]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_alloc_btree.c
xfs: plumb in needed functions for range querying of the freespace btrees
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_alloc_btree.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_mount.h"
26 #include "xfs_btree.h"
27 #include "xfs_alloc_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_trace.h"
30 #include "xfs_cksum.h"
31 #include "xfs_trans.h"
32
33
34 STATIC struct xfs_btree_cur *
35 xfs_allocbt_dup_cursor(
36 struct xfs_btree_cur *cur)
37 {
38 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
39 cur->bc_private.a.agbp, cur->bc_private.a.agno,
40 cur->bc_btnum);
41 }
42
43 STATIC void
44 xfs_allocbt_set_root(
45 struct xfs_btree_cur *cur,
46 union xfs_btree_ptr *ptr,
47 int inc)
48 {
49 struct xfs_buf *agbp = cur->bc_private.a.agbp;
50 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
51 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
52 int btnum = cur->bc_btnum;
53 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
54
55 ASSERT(ptr->s != 0);
56
57 agf->agf_roots[btnum] = ptr->s;
58 be32_add_cpu(&agf->agf_levels[btnum], inc);
59 pag->pagf_levels[btnum] += inc;
60 xfs_perag_put(pag);
61
62 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
63 }
64
65 STATIC int
66 xfs_allocbt_alloc_block(
67 struct xfs_btree_cur *cur,
68 union xfs_btree_ptr *start,
69 union xfs_btree_ptr *new,
70 int *stat)
71 {
72 int error;
73 xfs_agblock_t bno;
74
75 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
76
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
79 &bno, 1);
80 if (error) {
81 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
82 return error;
83 }
84
85 if (bno == NULLAGBLOCK) {
86 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
87 *stat = 0;
88 return 0;
89 }
90
91 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
92
93 xfs_trans_agbtree_delta(cur->bc_tp, 1);
94 new->s = cpu_to_be32(bno);
95
96 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
97 *stat = 1;
98 return 0;
99 }
100
101 STATIC int
102 xfs_allocbt_free_block(
103 struct xfs_btree_cur *cur,
104 struct xfs_buf *bp)
105 {
106 struct xfs_buf *agbp = cur->bc_private.a.agbp;
107 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
108 xfs_agblock_t bno;
109 int error;
110
111 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
112 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
113 if (error)
114 return error;
115
116 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
117 XFS_EXTENT_BUSY_SKIP_DISCARD);
118 xfs_trans_agbtree_delta(cur->bc_tp, -1);
119 return 0;
120 }
121
122 /*
123 * Update the longest extent in the AGF
124 */
125 STATIC void
126 xfs_allocbt_update_lastrec(
127 struct xfs_btree_cur *cur,
128 struct xfs_btree_block *block,
129 union xfs_btree_rec *rec,
130 int ptr,
131 int reason)
132 {
133 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
134 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
135 struct xfs_perag *pag;
136 __be32 len;
137 int numrecs;
138
139 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
140
141 switch (reason) {
142 case LASTREC_UPDATE:
143 /*
144 * If this is the last leaf block and it's the last record,
145 * then update the size of the longest extent in the AG.
146 */
147 if (ptr != xfs_btree_get_numrecs(block))
148 return;
149 len = rec->alloc.ar_blockcount;
150 break;
151 case LASTREC_INSREC:
152 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
153 be32_to_cpu(agf->agf_longest))
154 return;
155 len = rec->alloc.ar_blockcount;
156 break;
157 case LASTREC_DELREC:
158 numrecs = xfs_btree_get_numrecs(block);
159 if (ptr <= numrecs)
160 return;
161 ASSERT(ptr == numrecs + 1);
162
163 if (numrecs) {
164 xfs_alloc_rec_t *rrp;
165
166 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
167 len = rrp->ar_blockcount;
168 } else {
169 len = 0;
170 }
171
172 break;
173 default:
174 ASSERT(0);
175 return;
176 }
177
178 agf->agf_longest = len;
179 pag = xfs_perag_get(cur->bc_mp, seqno);
180 pag->pagf_longest = be32_to_cpu(len);
181 xfs_perag_put(pag);
182 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
183 }
184
185 STATIC int
186 xfs_allocbt_get_minrecs(
187 struct xfs_btree_cur *cur,
188 int level)
189 {
190 return cur->bc_mp->m_alloc_mnr[level != 0];
191 }
192
193 STATIC int
194 xfs_allocbt_get_maxrecs(
195 struct xfs_btree_cur *cur,
196 int level)
197 {
198 return cur->bc_mp->m_alloc_mxr[level != 0];
199 }
200
201 STATIC void
202 xfs_allocbt_init_key_from_rec(
203 union xfs_btree_key *key,
204 union xfs_btree_rec *rec)
205 {
206 key->alloc.ar_startblock = rec->alloc.ar_startblock;
207 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
208 }
209
210 STATIC void
211 xfs_bnobt_init_high_key_from_rec(
212 union xfs_btree_key *key,
213 union xfs_btree_rec *rec)
214 {
215 __u32 x;
216
217 x = be32_to_cpu(rec->alloc.ar_startblock);
218 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
219 key->alloc.ar_startblock = cpu_to_be32(x);
220 key->alloc.ar_blockcount = 0;
221 }
222
223 STATIC void
224 xfs_cntbt_init_high_key_from_rec(
225 union xfs_btree_key *key,
226 union xfs_btree_rec *rec)
227 {
228 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
229 key->alloc.ar_startblock = 0;
230 }
231
232 STATIC void
233 xfs_allocbt_init_rec_from_cur(
234 struct xfs_btree_cur *cur,
235 union xfs_btree_rec *rec)
236 {
237 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
238 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
239 }
240
241 STATIC void
242 xfs_allocbt_init_ptr_from_cur(
243 struct xfs_btree_cur *cur,
244 union xfs_btree_ptr *ptr)
245 {
246 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
247
248 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
249 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
250
251 ptr->s = agf->agf_roots[cur->bc_btnum];
252 }
253
254 STATIC __int64_t
255 xfs_bnobt_key_diff(
256 struct xfs_btree_cur *cur,
257 union xfs_btree_key *key)
258 {
259 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
260 xfs_alloc_key_t *kp = &key->alloc;
261
262 return (__int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
263 }
264
265 STATIC __int64_t
266 xfs_cntbt_key_diff(
267 struct xfs_btree_cur *cur,
268 union xfs_btree_key *key)
269 {
270 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
271 xfs_alloc_key_t *kp = &key->alloc;
272 __int64_t diff;
273
274 diff = (__int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
275 if (diff)
276 return diff;
277
278 return (__int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
279 }
280
281 STATIC __int64_t
282 xfs_bnobt_diff_two_keys(
283 struct xfs_btree_cur *cur,
284 union xfs_btree_key *k1,
285 union xfs_btree_key *k2)
286 {
287 return (__int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
288 be32_to_cpu(k2->alloc.ar_startblock);
289 }
290
291 STATIC __int64_t
292 xfs_cntbt_diff_two_keys(
293 struct xfs_btree_cur *cur,
294 union xfs_btree_key *k1,
295 union xfs_btree_key *k2)
296 {
297 __int64_t diff;
298
299 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
300 be32_to_cpu(k2->alloc.ar_blockcount);
301 if (diff)
302 return diff;
303
304 return be32_to_cpu(k1->alloc.ar_startblock) -
305 be32_to_cpu(k2->alloc.ar_startblock);
306 }
307
308 static bool
309 xfs_allocbt_verify(
310 struct xfs_buf *bp)
311 {
312 struct xfs_mount *mp = bp->b_target->bt_mount;
313 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
314 struct xfs_perag *pag = bp->b_pag;
315 unsigned int level;
316
317 /*
318 * magic number and level verification
319 *
320 * During growfs operations, we can't verify the exact level or owner as
321 * the perag is not fully initialised and hence not attached to the
322 * buffer. In this case, check against the maximum tree depth.
323 *
324 * Similarly, during log recovery we will have a perag structure
325 * attached, but the agf information will not yet have been initialised
326 * from the on disk AGF. Again, we can only check against maximum limits
327 * in this case.
328 */
329 level = be16_to_cpu(block->bb_level);
330 switch (block->bb_magic) {
331 case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
332 if (!xfs_btree_sblock_v5hdr_verify(bp))
333 return false;
334 /* fall through */
335 case cpu_to_be32(XFS_ABTB_MAGIC):
336 if (pag && pag->pagf_init) {
337 if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
338 return false;
339 } else if (level >= mp->m_ag_maxlevels)
340 return false;
341 break;
342 case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
343 if (!xfs_btree_sblock_v5hdr_verify(bp))
344 return false;
345 /* fall through */
346 case cpu_to_be32(XFS_ABTC_MAGIC):
347 if (pag && pag->pagf_init) {
348 if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
349 return false;
350 } else if (level >= mp->m_ag_maxlevels)
351 return false;
352 break;
353 default:
354 return false;
355 }
356
357 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
358 }
359
360 static void
361 xfs_allocbt_read_verify(
362 struct xfs_buf *bp)
363 {
364 if (!xfs_btree_sblock_verify_crc(bp))
365 xfs_buf_ioerror(bp, -EFSBADCRC);
366 else if (!xfs_allocbt_verify(bp))
367 xfs_buf_ioerror(bp, -EFSCORRUPTED);
368
369 if (bp->b_error) {
370 trace_xfs_btree_corrupt(bp, _RET_IP_);
371 xfs_verifier_error(bp);
372 }
373 }
374
375 static void
376 xfs_allocbt_write_verify(
377 struct xfs_buf *bp)
378 {
379 if (!xfs_allocbt_verify(bp)) {
380 trace_xfs_btree_corrupt(bp, _RET_IP_);
381 xfs_buf_ioerror(bp, -EFSCORRUPTED);
382 xfs_verifier_error(bp);
383 return;
384 }
385 xfs_btree_sblock_calc_crc(bp);
386
387 }
388
389 const struct xfs_buf_ops xfs_allocbt_buf_ops = {
390 .name = "xfs_allocbt",
391 .verify_read = xfs_allocbt_read_verify,
392 .verify_write = xfs_allocbt_write_verify,
393 };
394
395
396 #if defined(DEBUG) || defined(XFS_WARN)
397 STATIC int
398 xfs_bnobt_keys_inorder(
399 struct xfs_btree_cur *cur,
400 union xfs_btree_key *k1,
401 union xfs_btree_key *k2)
402 {
403 return be32_to_cpu(k1->alloc.ar_startblock) <
404 be32_to_cpu(k2->alloc.ar_startblock);
405 }
406
407 STATIC int
408 xfs_bnobt_recs_inorder(
409 struct xfs_btree_cur *cur,
410 union xfs_btree_rec *r1,
411 union xfs_btree_rec *r2)
412 {
413 return be32_to_cpu(r1->alloc.ar_startblock) +
414 be32_to_cpu(r1->alloc.ar_blockcount) <=
415 be32_to_cpu(r2->alloc.ar_startblock);
416 }
417
418 STATIC int
419 xfs_cntbt_keys_inorder(
420 struct xfs_btree_cur *cur,
421 union xfs_btree_key *k1,
422 union xfs_btree_key *k2)
423 {
424 return be32_to_cpu(k1->alloc.ar_blockcount) <
425 be32_to_cpu(k2->alloc.ar_blockcount) ||
426 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
427 be32_to_cpu(k1->alloc.ar_startblock) <
428 be32_to_cpu(k2->alloc.ar_startblock));
429 }
430
431 STATIC int
432 xfs_cntbt_recs_inorder(
433 struct xfs_btree_cur *cur,
434 union xfs_btree_rec *r1,
435 union xfs_btree_rec *r2)
436 {
437 return be32_to_cpu(r1->alloc.ar_blockcount) <
438 be32_to_cpu(r2->alloc.ar_blockcount) ||
439 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
440 be32_to_cpu(r1->alloc.ar_startblock) <
441 be32_to_cpu(r2->alloc.ar_startblock));
442 }
443 #endif /* DEBUG */
444
445 static const struct xfs_btree_ops xfs_bnobt_ops = {
446 .rec_len = sizeof(xfs_alloc_rec_t),
447 .key_len = sizeof(xfs_alloc_key_t),
448
449 .dup_cursor = xfs_allocbt_dup_cursor,
450 .set_root = xfs_allocbt_set_root,
451 .alloc_block = xfs_allocbt_alloc_block,
452 .free_block = xfs_allocbt_free_block,
453 .update_lastrec = xfs_allocbt_update_lastrec,
454 .get_minrecs = xfs_allocbt_get_minrecs,
455 .get_maxrecs = xfs_allocbt_get_maxrecs,
456 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
457 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
458 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
459 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
460 .key_diff = xfs_bnobt_key_diff,
461 .buf_ops = &xfs_allocbt_buf_ops,
462 .diff_two_keys = xfs_bnobt_diff_two_keys,
463 #if defined(DEBUG) || defined(XFS_WARN)
464 .keys_inorder = xfs_bnobt_keys_inorder,
465 .recs_inorder = xfs_bnobt_recs_inorder,
466 #endif
467 };
468
469 static const struct xfs_btree_ops xfs_cntbt_ops = {
470 .rec_len = sizeof(xfs_alloc_rec_t),
471 .key_len = sizeof(xfs_alloc_key_t),
472
473 .dup_cursor = xfs_allocbt_dup_cursor,
474 .set_root = xfs_allocbt_set_root,
475 .alloc_block = xfs_allocbt_alloc_block,
476 .free_block = xfs_allocbt_free_block,
477 .update_lastrec = xfs_allocbt_update_lastrec,
478 .get_minrecs = xfs_allocbt_get_minrecs,
479 .get_maxrecs = xfs_allocbt_get_maxrecs,
480 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
481 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
482 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
483 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
484 .key_diff = xfs_cntbt_key_diff,
485 .buf_ops = &xfs_allocbt_buf_ops,
486 .diff_two_keys = xfs_cntbt_diff_two_keys,
487 #if defined(DEBUG) || defined(XFS_WARN)
488 .keys_inorder = xfs_cntbt_keys_inorder,
489 .recs_inorder = xfs_cntbt_recs_inorder,
490 #endif
491 };
492
493 /*
494 * Allocate a new allocation btree cursor.
495 */
496 struct xfs_btree_cur * /* new alloc btree cursor */
497 xfs_allocbt_init_cursor(
498 struct xfs_mount *mp, /* file system mount point */
499 struct xfs_trans *tp, /* transaction pointer */
500 struct xfs_buf *agbp, /* buffer for agf structure */
501 xfs_agnumber_t agno, /* allocation group number */
502 xfs_btnum_t btnum) /* btree identifier */
503 {
504 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
505 struct xfs_btree_cur *cur;
506
507 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
508
509 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
510
511 cur->bc_tp = tp;
512 cur->bc_mp = mp;
513 cur->bc_btnum = btnum;
514 cur->bc_blocklog = mp->m_sb.sb_blocklog;
515
516 if (btnum == XFS_BTNUM_CNT) {
517 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
518 cur->bc_ops = &xfs_cntbt_ops;
519 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
520 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
521 } else {
522 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
523 cur->bc_ops = &xfs_bnobt_ops;
524 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
525 }
526
527 cur->bc_private.a.agbp = agbp;
528 cur->bc_private.a.agno = agno;
529
530 if (xfs_sb_version_hascrc(&mp->m_sb))
531 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
532
533 return cur;
534 }
535
536 /*
537 * Calculate number of records in an alloc btree block.
538 */
539 int
540 xfs_allocbt_maxrecs(
541 struct xfs_mount *mp,
542 int blocklen,
543 int leaf)
544 {
545 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
546
547 if (leaf)
548 return blocklen / sizeof(xfs_alloc_rec_t);
549 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
550 }