]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/tr1/riemann_zeta.tcc
Update copyright years in libstdc++-v3/
[thirdparty/gcc.git] / libstdc++-v3 / include / tr1 / riemann_zeta.tcc
1 // Special functions -*- C++ -*-
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 //
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 //
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file tr1/riemann_zeta.tcc
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{tr1/cmath}
28 */
29
30 //
31 // ISO C++ 14882 TR1: 5.2 Special functions
32 //
33
34 // Written by Edward Smith-Rowland based on:
35 // (1) Handbook of Mathematical Functions,
36 // Ed. by Milton Abramowitz and Irene A. Stegun,
37 // Dover Publications, New-York, Section 5, pp. 807-808.
38 // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
39 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
40 // Princeton, 2003.
41
42 #ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
43 #define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
44
45 #include "special_function_util.h"
46
47 namespace std _GLIBCXX_VISIBILITY(default)
48 {
49 namespace tr1
50 {
51 // [5.2] Special functions
52
53 // Implementation-space details.
54 namespace __detail
55 {
56 _GLIBCXX_BEGIN_NAMESPACE_VERSION
57
58 /**
59 * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
60 * by summation for s > 1.
61 *
62 * The Riemann zeta function is defined by:
63 * \f[
64 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
65 * \f]
66 * For s < 1 use the reflection formula:
67 * \f[
68 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
69 * \f]
70 */
71 template<typename _Tp>
72 _Tp
73 __riemann_zeta_sum(_Tp __s)
74 {
75 // A user shouldn't get to this.
76 if (__s < _Tp(1))
77 std::__throw_domain_error(__N("Bad argument in zeta sum."));
78
79 const unsigned int max_iter = 10000;
80 _Tp __zeta = _Tp(0);
81 for (unsigned int __k = 1; __k < max_iter; ++__k)
82 {
83 _Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
84 if (__term < std::numeric_limits<_Tp>::epsilon())
85 {
86 break;
87 }
88 __zeta += __term;
89 }
90
91 return __zeta;
92 }
93
94
95 /**
96 * @brief Evaluate the Riemann zeta function @f$ \zeta(s) @f$
97 * by an alternate series for s > 0.
98 *
99 * The Riemann zeta function is defined by:
100 * \f[
101 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102 * \f]
103 * For s < 1 use the reflection formula:
104 * \f[
105 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \f]
107 */
108 template<typename _Tp>
109 _Tp
110 __riemann_zeta_alt(_Tp __s)
111 {
112 _Tp __sgn = _Tp(1);
113 _Tp __zeta = _Tp(0);
114 for (unsigned int __i = 1; __i < 10000000; ++__i)
115 {
116 _Tp __term = __sgn / std::pow(__i, __s);
117 if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
118 break;
119 __zeta += __term;
120 __sgn *= _Tp(-1);
121 }
122 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
123
124 return __zeta;
125 }
126
127
128 /**
129 * @brief Evaluate the Riemann zeta function by series for all s != 1.
130 * Convergence is great until largish negative numbers.
131 * Then the convergence of the > 0 sum gets better.
132 *
133 * The series is:
134 * \f[
135 * \zeta(s) = \frac{1}{1-2^{1-s}}
136 * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
137 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
138 * \f]
139 * Havil 2003, p. 206.
140 *
141 * The Riemann zeta function is defined by:
142 * \f[
143 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
144 * \f]
145 * For s < 1 use the reflection formula:
146 * \f[
147 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \f]
149 */
150 template<typename _Tp>
151 _Tp
152 __riemann_zeta_glob(_Tp __s)
153 {
154 _Tp __zeta = _Tp(0);
155
156 const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
157 // Max e exponent before overflow.
158 const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
159 * std::log(_Tp(10)) - _Tp(1);
160
161 // This series works until the binomial coefficient blows up
162 // so use reflection.
163 if (__s < _Tp(0))
164 {
165 #if _GLIBCXX_USE_C99_MATH_TR1
166 if (std::tr1::fmod(__s,_Tp(2)) == _Tp(0))
167 return _Tp(0);
168 else
169 #endif
170 {
171 _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
172 __zeta *= std::pow(_Tp(2)
173 * __numeric_constants<_Tp>::__pi(), __s)
174 * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
175 #if _GLIBCXX_USE_C99_MATH_TR1
176 * std::exp(std::tr1::lgamma(_Tp(1) - __s))
177 #else
178 * std::exp(__log_gamma(_Tp(1) - __s))
179 #endif
180 / __numeric_constants<_Tp>::__pi();
181 return __zeta;
182 }
183 }
184
185 _Tp __num = _Tp(0.5L);
186 const unsigned int __maxit = 10000;
187 for (unsigned int __i = 0; __i < __maxit; ++__i)
188 {
189 bool __punt = false;
190 _Tp __sgn = _Tp(1);
191 _Tp __term = _Tp(0);
192 for (unsigned int __j = 0; __j <= __i; ++__j)
193 {
194 #if _GLIBCXX_USE_C99_MATH_TR1
195 _Tp __bincoeff = std::tr1::lgamma(_Tp(1 + __i))
196 - std::tr1::lgamma(_Tp(1 + __j))
197 - std::tr1::lgamma(_Tp(1 + __i - __j));
198 #else
199 _Tp __bincoeff = __log_gamma(_Tp(1 + __i))
200 - __log_gamma(_Tp(1 + __j))
201 - __log_gamma(_Tp(1 + __i - __j));
202 #endif
203 if (__bincoeff > __max_bincoeff)
204 {
205 // This only gets hit for x << 0.
206 __punt = true;
207 break;
208 }
209 __bincoeff = std::exp(__bincoeff);
210 __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
211 __sgn *= _Tp(-1);
212 }
213 if (__punt)
214 break;
215 __term *= __num;
216 __zeta += __term;
217 if (std::abs(__term/__zeta) < __eps)
218 break;
219 __num *= _Tp(0.5L);
220 }
221
222 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
223
224 return __zeta;
225 }
226
227
228 /**
229 * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
230 * using the product over prime factors.
231 * \f[
232 * \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
233 * \f]
234 * where @f$ {p_i} @f$ are the prime numbers.
235 *
236 * The Riemann zeta function is defined by:
237 * \f[
238 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239 * \f]
240 * For s < 1 use the reflection formula:
241 * \f[
242 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \f]
244 */
245 template<typename _Tp>
246 _Tp
247 __riemann_zeta_product(_Tp __s)
248 {
249 static const _Tp __prime[] = {
250 _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
251 _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
252 _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
253 _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
254 };
255 static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
256
257 _Tp __zeta = _Tp(1);
258 for (unsigned int __i = 0; __i < __num_primes; ++__i)
259 {
260 const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
261 __zeta *= __fact;
262 if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
263 break;
264 }
265
266 __zeta = _Tp(1) / __zeta;
267
268 return __zeta;
269 }
270
271
272 /**
273 * @brief Return the Riemann zeta function @f$ \zeta(s) @f$.
274 *
275 * The Riemann zeta function is defined by:
276 * \f[
277 * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
278 * \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
279 * \Gamma (1 - s) \zeta (1 - s) for s < 1
280 * \f]
281 * For s < 1 use the reflection formula:
282 * \f[
283 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
284 * \f]
285 */
286 template<typename _Tp>
287 _Tp
288 __riemann_zeta(_Tp __s)
289 {
290 if (__isnan(__s))
291 return std::numeric_limits<_Tp>::quiet_NaN();
292 else if (__s == _Tp(1))
293 return std::numeric_limits<_Tp>::infinity();
294 else if (__s < -_Tp(19))
295 {
296 _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
297 __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
298 * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
299 #if _GLIBCXX_USE_C99_MATH_TR1
300 * std::exp(std::tr1::lgamma(_Tp(1) - __s))
301 #else
302 * std::exp(__log_gamma(_Tp(1) - __s))
303 #endif
304 / __numeric_constants<_Tp>::__pi();
305 return __zeta;
306 }
307 else if (__s < _Tp(20))
308 {
309 // Global double sum or McLaurin?
310 bool __glob = true;
311 if (__glob)
312 return __riemann_zeta_glob(__s);
313 else
314 {
315 if (__s > _Tp(1))
316 return __riemann_zeta_sum(__s);
317 else
318 {
319 _Tp __zeta = std::pow(_Tp(2)
320 * __numeric_constants<_Tp>::__pi(), __s)
321 * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
322 #if _GLIBCXX_USE_C99_MATH_TR1
323 * std::tr1::tgamma(_Tp(1) - __s)
324 #else
325 * std::exp(__log_gamma(_Tp(1) - __s))
326 #endif
327 * __riemann_zeta_sum(_Tp(1) - __s);
328 return __zeta;
329 }
330 }
331 }
332 else
333 return __riemann_zeta_product(__s);
334 }
335
336
337 /**
338 * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
339 * for all s != 1 and x > -1.
340 *
341 * The Hurwitz zeta function is defined by:
342 * @f[
343 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
344 * @f]
345 * The Riemann zeta function is a special case:
346 * @f[
347 * \zeta(s) = \zeta(1,s)
348 * @f]
349 *
350 * This functions uses the double sum that converges for s != 1
351 * and x > -1:
352 * @f[
353 * \zeta(x,s) = \frac{1}{s-1}
354 * \sum_{n=0}^{\infty} \frac{1}{n + 1}
355 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
356 * @f]
357 */
358 template<typename _Tp>
359 _Tp
360 __hurwitz_zeta_glob(_Tp __a, _Tp __s)
361 {
362 _Tp __zeta = _Tp(0);
363
364 const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
365 // Max e exponent before overflow.
366 const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
367 * std::log(_Tp(10)) - _Tp(1);
368
369 const unsigned int __maxit = 10000;
370 for (unsigned int __i = 0; __i < __maxit; ++__i)
371 {
372 bool __punt = false;
373 _Tp __sgn = _Tp(1);
374 _Tp __term = _Tp(0);
375 for (unsigned int __j = 0; __j <= __i; ++__j)
376 {
377 #if _GLIBCXX_USE_C99_MATH_TR1
378 _Tp __bincoeff = std::tr1::lgamma(_Tp(1 + __i))
379 - std::tr1::lgamma(_Tp(1 + __j))
380 - std::tr1::lgamma(_Tp(1 + __i - __j));
381 #else
382 _Tp __bincoeff = __log_gamma(_Tp(1 + __i))
383 - __log_gamma(_Tp(1 + __j))
384 - __log_gamma(_Tp(1 + __i - __j));
385 #endif
386 if (__bincoeff > __max_bincoeff)
387 {
388 // This only gets hit for x << 0.
389 __punt = true;
390 break;
391 }
392 __bincoeff = std::exp(__bincoeff);
393 __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
394 __sgn *= _Tp(-1);
395 }
396 if (__punt)
397 break;
398 __term /= _Tp(__i + 1);
399 if (std::abs(__term / __zeta) < __eps)
400 break;
401 __zeta += __term;
402 }
403
404 __zeta /= __s - _Tp(1);
405
406 return __zeta;
407 }
408
409
410 /**
411 * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
412 * for all s != 1 and x > -1.
413 *
414 * The Hurwitz zeta function is defined by:
415 * @f[
416 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
417 * @f]
418 * The Riemann zeta function is a special case:
419 * @f[
420 * \zeta(s) = \zeta(1,s)
421 * @f]
422 */
423 template<typename _Tp>
424 inline _Tp
425 __hurwitz_zeta(_Tp __a, _Tp __s)
426 { return __hurwitz_zeta_glob(__a, __s); }
427
428 _GLIBCXX_END_NAMESPACE_VERSION
429 } // namespace std::tr1::__detail
430 }
431 }
432
433 #endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC