]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/tr1/legendre_function.tcc
Licensing changes to GPLv3 resp. GPLv3 with GCC Runtime Exception.
[thirdparty/gcc.git] / libstdc++-v3 / include / tr1 / legendre_function.tcc
1 // Special functions -*- C++ -*-
2
3 // Copyright (C) 2006, 2007, 2008, 2009
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11 //
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16 //
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25
26 /** @file tr1/legendre_function.tcc
27 * This is an internal header file, included by other library headers.
28 * You should not attempt to use it directly.
29 */
30
31 //
32 // ISO C++ 14882 TR1: 5.2 Special functions
33 //
34
35 // Written by Edward Smith-Rowland based on:
36 // (1) Handbook of Mathematical Functions,
37 // ed. Milton Abramowitz and Irene A. Stegun,
38 // Dover Publications,
39 // Section 8, pp. 331-341
40 // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
41 // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
42 // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
43 // 2nd ed, pp. 252-254
44
45 #ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
46 #define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
47
48 #include "special_function_util.h"
49
50 namespace std
51 {
52 namespace tr1
53 {
54
55 // [5.2] Special functions
56
57 // Implementation-space details.
58 namespace __detail
59 {
60
61 /**
62 * @brief Return the Legendre polynomial by recursion on order
63 * @f$ l @f$.
64 *
65 * The Legendre function of @f$ l @f$ and @f$ x @f$,
66 * @f$ P_l(x) @f$, is defined by:
67 * @f[
68 * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
69 * @f]
70 *
71 * @param l The order of the Legendre polynomial. @f$l >= 0@f$.
72 * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
73 */
74 template<typename _Tp>
75 _Tp
76 __poly_legendre_p(const unsigned int __l, const _Tp __x)
77 {
78
79 if ((__x < _Tp(-1)) || (__x > _Tp(+1)))
80 std::__throw_domain_error(__N("Argument out of range"
81 " in __poly_legendre_p."));
82 else if (__isnan(__x))
83 return std::numeric_limits<_Tp>::quiet_NaN();
84 else if (__x == +_Tp(1))
85 return +_Tp(1);
86 else if (__x == -_Tp(1))
87 return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
88 else
89 {
90 _Tp __p_lm2 = _Tp(1);
91 if (__l == 0)
92 return __p_lm2;
93
94 _Tp __p_lm1 = __x;
95 if (__l == 1)
96 return __p_lm1;
97
98 _Tp __p_l = 0;
99 for (unsigned int __ll = 2; __ll <= __l; ++__ll)
100 {
101 // This arrangement is supposed to be better for roundoff
102 // protection, Arfken, 2nd Ed, Eq 12.17a.
103 __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
104 - (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
105 __p_lm2 = __p_lm1;
106 __p_lm1 = __p_l;
107 }
108
109 return __p_l;
110 }
111 }
112
113
114 /**
115 * @brief Return the associated Legendre function by recursion
116 * on @f$ l @f$.
117 *
118 * The associated Legendre function is derived from the Legendre function
119 * @f$ P_l(x) @f$ by the Rodrigues formula:
120 * @f[
121 * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
122 * @f]
123 *
124 * @param l The order of the associated Legendre function.
125 * @f$ l >= 0 @f$.
126 * @param m The order of the associated Legendre function.
127 * @f$ m <= l @f$.
128 * @param x The argument of the associated Legendre function.
129 * @f$ |x| <= 1 @f$.
130 */
131 template<typename _Tp>
132 _Tp
133 __assoc_legendre_p(const unsigned int __l, const unsigned int __m,
134 const _Tp __x)
135 {
136
137 if (__x < _Tp(-1) || __x > _Tp(+1))
138 std::__throw_domain_error(__N("Argument out of range"
139 " in __assoc_legendre_p."));
140 else if (__m > __l)
141 std::__throw_domain_error(__N("Degree out of range"
142 " in __assoc_legendre_p."));
143 else if (__isnan(__x))
144 return std::numeric_limits<_Tp>::quiet_NaN();
145 else if (__m == 0)
146 return __poly_legendre_p(__l, __x);
147 else
148 {
149 _Tp __p_mm = _Tp(1);
150 if (__m > 0)
151 {
152 // Two square roots seem more accurate more of the time
153 // than just one.
154 _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
155 _Tp __fact = _Tp(1);
156 for (unsigned int __i = 1; __i <= __m; ++__i)
157 {
158 __p_mm *= -__fact * __root;
159 __fact += _Tp(2);
160 }
161 }
162 if (__l == __m)
163 return __p_mm;
164
165 _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
166 if (__l == __m + 1)
167 return __p_mp1m;
168
169 _Tp __p_lm2m = __p_mm;
170 _Tp __P_lm1m = __p_mp1m;
171 _Tp __p_lm = _Tp(0);
172 for (unsigned int __j = __m + 2; __j <= __l; ++__j)
173 {
174 __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
175 - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
176 __p_lm2m = __P_lm1m;
177 __P_lm1m = __p_lm;
178 }
179
180 return __p_lm;
181 }
182 }
183
184
185 /**
186 * @brief Return the spherical associated Legendre function.
187 *
188 * The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
189 * and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
190 * @f[
191 * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
192 * \frac{(l-m)!}{(l+m)!}]
193 * P_l^m(\cos\theta) \exp^{im\phi}
194 * @f]
195 * is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
196 * associated Legendre function.
197 *
198 * This function differs from the associated Legendre function by
199 * argument (@f$x = \cos(\theta)@f$) and by a normalization factor
200 * but this factor is rather large for large @f$ l @f$ and @f$ m @f$
201 * and so this function is stable for larger differences of @f$ l @f$
202 * and @f$ m @f$.
203 *
204 * @param l The order of the spherical associated Legendre function.
205 * @f$ l >= 0 @f$.
206 * @param m The order of the spherical associated Legendre function.
207 * @f$ m <= l @f$.
208 * @param theta The radian angle argument of the spherical associated
209 * Legendre function.
210 */
211 template <typename _Tp>
212 _Tp
213 __sph_legendre(const unsigned int __l, const unsigned int __m,
214 const _Tp __theta)
215 {
216 if (__isnan(__theta))
217 return std::numeric_limits<_Tp>::quiet_NaN();
218
219 const _Tp __x = std::cos(__theta);
220
221 if (__l < __m)
222 {
223 std::__throw_domain_error(__N("Bad argument "
224 "in __sph_legendre."));
225 }
226 else if (__m == 0)
227 {
228 _Tp __P = __poly_legendre_p(__l, __x);
229 _Tp __fact = std::sqrt(_Tp(2 * __l + 1)
230 / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
231 __P *= __fact;
232 return __P;
233 }
234 else if (__x == _Tp(1) || __x == -_Tp(1))
235 {
236 // m > 0 here
237 return _Tp(0);
238 }
239 else
240 {
241 // m > 0 and |x| < 1 here
242
243 // Starting value for recursion.
244 // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
245 // (-1)^m (1-x^2)^(m/2) / pi^(1/4)
246 const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
247 const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
248 #if _GLIBCXX_USE_C99_MATH_TR1
249 const _Tp __lncirc = std::tr1::log1p(-__x * __x);
250 #else
251 const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
252 #endif
253 // Gamma(m+1/2) / Gamma(m)
254 #if _GLIBCXX_USE_C99_MATH_TR1
255 const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L)))
256 - std::tr1::lgamma(_Tp(__m));
257 #else
258 const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
259 - __log_gamma(_Tp(__m));
260 #endif
261 const _Tp __lnpre_val =
262 -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
263 + _Tp(0.5L) * (__lnpoch + __m * __lncirc);
264 _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
265 / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
266 _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
267 _Tp __y_mp1m = __y_mp1m_factor * __y_mm;
268
269 if (__l == __m)
270 {
271 return __y_mm;
272 }
273 else if (__l == __m + 1)
274 {
275 return __y_mp1m;
276 }
277 else
278 {
279 _Tp __y_lm = _Tp(0);
280
281 // Compute Y_l^m, l > m+1, upward recursion on l.
282 for ( int __ll = __m + 2; __ll <= __l; ++__ll)
283 {
284 const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
285 const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
286 const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
287 * _Tp(2 * __ll - 1));
288 const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
289 / _Tp(2 * __ll - 3));
290 __y_lm = (__x * __y_mp1m * __fact1
291 - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
292 __y_mm = __y_mp1m;
293 __y_mp1m = __y_lm;
294 }
295
296 return __y_lm;
297 }
298 }
299 }
300
301 } // namespace std::tr1::__detail
302 }
303 }
304
305 #endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC