _Hash& __h,
543 const _Equal& __eq, const _ExtractKey& __exk,
544 const allocator_type& __a)
545 : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(),
546 __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
547 _H1, _H2, _Hash, __chc>(__exk, __eq,
548 __h1, __h2, __h),
549 __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(),
550 _M_node_allocator(__a),
551 _M_bucket_count(0),
552 _M_element_count(0),
553 _M_rehash_policy()
554 {
555 _M_bucket_count = std::max(_M_rehash_policy._M_next_bkt(__bucket_hint),
556 _M_rehash_policy.
557 _M_bkt_for_elements(__detail::
558 __distance_fw(__f,
559 __l)));
560 _M_buckets = _M_allocate_buckets(_M_bucket_count);
561 __try
562 {
563 for (; __f != __l; ++__f)
564 this->insert(*__f);
565 }
566 __catch(...)
567 {
568 clear();
569 _M_deallocate_buckets(_M_buckets, _M_bucket_count);
570 __throw_exception_again;
571 }
572 }
573
574 template<typename _Key, typename _Value,
575 typename _Allocator, typename _ExtractKey, typename _Equal,
576 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
577 bool __chc, bool __cit, bool __uk>
578 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
579 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
580 _Hashtable(const _Hashtable& __ht)
581 : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(__ht),
582 __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
583 _H1, _H2, _Hash, __chc>(__ht),
584 __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(__ht),
585 _M_node_allocator(__ht._M_node_allocator),
586 _M_bucket_count(__ht._M_bucket_count),
587 _M_element_count(__ht._M_element_count),
588 _M_rehash_policy(__ht._M_rehash_policy)
589 {
590 _M_buckets = _M_allocate_buckets(_M_bucket_count);
591 __try
592 {
593 for (size_type __i = 0; __i < __ht._M_bucket_count; ++__i)
594 {
595 _Node* __n = __ht._M_buckets[__i];
596 _Node** __tail = _M_buckets + __i;
597 while (__n)
598 {
599 *__tail = _M_allocate_node(__n->_M_v);
600 this->_M_copy_code(*__tail, __n);
601 __tail = &((*__tail)->_M_next);
602 __n = __n->_M_next;
603 }
604 }
605 }
606 __catch(...)
607 {
608 clear();
609 _M_deallocate_buckets(_M_buckets, _M_bucket_count);
610 __throw_exception_again;
611 }
612 }
613
614 template<typename _Key, typename _Value,
615 typename _Allocator, typename _ExtractKey, typename _Equal,
616 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
617 bool __chc, bool __cit, bool __uk>
618 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
619 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>&
620 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
621 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
622 operator=(const _Hashtable& __ht)
623 {
624 _Hashtable __tmp(__ht);
625 this->swap(__tmp);
626 return *this;
627 }
628
629 template<typename _Key, typename _Value,
630 typename _Allocator, typename _ExtractKey, typename _Equal,
631 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
632 bool __chc, bool __cit, bool __uk>
633 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
634 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
635 ~_Hashtable()
636 {
637 clear();
638 _M_deallocate_buckets(_M_buckets, _M_bucket_count);
639 }
640
641 template<typename _Key, typename _Value,
642 typename _Allocator, typename _ExtractKey, typename _Equal,
643 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
644 bool __chc, bool __cit, bool __uk>
645 void
646 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
647 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
648 swap(_Hashtable& __x)
649 {
650 // The only base class with member variables is hash_code_base. We
651 // define _Hash_code_base::_M_swap because different specializations
652 // have different members.
653 __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
654 _H1, _H2, _Hash, __chc>::_M_swap(__x);
655
656 // _GLIBCXX_RESOLVE_LIB_DEFECTS
657 // 431. Swapping containers with unequal allocators.
658 std::__alloc_swap<_Node_allocator_type>::_S_do_it(_M_node_allocator,
659 __x._M_node_allocator);
660
661 std::swap(_M_rehash_policy, __x._M_rehash_policy);
662 std::swap(_M_buckets, __x._M_buckets);
663 std::swap(_M_bucket_count, __x._M_bucket_count);
664 std::swap(_M_element_count, __x._M_element_count);
665 }
666
667 template<typename _Key, typename _Value,
668 typename _Allocator, typename _ExtractKey, typename _Equal,
669 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
670 bool __chc, bool __cit, bool __uk>
671 void
672 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
673 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
674 __rehash_policy(const _RehashPolicy& __pol)
675 {
676 _M_rehash_policy = __pol;
677 size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count);
678 if (__n_bkt > _M_bucket_count)
679 _M_rehash(__n_bkt);
680 }
681
682 template<typename _Key, typename _Value,
683 typename _Allocator, typename _ExtractKey, typename _Equal,
684 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
685 bool __chc, bool __cit, bool __uk>
686 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
687 _H1, _H2, _Hash, _RehashPolicy,
688 __chc, __cit, __uk>::iterator
689 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
690 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
691 find(const key_type& __k)
692 {
693 typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
694 std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
695 _Node* __p = _M_find_node(_M_buckets[__n], __k, __code);
696 return __p ? iterator(__p, _M_buckets + __n) : this->end();
697 }
698
699 template<typename _Key, typename _Value,
700 typename _Allocator, typename _ExtractKey, typename _Equal,
701 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
702 bool __chc, bool __cit, bool __uk>
703 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
704 _H1, _H2, _Hash, _RehashPolicy,
705 __chc, __cit, __uk>::const_iterator
706 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
707 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
708 find(const key_type& __k) const
709 {
710 typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
711 std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
712 _Node* __p = _M_find_node(_M_buckets[__n], __k, __code);
713 return __p ? const_iterator(__p, _M_buckets + __n) : this->end();
714 }
715
716 template<typename _Key, typename _Value,
717 typename _Allocator, typename _ExtractKey, typename _Equal,
718 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
719 bool __chc, bool __cit, bool __uk>
720 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
721 _H1, _H2, _Hash, _RehashPolicy,
722 __chc, __cit, __uk>::size_type
723 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
724 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
725 count(const key_type& __k) const
726 {
727 typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
728 std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
729 std::size_t __result = 0;
730 for (_Node* __p = _M_buckets[__n]; __p; __p = __p->_M_next)
731 if (this->_M_compare(__k, __code, __p))
732 ++__result;
733 return __result;
734 }
735
736 template<typename _Key, typename _Value,
737 typename _Allocator, typename _ExtractKey, typename _Equal,
738 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
739 bool __chc, bool __cit, bool __uk>
740 std::pair<typename _Hashtable<_Key, _Value, _Allocator,
741 _ExtractKey, _Equal, _H1,
742 _H2, _Hash, _RehashPolicy,
743 __chc, __cit, __uk>::iterator,
744 typename _Hashtable<_Key, _Value, _Allocator,
745 _ExtractKey, _Equal, _H1,
746 _H2, _Hash, _RehashPolicy,
747 __chc, __cit, __uk>::iterator>
748 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
749 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
750 equal_range(const key_type& __k)
751 {
752 typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
753 std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
754 _Node** __head = _M_buckets + __n;
755 _Node* __p = _M_find_node(*__head, __k, __code);
756
757 if (__p)
758 {
759 _Node* __p1 = __p->_M_next;
760 for (; __p1; __p1 = __p1->_M_next)
761 if (!this->_M_compare(__k, __code, __p1))
762 break;
763
764 iterator __first(__p, __head);
765 iterator __last(__p1, __head);
766 if (!__p1)
767 __last._M_incr_bucket();
768 return std::make_pair(__first, __last);
769 }
770 else
771 return std::make_pair(this->end(), this->end());
772 }
773
774 template<typename _Key, typename _Value,
775 typename _Allocator, typename _ExtractKey, typename _Equal,
776 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
777 bool __chc, bool __cit, bool __uk>
778 std::pair<typename _Hashtable<_Key, _Value, _Allocator,
779 _ExtractKey, _Equal, _H1,
780 _H2, _Hash, _RehashPolicy,
781 __chc, __cit, __uk>::const_iterator,
782 typename _Hashtable<_Key, _Value, _Allocator,
783 _ExtractKey, _Equal, _H1,
784 _H2, _Hash, _RehashPolicy,
785 __chc, __cit, __uk>::const_iterator>
786 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
787 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
788 equal_range(const key_type& __k) const
789 {
790 typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
791 std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
792 _Node** __head = _M_buckets + __n;
793 _Node* __p = _M_find_node(*__head, __k, __code);
794
795 if (__p)
796 {
797 _Node* __p1 = __p->_M_next;
798 for (; __p1; __p1 = __p1->_M_next)
799 if (!this->_M_compare(__k, __code, __p1))
800 break;
801
802 const_iterator __first(__p, __head);
803 const_iterator __last(__p1, __head);
804 if (!__p1)
805 __last._M_incr_bucket();
806 return std::make_pair(__first, __last);
807 }
808 else
809 return std::make_pair(this->end(), this->end());
810 }
811
812 // Find the node whose key compares equal to k, beginning the search
813 // at p (usually the head of a bucket). Return nil if no node is found.
814 template<typename _Key, typename _Value,
815 typename _Allocator, typename _ExtractKey, typename _Equal,
816 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
817 bool __chc, bool __cit, bool __uk>
818 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey,
819 _Equal, _H1, _H2, _Hash, _RehashPolicy,
820 __chc, __cit, __uk>::_Node*
821 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
822 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
823 _M_find_node(_Node* __p, const key_type& __k,
824 typename _Hashtable::_Hash_code_type __code) const
825 {
826 for (; __p; __p = __p->_M_next)
827 if (this->_M_compare(__k, __code, __p))
828 return __p;
829 return false;
830 }
831
832 // Insert v in bucket n (assumes no element with its key already present).
833 template<typename _Key, typename _Value,
834 typename _Allocator, typename _ExtractKey, typename _Equal,
835 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
836 bool __chc, bool __cit, bool __uk>
837 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
838 _H1, _H2, _Hash, _RehashPolicy,
839 __chc, __cit, __uk>::iterator
840 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
841 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
842 _M_insert_bucket(const value_type& __v, size_type __n,
843 typename _Hashtable::_Hash_code_type __code)
844 {
845 std::pair<bool, std::size_t> __do_rehash
846 = _M_rehash_policy._M_need_rehash(_M_bucket_count,
847 _M_element_count, 1);
848
849 // Allocate the new node before doing the rehash so that we don't
850 // do a rehash if the allocation throws.
851 _Node* __new_node = _M_allocate_node(__v);
852
853 __try
854 {
855 if (__do_rehash.first)
856 {
857 const key_type& __k = this->_M_extract(__v);
858 __n = this->_M_bucket_index(__k, __code, __do_rehash.second);
859 _M_rehash(__do_rehash.second);
860 }
861
862 __new_node->_M_next = _M_buckets[__n];
863 this->_M_store_code(__new_node, __code);
864 _M_buckets[__n] = __new_node;
865 ++_M_element_count;
866 return iterator(__new_node, _M_buckets + __n);
867 }
868 __catch(...)
869 {
870 _M_deallocate_node(__new_node);
871 __throw_exception_again;
872 }
873 }
874
875 // Insert v if no element with its key is already present.
876 template<typename _Key, typename _Value,
877 typename _Allocator, typename _ExtractKey, typename _Equal,
878 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
879 bool __chc, bool __cit, bool __uk>
880 std::pair<typename _Hashtable<_Key, _Value, _Allocator,
881 _ExtractKey, _Equal, _H1,
882 _H2, _Hash, _RehashPolicy,
883 __chc, __cit, __uk>::iterator, bool>
884 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
885 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
886 _M_insert(const value_type& __v, std::tr1::true_type)
887 {
888 const key_type& __k = this->_M_extract(__v);
889 typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
890 size_type __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
891
892 if (_Node* __p = _M_find_node(_M_buckets[__n], __k, __code))
893 return std::make_pair(iterator(__p, _M_buckets + __n), false);
894 return std::make_pair(_M_insert_bucket(__v, __n, __code), true);
895 }
896
897 // Insert v unconditionally.
898 template<typename _Key, typename _Value,
899 typename _Allocator, typename _ExtractKey, typename _Equal,
900 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
901 bool __chc, bool __cit, bool __uk>
902 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
903 _H1, _H2, _Hash, _RehashPolicy,
904 __chc, __cit, __uk>::iterator
905 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
906 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
907 _M_insert(const value_type& __v, std::tr1::false_type)
908 {
909 std::pair<bool, std::size_t> __do_rehash
910 = _M_rehash_policy._M_need_rehash(_M_bucket_count,
911 _M_element_count, 1);
912 if (__do_rehash.first)
913 _M_rehash(__do_rehash.second);
914
915 const key_type& __k = this->_M_extract(__v);
916 typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
917 size_type __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
918
919 // First find the node, avoid leaking new_node if compare throws.
920 _Node* __prev = _M_find_node(_M_buckets[__n], __k, __code);
921 _Node* __new_node = _M_allocate_node(__v);
922
923 if (__prev)
924 {
925 __new_node->_M_next = __prev->_M_next;
926 __prev->_M_next = __new_node;
927 }
928 else
929 {
930 __new_node->_M_next = _M_buckets[__n];
931 _M_buckets[__n] = __new_node;
932 }
933 this->_M_store_code(__new_node, __code);
934
935 ++_M_element_count;
936 return iterator(__new_node, _M_buckets + __n);
937 }
938
939 // For erase(iterator) and erase(const_iterator).
940 template<typename _Key, typename _Value,
941 typename _Allocator, typename _ExtractKey, typename _Equal,
942 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
943 bool __chc, bool __cit, bool __uk>
944 void
945 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
946 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
947 _M_erase_node(_Node* __p, _Node** __b)
948 {
949 _Node* __cur = *__b;
950 if (__cur == __p)
951 *__b = __cur->_M_next;
952 else
953 {
954 _Node* __next = __cur->_M_next;
955 while (__next != __p)
956 {
957 __cur = __next;
958 __next = __cur->_M_next;
959 }
960 __cur->_M_next = __next->_M_next;
961 }
962
963 _M_deallocate_node(__p);
964 --_M_element_count;
965 }
966
967 template<typename _Key, typename _Value,
968 typename _Allocator, typename _ExtractKey, typename _Equal,
969 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
970 bool __chc, bool __cit, bool __uk>
971 template<typename _InputIterator>
972 void
973 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
974 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
975 insert(_InputIterator __first, _InputIterator __last)
976 {
977 size_type __n_elt = __detail::__distance_fw(__first, __last);
978 std::pair<bool, std::size_t> __do_rehash
979 = _M_rehash_policy._M_need_rehash(_M_bucket_count,
980 _M_element_count, __n_elt);
981 if (__do_rehash.first)
982 _M_rehash(__do_rehash.second);
983
984 for (; __first != __last; ++__first)
985 this->insert(*__first);
986 }
987
988 template<typename _Key, typename _Value,
989 typename _Allocator, typename _ExtractKey, typename _Equal,
990 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
991 bool __chc, bool __cit, bool __uk>
992 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
993 _H1, _H2, _Hash, _RehashPolicy,
994 __chc, __cit, __uk>::iterator
995 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
996 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
997 erase(iterator __it)
998 {
999 iterator __result = __it;
1000 ++__result;
1001 _M_erase_node(__it._M_cur_node, __it._M_cur_bucket);
1002 return __result;
1003 }
1004
1005 template<typename _Key, typename _Value,
1006 typename _Allocator, typename _ExtractKey, typename _Equal,
1007 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1008 bool __chc, bool __cit, bool __uk>
1009 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1010 _H1, _H2, _Hash, _RehashPolicy,
1011 __chc, __cit, __uk>::const_iterator
1012 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1013 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1014 erase(const_iterator __it)
1015 {
1016 const_iterator __result = __it;
1017 ++__result;
1018 _M_erase_node(__it._M_cur_node, __it._M_cur_bucket);
1019 return __result;
1020 }
1021
1022 template<typename _Key, typename _Value,
1023 typename _Allocator, typename _ExtractKey, typename _Equal,
1024 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1025 bool __chc, bool __cit, bool __uk>
1026 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1027 _H1, _H2, _Hash, _RehashPolicy,
1028 __chc, __cit, __uk>::size_type
1029 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1030 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1031 erase(const key_type& __k)
1032 {
1033 typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
1034 std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
1035 size_type __result = 0;
1036
1037 _Node** __slot = _M_buckets + __n;
1038 while (*__slot && !this->_M_compare(__k, __code, *__slot))
1039 __slot = &((*__slot)->_M_next);
1040
1041 _Node** __saved_slot = 0;
1042 while (*__slot && this->_M_compare(__k, __code, *__slot))
1043 {
1044 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1045 // 526. Is it undefined if a function in the standard changes
1046 // in parameters?
1047 if (&this->_M_extract((*__slot)->_M_v) != &__k)
1048 {
1049 _Node* __p = *__slot;
1050 *__slot = __p->_M_next;
1051 _M_deallocate_node(__p);
1052 --_M_element_count;
1053 ++__result;
1054 }
1055 else
1056 {
1057 __saved_slot = __slot;
1058 __slot = &((*__slot)->_M_next);
1059 }
1060 }
1061
1062 if (__saved_slot)
1063 {
1064 _Node* __p = *__saved_slot;
1065 *__saved_slot = __p->_M_next;
1066 _M_deallocate_node(__p);
1067 --_M_element_count;
1068 ++__result;
1069 }
1070
1071 return __result;
1072 }
1073
1074 // ??? This could be optimized by taking advantage of the bucket
1075 // structure, but it's not clear that it's worth doing. It probably
1076 // wouldn't even be an optimization unless the load factor is large.
1077 template<typename _Key, typename _Value,
1078 typename _Allocator, typename _ExtractKey, typename _Equal,
1079 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1080 bool __chc, bool __cit, bool __uk>
1081 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1082 _H1, _H2, _Hash, _RehashPolicy,
1083 __chc, __cit, __uk>::iterator
1084 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1085 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1086 erase(iterator __first, iterator __last)
1087 {
1088 while (__first != __last)
1089 __first = this->erase(__first);
1090 return __last;
1091 }
1092
1093 template<typename _Key, typename _Value,
1094 typename _Allocator, typename _ExtractKey, typename _Equal,
1095 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1096 bool __chc, bool __cit, bool __uk>
1097 typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1098 _H1, _H2, _Hash, _RehashPolicy,
1099 __chc, __cit, __uk>::const_iterator
1100 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1101 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1102 erase(const_iterator __first, const_iterator __last)
1103 {
1104 while (__first != __last)
1105 __first = this->erase(__first);
1106 return __last;
1107 }
1108
1109 template<typename _Key, typename _Value,
1110 typename _Allocator, typename _ExtractKey, typename _Equal,
1111 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1112 bool __chc, bool __cit, bool __uk>
1113 void
1114 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1115 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1116 clear()
1117 {
1118 _M_deallocate_nodes(_M_buckets, _M_bucket_count);
1119 _M_element_count = 0;
1120 }
1121
1122 template<typename _Key, typename _Value,
1123 typename _Allocator, typename _ExtractKey, typename _Equal,
1124 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1125 bool __chc, bool __cit, bool __uk>
1126 void
1127 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1128 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1129 rehash(size_type __n)
1130 {
1131 _M_rehash(std::max(_M_rehash_policy._M_next_bkt(__n),
1132 _M_rehash_policy._M_bkt_for_elements(_M_element_count
1133 + 1)));
1134 }
1135
1136 template<typename _Key, typename _Value,
1137 typename _Allocator, typename _ExtractKey, typename _Equal,
1138 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1139 bool __chc, bool __cit, bool __uk>
1140 void
1141 _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1142 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1143 _M_rehash(size_type __n)
1144 {
1145 _Node** __new_array = _M_allocate_buckets(__n);
1146 __try
1147 {
1148 for (size_type __i = 0; __i < _M_bucket_count; ++__i)
1149 while (_Node* __p = _M_buckets[__i])
1150 {
1151 std::size_t __new_index = this->_M_bucket_index(__p, __n);
1152 _M_buckets[__i] = __p->_M_next;
1153 __p->_M_next = __new_array[__new_index];
1154 __new_array[__new_index] = __p;
1155 }
1156 _M_deallocate_buckets(_M_buckets, _M_bucket_count);
1157 _M_bucket_count = __n;
1158 _M_buckets = __new_array;
1159 }
1160 __catch(...)
1161 {
1162 // A failure here means that a hash function threw an exception.
1163 // We can't restore the previous state without calling the hash
1164 // function again, so the only sensible recovery is to delete
1165 // everything.
1166 _M_deallocate_nodes(__new_array, __n);
1167 _M_deallocate_buckets(__new_array, __n);
1168 _M_deallocate_nodes(_M_buckets, _M_bucket_count);
1169 _M_element_count = 0;
1170 __throw_exception_again;
1171 }
1172 }
1173 }
1174 }
1175
1176 #endif // _GLIBCXX_TR1_HASHTABLE_H