]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/tr1/legendre_function.tcc
Update copyright years.
[thirdparty/gcc.git] / libstdc++-v3 / include / tr1 / legendre_function.tcc
1 // Special functions -*- C++ -*-
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 //
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 //
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file tr1/legendre_function.tcc
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{tr1/cmath}
28 */
29
30 //
31 // ISO C++ 14882 TR1: 5.2 Special functions
32 //
33
34 // Written by Edward Smith-Rowland based on:
35 // (1) Handbook of Mathematical Functions,
36 // ed. Milton Abramowitz and Irene A. Stegun,
37 // Dover Publications,
38 // Section 8, pp. 331-341
39 // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40 // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
41 // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
42 // 2nd ed, pp. 252-254
43
44 #ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
45 #define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
46
47 #include "special_function_util.h"
48
49 namespace std _GLIBCXX_VISIBILITY(default)
50 {
51 _GLIBCXX_BEGIN_NAMESPACE_VERSION
52
53 #if _GLIBCXX_USE_STD_SPEC_FUNCS
54 # define _GLIBCXX_MATH_NS ::std
55 #elif defined(_GLIBCXX_TR1_CMATH)
56 namespace tr1
57 {
58 # define _GLIBCXX_MATH_NS ::std::tr1
59 #else
60 # error do not include this header directly, use <cmath> or <tr1/cmath>
61 #endif
62 // [5.2] Special functions
63
64 // Implementation-space details.
65 namespace __detail
66 {
67 /**
68 * @brief Return the Legendre polynomial by recursion on degree
69 * @f$ l @f$.
70 *
71 * The Legendre function of @f$ l @f$ and @f$ x @f$,
72 * @f$ P_l(x) @f$, is defined by:
73 * @f[
74 * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
75 * @f]
76 *
77 * @param l The degree of the Legendre polynomial. @f$l >= 0@f$.
78 * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
79 */
80 template<typename _Tp>
81 _Tp
82 __poly_legendre_p(unsigned int __l, _Tp __x)
83 {
84
85 if ((__x < _Tp(-1)) || (__x > _Tp(+1)))
86 std::__throw_domain_error(__N("Argument out of range"
87 " in __poly_legendre_p."));
88 else if (__isnan(__x))
89 return std::numeric_limits<_Tp>::quiet_NaN();
90 else if (__x == +_Tp(1))
91 return +_Tp(1);
92 else if (__x == -_Tp(1))
93 return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
94 else
95 {
96 _Tp __p_lm2 = _Tp(1);
97 if (__l == 0)
98 return __p_lm2;
99
100 _Tp __p_lm1 = __x;
101 if (__l == 1)
102 return __p_lm1;
103
104 _Tp __p_l = 0;
105 for (unsigned int __ll = 2; __ll <= __l; ++__ll)
106 {
107 // This arrangement is supposed to be better for roundoff
108 // protection, Arfken, 2nd Ed, Eq 12.17a.
109 __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
110 - (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
111 __p_lm2 = __p_lm1;
112 __p_lm1 = __p_l;
113 }
114
115 return __p_l;
116 }
117 }
118
119
120 /**
121 * @brief Return the associated Legendre function by recursion
122 * on @f$ l @f$.
123 *
124 * The associated Legendre function is derived from the Legendre function
125 * @f$ P_l(x) @f$ by the Rodrigues formula:
126 * @f[
127 * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
128 * @f]
129 *
130 * @param l The degree of the associated Legendre function.
131 * @f$ l >= 0 @f$.
132 * @param m The order of the associated Legendre function.
133 * @f$ m <= l @f$.
134 * @param x The argument of the associated Legendre function.
135 * @f$ |x| <= 1 @f$.
136 * @param phase The phase of the associated Legendre function.
137 * Use -1 for the Condon-Shortley phase convention.
138 */
139 template<typename _Tp>
140 _Tp
141 __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x,
142 _Tp __phase = _Tp(+1))
143 {
144
145 if (__x < _Tp(-1) || __x > _Tp(+1))
146 std::__throw_domain_error(__N("Argument out of range"
147 " in __assoc_legendre_p."));
148 else if (__m > __l)
149 std::__throw_domain_error(__N("Degree out of range"
150 " in __assoc_legendre_p."));
151 else if (__isnan(__x))
152 return std::numeric_limits<_Tp>::quiet_NaN();
153 else if (__m == 0)
154 return __poly_legendre_p(__l, __x);
155 else
156 {
157 _Tp __p_mm = _Tp(1);
158 if (__m > 0)
159 {
160 // Two square roots seem more accurate more of the time
161 // than just one.
162 _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
163 _Tp __fact = _Tp(1);
164 for (unsigned int __i = 1; __i <= __m; ++__i)
165 {
166 __p_mm *= __phase * __fact * __root;
167 __fact += _Tp(2);
168 }
169 }
170 if (__l == __m)
171 return __p_mm;
172
173 _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
174 if (__l == __m + 1)
175 return __p_mp1m;
176
177 _Tp __p_lm2m = __p_mm;
178 _Tp __P_lm1m = __p_mp1m;
179 _Tp __p_lm = _Tp(0);
180 for (unsigned int __j = __m + 2; __j <= __l; ++__j)
181 {
182 __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
183 - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
184 __p_lm2m = __P_lm1m;
185 __P_lm1m = __p_lm;
186 }
187
188 return __p_lm;
189 }
190 }
191
192
193 /**
194 * @brief Return the spherical associated Legendre function.
195 *
196 * The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
197 * and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
198 * @f[
199 * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
200 * \frac{(l-m)!}{(l+m)!}]
201 * P_l^m(\cos\theta) \exp^{im\phi}
202 * @f]
203 * is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
204 * associated Legendre function.
205 *
206 * This function differs from the associated Legendre function by
207 * argument (@f$x = \cos(\theta)@f$) and by a normalization factor
208 * but this factor is rather large for large @f$ l @f$ and @f$ m @f$
209 * and so this function is stable for larger differences of @f$ l @f$
210 * and @f$ m @f$.
211 * @note Unlike the case for __assoc_legendre_p the Condon-Shortley
212 * phase factor @f$ (-1)^m @f$ is present here.
213 *
214 * @param l The degree of the spherical associated Legendre function.
215 * @f$ l >= 0 @f$.
216 * @param m The order of the spherical associated Legendre function.
217 * @f$ m <= l @f$.
218 * @param theta The radian angle argument of the spherical associated
219 * Legendre function.
220 */
221 template <typename _Tp>
222 _Tp
223 __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
224 {
225 if (__isnan(__theta))
226 return std::numeric_limits<_Tp>::quiet_NaN();
227
228 const _Tp __x = std::cos(__theta);
229
230 if (__l < __m)
231 {
232 std::__throw_domain_error(__N("Bad argument "
233 "in __sph_legendre."));
234 }
235 else if (__m == 0)
236 {
237 _Tp __P = __poly_legendre_p(__l, __x);
238 _Tp __fact = std::sqrt(_Tp(2 * __l + 1)
239 / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
240 __P *= __fact;
241 return __P;
242 }
243 else if (__x == _Tp(1) || __x == -_Tp(1))
244 {
245 // m > 0 here
246 return _Tp(0);
247 }
248 else
249 {
250 // m > 0 and |x| < 1 here
251
252 // Starting value for recursion.
253 // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
254 // (-1)^m (1-x^2)^(m/2) / pi^(1/4)
255 const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
256 const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
257 #if _GLIBCXX_USE_C99_MATH_TR1
258 const _Tp __lncirc = _GLIBCXX_MATH_NS::log1p(-__x * __x);
259 #else
260 const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
261 #endif
262 // Gamma(m+1/2) / Gamma(m)
263 #if _GLIBCXX_USE_C99_MATH_TR1
264 const _Tp __lnpoch = _GLIBCXX_MATH_NS::lgamma(_Tp(__m + _Tp(0.5L)))
265 - _GLIBCXX_MATH_NS::lgamma(_Tp(__m));
266 #else
267 const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
268 - __log_gamma(_Tp(__m));
269 #endif
270 const _Tp __lnpre_val =
271 -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
272 + _Tp(0.5L) * (__lnpoch + __m * __lncirc);
273 const _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
274 / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
275 _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
276 _Tp __y_mp1m = __y_mp1m_factor * __y_mm;
277
278 if (__l == __m)
279 return __y_mm;
280 else if (__l == __m + 1)
281 return __y_mp1m;
282 else
283 {
284 _Tp __y_lm = _Tp(0);
285
286 // Compute Y_l^m, l > m+1, upward recursion on l.
287 for (unsigned int __ll = __m + 2; __ll <= __l; ++__ll)
288 {
289 const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
290 const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
291 const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
292 * _Tp(2 * __ll - 1));
293 const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
294 / _Tp(2 * __ll - 3));
295 __y_lm = (__x * __y_mp1m * __fact1
296 - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
297 __y_mm = __y_mp1m;
298 __y_mp1m = __y_lm;
299 }
300
301 return __y_lm;
302 }
303 }
304 }
305 } // namespace __detail
306 #undef _GLIBCXX_MATH_NS
307 #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
308 } // namespace tr1
309 #endif
310
311 _GLIBCXX_END_NAMESPACE_VERSION
312 }
313
314 #endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC