]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_attr_leaf.c
build: Request 64-bit time_t where possible
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_attr_leaf.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2013 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "libxfs_priv.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_da_btree.h"
17 #include "xfs_inode.h"
18 #include "xfs_trans.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_attr_sf.h"
22 #include "xfs_attr.h"
23 #include "xfs_attr_remote.h"
24 #include "xfs_attr_leaf.h"
25 #include "xfs_trace.h"
26 #include "xfs_dir2.h"
27 #include "xfs_ag.h"
28 #include "xfs_errortag.h"
29
30
31 /*
32 * xfs_attr_leaf.c
33 *
34 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
35 */
36
37 /*========================================================================
38 * Function prototypes for the kernel.
39 *========================================================================*/
40
41 /*
42 * Routines used for growing the Btree.
43 */
44 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
45 xfs_dablk_t which_block, struct xfs_buf **bpp);
46 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
47 struct xfs_attr3_icleaf_hdr *ichdr,
48 struct xfs_da_args *args, int freemap_index);
49 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
50 struct xfs_attr3_icleaf_hdr *ichdr,
51 struct xfs_buf *leaf_buffer);
52 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
53 xfs_da_state_blk_t *blk1,
54 xfs_da_state_blk_t *blk2);
55 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
56 xfs_da_state_blk_t *leaf_blk_1,
57 struct xfs_attr3_icleaf_hdr *ichdr1,
58 xfs_da_state_blk_t *leaf_blk_2,
59 struct xfs_attr3_icleaf_hdr *ichdr2,
60 int *number_entries_in_blk1,
61 int *number_usedbytes_in_blk1);
62
63 /*
64 * Utility routines.
65 */
66 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
67 struct xfs_attr_leafblock *src_leaf,
68 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
69 struct xfs_attr_leafblock *dst_leaf,
70 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
71 int move_count);
72 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
73
74 /*
75 * attr3 block 'firstused' conversion helpers.
76 *
77 * firstused refers to the offset of the first used byte of the nameval region
78 * of an attr leaf block. The region starts at the tail of the block and expands
79 * backwards towards the middle. As such, firstused is initialized to the block
80 * size for an empty leaf block and is reduced from there.
81 *
82 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
83 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
84 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
85 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
86 * the attr block size. The following helpers manage the conversion between the
87 * in-core and on-disk formats.
88 */
89
90 static void
91 xfs_attr3_leaf_firstused_from_disk(
92 struct xfs_da_geometry *geo,
93 struct xfs_attr3_icleaf_hdr *to,
94 struct xfs_attr_leafblock *from)
95 {
96 struct xfs_attr3_leaf_hdr *hdr3;
97
98 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
99 hdr3 = (struct xfs_attr3_leaf_hdr *) from;
100 to->firstused = be16_to_cpu(hdr3->firstused);
101 } else {
102 to->firstused = be16_to_cpu(from->hdr.firstused);
103 }
104
105 /*
106 * Convert from the magic fsb size value to actual blocksize. This
107 * should only occur for empty blocks when the block size overflows
108 * 16-bits.
109 */
110 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
111 ASSERT(!to->count && !to->usedbytes);
112 ASSERT(geo->blksize > USHRT_MAX);
113 to->firstused = geo->blksize;
114 }
115 }
116
117 static void
118 xfs_attr3_leaf_firstused_to_disk(
119 struct xfs_da_geometry *geo,
120 struct xfs_attr_leafblock *to,
121 struct xfs_attr3_icleaf_hdr *from)
122 {
123 struct xfs_attr3_leaf_hdr *hdr3;
124 uint32_t firstused;
125
126 /* magic value should only be seen on disk */
127 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
128
129 /*
130 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
131 * value. This only overflows at the max supported value of 64k. Use the
132 * magic on-disk value to represent block size in this case.
133 */
134 firstused = from->firstused;
135 if (firstused > USHRT_MAX) {
136 ASSERT(from->firstused == geo->blksize);
137 firstused = XFS_ATTR3_LEAF_NULLOFF;
138 }
139
140 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
141 hdr3 = (struct xfs_attr3_leaf_hdr *) to;
142 hdr3->firstused = cpu_to_be16(firstused);
143 } else {
144 to->hdr.firstused = cpu_to_be16(firstused);
145 }
146 }
147
148 void
149 xfs_attr3_leaf_hdr_from_disk(
150 struct xfs_da_geometry *geo,
151 struct xfs_attr3_icleaf_hdr *to,
152 struct xfs_attr_leafblock *from)
153 {
154 int i;
155
156 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
157 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
158
159 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
160 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
161
162 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
163 to->back = be32_to_cpu(hdr3->info.hdr.back);
164 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
165 to->count = be16_to_cpu(hdr3->count);
166 to->usedbytes = be16_to_cpu(hdr3->usedbytes);
167 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
168 to->holes = hdr3->holes;
169
170 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
171 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
172 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
173 }
174 return;
175 }
176 to->forw = be32_to_cpu(from->hdr.info.forw);
177 to->back = be32_to_cpu(from->hdr.info.back);
178 to->magic = be16_to_cpu(from->hdr.info.magic);
179 to->count = be16_to_cpu(from->hdr.count);
180 to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
181 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
182 to->holes = from->hdr.holes;
183
184 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
185 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
186 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
187 }
188 }
189
190 void
191 xfs_attr3_leaf_hdr_to_disk(
192 struct xfs_da_geometry *geo,
193 struct xfs_attr_leafblock *to,
194 struct xfs_attr3_icleaf_hdr *from)
195 {
196 int i;
197
198 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
199 from->magic == XFS_ATTR3_LEAF_MAGIC);
200
201 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
202 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
203
204 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
205 hdr3->info.hdr.back = cpu_to_be32(from->back);
206 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
207 hdr3->count = cpu_to_be16(from->count);
208 hdr3->usedbytes = cpu_to_be16(from->usedbytes);
209 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
210 hdr3->holes = from->holes;
211 hdr3->pad1 = 0;
212
213 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
214 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
215 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
216 }
217 return;
218 }
219 to->hdr.info.forw = cpu_to_be32(from->forw);
220 to->hdr.info.back = cpu_to_be32(from->back);
221 to->hdr.info.magic = cpu_to_be16(from->magic);
222 to->hdr.count = cpu_to_be16(from->count);
223 to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
224 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
225 to->hdr.holes = from->holes;
226 to->hdr.pad1 = 0;
227
228 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
229 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
230 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
231 }
232 }
233
234 static xfs_failaddr_t
235 xfs_attr3_leaf_verify_entry(
236 struct xfs_mount *mp,
237 char *buf_end,
238 struct xfs_attr_leafblock *leaf,
239 struct xfs_attr3_icleaf_hdr *leafhdr,
240 struct xfs_attr_leaf_entry *ent,
241 int idx,
242 __u32 *last_hashval)
243 {
244 struct xfs_attr_leaf_name_local *lentry;
245 struct xfs_attr_leaf_name_remote *rentry;
246 char *name_end;
247 unsigned int nameidx;
248 unsigned int namesize;
249 __u32 hashval;
250
251 /* hash order check */
252 hashval = be32_to_cpu(ent->hashval);
253 if (hashval < *last_hashval)
254 return __this_address;
255 *last_hashval = hashval;
256
257 nameidx = be16_to_cpu(ent->nameidx);
258 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
259 return __this_address;
260
261 /*
262 * Check the name information. The namelen fields are u8 so we can't
263 * possibly exceed the maximum name length of 255 bytes.
264 */
265 if (ent->flags & XFS_ATTR_LOCAL) {
266 lentry = xfs_attr3_leaf_name_local(leaf, idx);
267 namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
268 be16_to_cpu(lentry->valuelen));
269 name_end = (char *)lentry + namesize;
270 if (lentry->namelen == 0)
271 return __this_address;
272 } else {
273 rentry = xfs_attr3_leaf_name_remote(leaf, idx);
274 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
275 name_end = (char *)rentry + namesize;
276 if (rentry->namelen == 0)
277 return __this_address;
278 if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
279 rentry->valueblk == 0)
280 return __this_address;
281 }
282
283 if (name_end > buf_end)
284 return __this_address;
285
286 return NULL;
287 }
288
289 /*
290 * Validate an attribute leaf block.
291 *
292 * Empty leaf blocks can occur under the following circumstances:
293 *
294 * 1. setxattr adds a new extended attribute to a file;
295 * 2. The file has zero existing attributes;
296 * 3. The attribute is too large to fit in the attribute fork;
297 * 4. The attribute is small enough to fit in a leaf block;
298 * 5. A log flush occurs after committing the transaction that creates
299 * the (empty) leaf block; and
300 * 6. The filesystem goes down after the log flush but before the new
301 * attribute can be committed to the leaf block.
302 *
303 * Hence we need to ensure that we don't fail the validation purely
304 * because the leaf is empty.
305 */
306 static xfs_failaddr_t
307 xfs_attr3_leaf_verify(
308 struct xfs_buf *bp)
309 {
310 struct xfs_attr3_icleaf_hdr ichdr;
311 struct xfs_mount *mp = bp->b_mount;
312 struct xfs_attr_leafblock *leaf = bp->b_addr;
313 struct xfs_attr_leaf_entry *entries;
314 struct xfs_attr_leaf_entry *ent;
315 char *buf_end;
316 uint32_t end; /* must be 32bit - see below */
317 __u32 last_hashval = 0;
318 int i;
319 xfs_failaddr_t fa;
320
321 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
322
323 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
324 if (fa)
325 return fa;
326
327 /*
328 * firstused is the block offset of the first name info structure.
329 * Make sure it doesn't go off the block or crash into the header.
330 */
331 if (ichdr.firstused > mp->m_attr_geo->blksize)
332 return __this_address;
333 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
334 return __this_address;
335
336 /* Make sure the entries array doesn't crash into the name info. */
337 entries = xfs_attr3_leaf_entryp(bp->b_addr);
338 if ((char *)&entries[ichdr.count] >
339 (char *)bp->b_addr + ichdr.firstused)
340 return __this_address;
341
342 /*
343 * NOTE: This verifier historically failed empty leaf buffers because
344 * we expect the fork to be in another format. Empty attr fork format
345 * conversions are possible during xattr set, however, and format
346 * conversion is not atomic with the xattr set that triggers it. We
347 * cannot assume leaf blocks are non-empty until that is addressed.
348 */
349 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
350 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
351 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
352 ent, i, &last_hashval);
353 if (fa)
354 return fa;
355 }
356
357 /*
358 * Quickly check the freemap information. Attribute data has to be
359 * aligned to 4-byte boundaries, and likewise for the free space.
360 *
361 * Note that for 64k block size filesystems, the freemap entries cannot
362 * overflow as they are only be16 fields. However, when checking end
363 * pointer of the freemap, we have to be careful to detect overflows and
364 * so use uint32_t for those checks.
365 */
366 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
367 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
368 return __this_address;
369 if (ichdr.freemap[i].base & 0x3)
370 return __this_address;
371 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
372 return __this_address;
373 if (ichdr.freemap[i].size & 0x3)
374 return __this_address;
375
376 /* be care of 16 bit overflows here */
377 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
378 if (end < ichdr.freemap[i].base)
379 return __this_address;
380 if (end > mp->m_attr_geo->blksize)
381 return __this_address;
382 }
383
384 return NULL;
385 }
386
387 static void
388 xfs_attr3_leaf_write_verify(
389 struct xfs_buf *bp)
390 {
391 struct xfs_mount *mp = bp->b_mount;
392 struct xfs_buf_log_item *bip = bp->b_log_item;
393 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
394 xfs_failaddr_t fa;
395
396 fa = xfs_attr3_leaf_verify(bp);
397 if (fa) {
398 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
399 return;
400 }
401
402 if (!xfs_has_crc(mp))
403 return;
404
405 if (bip)
406 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
407
408 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
409 }
410
411 /*
412 * leaf/node format detection on trees is sketchy, so a node read can be done on
413 * leaf level blocks when detection identifies the tree as a node format tree
414 * incorrectly. In this case, we need to swap the verifier to match the correct
415 * format of the block being read.
416 */
417 static void
418 xfs_attr3_leaf_read_verify(
419 struct xfs_buf *bp)
420 {
421 struct xfs_mount *mp = bp->b_mount;
422 xfs_failaddr_t fa;
423
424 if (xfs_has_crc(mp) &&
425 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
426 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
427 else {
428 fa = xfs_attr3_leaf_verify(bp);
429 if (fa)
430 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
431 }
432 }
433
434 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
435 .name = "xfs_attr3_leaf",
436 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
437 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
438 .verify_read = xfs_attr3_leaf_read_verify,
439 .verify_write = xfs_attr3_leaf_write_verify,
440 .verify_struct = xfs_attr3_leaf_verify,
441 };
442
443 int
444 xfs_attr3_leaf_read(
445 struct xfs_trans *tp,
446 struct xfs_inode *dp,
447 xfs_dablk_t bno,
448 struct xfs_buf **bpp)
449 {
450 int err;
451
452 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
453 &xfs_attr3_leaf_buf_ops);
454 if (!err && tp && *bpp)
455 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
456 return err;
457 }
458
459 /*========================================================================
460 * Namespace helper routines
461 *========================================================================*/
462
463 /*
464 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE
465 * flag on disk - if there's an incomplete attr then recovery needs to tear it
466 * down. If there's no incomplete attr, then recovery needs to tear that attr
467 * down to replace it with the attr that has been logged. In this case, the
468 * INCOMPLETE flag will not be set in attr->attr_filter, but rather
469 * XFS_DA_OP_RECOVERY will be set in args->op_flags.
470 */
471 static bool
472 xfs_attr_match(
473 struct xfs_da_args *args,
474 uint8_t namelen,
475 unsigned char *name,
476 int flags)
477 {
478
479 if (args->namelen != namelen)
480 return false;
481 if (memcmp(args->name, name, namelen) != 0)
482 return false;
483
484 /* Recovery ignores the INCOMPLETE flag. */
485 if ((args->op_flags & XFS_DA_OP_RECOVERY) &&
486 args->attr_filter == (flags & XFS_ATTR_NSP_ONDISK_MASK))
487 return true;
488
489 /* All remaining matches need to be filtered by INCOMPLETE state. */
490 if (args->attr_filter !=
491 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE)))
492 return false;
493 return true;
494 }
495
496 static int
497 xfs_attr_copy_value(
498 struct xfs_da_args *args,
499 unsigned char *value,
500 int valuelen)
501 {
502 /*
503 * No copy if all we have to do is get the length
504 */
505 if (!args->valuelen) {
506 args->valuelen = valuelen;
507 return 0;
508 }
509
510 /*
511 * No copy if the length of the existing buffer is too small
512 */
513 if (args->valuelen < valuelen) {
514 args->valuelen = valuelen;
515 return -ERANGE;
516 }
517
518 if (!args->value) {
519 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP);
520 if (!args->value)
521 return -ENOMEM;
522 }
523 args->valuelen = valuelen;
524
525 /* remote block xattr requires IO for copy-in */
526 if (args->rmtblkno)
527 return xfs_attr_rmtval_get(args);
528
529 /*
530 * This is to prevent a GCC warning because the remote xattr case
531 * doesn't have a value to pass in. In that case, we never reach here,
532 * but GCC can't work that out and so throws a "passing NULL to
533 * memcpy" warning.
534 */
535 if (!value)
536 return -EINVAL;
537 memcpy(args->value, value, valuelen);
538 return 0;
539 }
540
541 /*========================================================================
542 * External routines when attribute fork size < XFS_LITINO(mp).
543 *========================================================================*/
544
545 /*
546 * Query whether the total requested number of attr fork bytes of extended
547 * attribute space will be able to fit inline.
548 *
549 * Returns zero if not, else the i_forkoff fork offset to be used in the
550 * literal area for attribute data once the new bytes have been added.
551 *
552 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
553 * special case for dev/uuid inodes, they have fixed size data forks.
554 */
555 int
556 xfs_attr_shortform_bytesfit(
557 struct xfs_inode *dp,
558 int bytes)
559 {
560 struct xfs_mount *mp = dp->i_mount;
561 int64_t dsize;
562 int minforkoff;
563 int maxforkoff;
564 int offset;
565
566 /*
567 * Check if the new size could fit at all first:
568 */
569 if (bytes > XFS_LITINO(mp))
570 return 0;
571
572 /* rounded down */
573 offset = (XFS_LITINO(mp) - bytes) >> 3;
574
575 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
576 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
577 return (offset >= minforkoff) ? minforkoff : 0;
578 }
579
580 /*
581 * If the requested numbers of bytes is smaller or equal to the
582 * current attribute fork size we can always proceed.
583 *
584 * Note that if_bytes in the data fork might actually be larger than
585 * the current data fork size is due to delalloc extents. In that
586 * case either the extent count will go down when they are converted
587 * to real extents, or the delalloc conversion will take care of the
588 * literal area rebalancing.
589 */
590 if (bytes <= xfs_inode_attr_fork_size(dp))
591 return dp->i_forkoff;
592
593 /*
594 * For attr2 we can try to move the forkoff if there is space in the
595 * literal area, but for the old format we are done if there is no
596 * space in the fixed attribute fork.
597 */
598 if (!xfs_has_attr2(mp))
599 return 0;
600
601 dsize = dp->i_df.if_bytes;
602
603 switch (dp->i_df.if_format) {
604 case XFS_DINODE_FMT_EXTENTS:
605 /*
606 * If there is no attr fork and the data fork is extents,
607 * determine if creating the default attr fork will result
608 * in the extents form migrating to btree. If so, the
609 * minimum offset only needs to be the space required for
610 * the btree root.
611 */
612 if (!dp->i_forkoff && dp->i_df.if_bytes >
613 xfs_default_attroffset(dp))
614 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
615 break;
616 case XFS_DINODE_FMT_BTREE:
617 /*
618 * If we have a data btree then keep forkoff if we have one,
619 * otherwise we are adding a new attr, so then we set
620 * minforkoff to where the btree root can finish so we have
621 * plenty of room for attrs
622 */
623 if (dp->i_forkoff) {
624 if (offset < dp->i_forkoff)
625 return 0;
626 return dp->i_forkoff;
627 }
628 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
629 break;
630 }
631
632 /*
633 * A data fork btree root must have space for at least
634 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
635 */
636 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
637 minforkoff = roundup(minforkoff, 8) >> 3;
638
639 /* attr fork btree root can have at least this many key/ptr pairs */
640 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
641 maxforkoff = maxforkoff >> 3; /* rounded down */
642
643 if (offset >= maxforkoff)
644 return maxforkoff;
645 if (offset >= minforkoff)
646 return offset;
647 return 0;
648 }
649
650 /*
651 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless:
652 * - noattr2 mount option is set,
653 * - on-disk version bit says it is already set, or
654 * - the attr2 mount option is not set to enable automatic upgrade from attr1.
655 */
656 STATIC void
657 xfs_sbversion_add_attr2(
658 struct xfs_mount *mp,
659 struct xfs_trans *tp)
660 {
661 if (xfs_has_noattr2(mp))
662 return;
663 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)
664 return;
665 if (!xfs_has_attr2(mp))
666 return;
667
668 spin_lock(&mp->m_sb_lock);
669 xfs_add_attr2(mp);
670 spin_unlock(&mp->m_sb_lock);
671 xfs_log_sb(tp);
672 }
673
674 /*
675 * Create the initial contents of a shortform attribute list.
676 */
677 void
678 xfs_attr_shortform_create(
679 struct xfs_da_args *args)
680 {
681 struct xfs_inode *dp = args->dp;
682 struct xfs_ifork *ifp = &dp->i_af;
683 struct xfs_attr_sf_hdr *hdr;
684
685 trace_xfs_attr_sf_create(args);
686
687 ASSERT(ifp->if_bytes == 0);
688 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS)
689 ifp->if_format = XFS_DINODE_FMT_LOCAL;
690 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
691 hdr = (struct xfs_attr_sf_hdr *)ifp->if_u1.if_data;
692 memset(hdr, 0, sizeof(*hdr));
693 hdr->totsize = cpu_to_be16(sizeof(*hdr));
694 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
695 }
696
697 /*
698 * Return -EEXIST if attr is found, or -ENOATTR if not
699 * args: args containing attribute name and namelen
700 * sfep: If not null, pointer will be set to the last attr entry found on
701 -EEXIST. On -ENOATTR pointer is left at the last entry in the list
702 * basep: If not null, pointer is set to the byte offset of the entry in the
703 * list on -EEXIST. On -ENOATTR, pointer is left at the byte offset of
704 * the last entry in the list
705 */
706 int
707 xfs_attr_sf_findname(
708 struct xfs_da_args *args,
709 struct xfs_attr_sf_entry **sfep,
710 unsigned int *basep)
711 {
712 struct xfs_attr_shortform *sf;
713 struct xfs_attr_sf_entry *sfe;
714 unsigned int base = sizeof(struct xfs_attr_sf_hdr);
715 int size = 0;
716 int end;
717 int i;
718
719 sf = (struct xfs_attr_shortform *)args->dp->i_af.if_u1.if_data;
720 sfe = &sf->list[0];
721 end = sf->hdr.count;
722 for (i = 0; i < end; sfe = xfs_attr_sf_nextentry(sfe),
723 base += size, i++) {
724 size = xfs_attr_sf_entsize(sfe);
725 if (!xfs_attr_match(args, sfe->namelen, sfe->nameval,
726 sfe->flags))
727 continue;
728 break;
729 }
730
731 if (sfep != NULL)
732 *sfep = sfe;
733
734 if (basep != NULL)
735 *basep = base;
736
737 if (i == end)
738 return -ENOATTR;
739 return -EEXIST;
740 }
741
742 /*
743 * Add a name/value pair to the shortform attribute list.
744 * Overflow from the inode has already been checked for.
745 */
746 void
747 xfs_attr_shortform_add(
748 struct xfs_da_args *args,
749 int forkoff)
750 {
751 struct xfs_attr_shortform *sf;
752 struct xfs_attr_sf_entry *sfe;
753 int offset, size;
754 struct xfs_mount *mp;
755 struct xfs_inode *dp;
756 struct xfs_ifork *ifp;
757
758 trace_xfs_attr_sf_add(args);
759
760 dp = args->dp;
761 mp = dp->i_mount;
762 dp->i_forkoff = forkoff;
763
764 ifp = &dp->i_af;
765 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
766 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
767 if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST)
768 ASSERT(0);
769
770 offset = (char *)sfe - (char *)sf;
771 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
772 xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
773 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
774 sfe = (struct xfs_attr_sf_entry *)((char *)sf + offset);
775
776 sfe->namelen = args->namelen;
777 sfe->valuelen = args->valuelen;
778 sfe->flags = args->attr_filter;
779 memcpy(sfe->nameval, args->name, args->namelen);
780 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
781 sf->hdr.count++;
782 be16_add_cpu(&sf->hdr.totsize, size);
783 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
784
785 xfs_sbversion_add_attr2(mp, args->trans);
786 }
787
788 /*
789 * After the last attribute is removed revert to original inode format,
790 * making all literal area available to the data fork once more.
791 */
792 void
793 xfs_attr_fork_remove(
794 struct xfs_inode *ip,
795 struct xfs_trans *tp)
796 {
797 ASSERT(ip->i_af.if_nextents == 0);
798
799 xfs_ifork_zap_attr(ip);
800 ip->i_forkoff = 0;
801 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
802 }
803
804 /*
805 * Remove an attribute from the shortform attribute list structure.
806 */
807 int
808 xfs_attr_sf_removename(
809 struct xfs_da_args *args)
810 {
811 struct xfs_attr_shortform *sf;
812 struct xfs_attr_sf_entry *sfe;
813 int size = 0, end, totsize;
814 unsigned int base;
815 struct xfs_mount *mp;
816 struct xfs_inode *dp;
817 int error;
818
819 trace_xfs_attr_sf_remove(args);
820
821 dp = args->dp;
822 mp = dp->i_mount;
823 sf = (struct xfs_attr_shortform *)dp->i_af.if_u1.if_data;
824
825 error = xfs_attr_sf_findname(args, &sfe, &base);
826
827 /*
828 * If we are recovering an operation, finding nothing to
829 * remove is not an error - it just means there was nothing
830 * to clean up.
831 */
832 if (error == -ENOATTR && (args->op_flags & XFS_DA_OP_RECOVERY))
833 return 0;
834 if (error != -EEXIST)
835 return error;
836 size = xfs_attr_sf_entsize(sfe);
837
838 /*
839 * Fix up the attribute fork data, covering the hole
840 */
841 end = base + size;
842 totsize = be16_to_cpu(sf->hdr.totsize);
843 if (end != totsize)
844 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
845 sf->hdr.count--;
846 be16_add_cpu(&sf->hdr.totsize, -size);
847
848 /*
849 * Fix up the start offset of the attribute fork
850 */
851 totsize -= size;
852 if (totsize == sizeof(xfs_attr_sf_hdr_t) && xfs_has_attr2(mp) &&
853 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
854 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE))) {
855 xfs_attr_fork_remove(dp, args->trans);
856 } else {
857 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
858 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
859 ASSERT(dp->i_forkoff);
860 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
861 (args->op_flags & XFS_DA_OP_ADDNAME) ||
862 !xfs_has_attr2(mp) ||
863 dp->i_df.if_format == XFS_DINODE_FMT_BTREE);
864 xfs_trans_log_inode(args->trans, dp,
865 XFS_ILOG_CORE | XFS_ILOG_ADATA);
866 }
867
868 xfs_sbversion_add_attr2(mp, args->trans);
869
870 return 0;
871 }
872
873 /*
874 * Look up a name in a shortform attribute list structure.
875 */
876 /*ARGSUSED*/
877 int
878 xfs_attr_shortform_lookup(xfs_da_args_t *args)
879 {
880 struct xfs_attr_shortform *sf;
881 struct xfs_attr_sf_entry *sfe;
882 int i;
883 struct xfs_ifork *ifp;
884
885 trace_xfs_attr_sf_lookup(args);
886
887 ifp = &args->dp->i_af;
888 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
889 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
890 sfe = &sf->list[0];
891 for (i = 0; i < sf->hdr.count;
892 sfe = xfs_attr_sf_nextentry(sfe), i++) {
893 if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
894 sfe->flags))
895 return -EEXIST;
896 }
897 return -ENOATTR;
898 }
899
900 /*
901 * Retrieve the attribute value and length.
902 *
903 * If args->valuelen is zero, only the length needs to be returned. Unlike a
904 * lookup, we only return an error if the attribute does not exist or we can't
905 * retrieve the value.
906 */
907 int
908 xfs_attr_shortform_getvalue(
909 struct xfs_da_args *args)
910 {
911 struct xfs_attr_shortform *sf;
912 struct xfs_attr_sf_entry *sfe;
913 int i;
914
915 ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL);
916 sf = (struct xfs_attr_shortform *)args->dp->i_af.if_u1.if_data;
917 sfe = &sf->list[0];
918 for (i = 0; i < sf->hdr.count;
919 sfe = xfs_attr_sf_nextentry(sfe), i++) {
920 if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
921 sfe->flags))
922 return xfs_attr_copy_value(args,
923 &sfe->nameval[args->namelen], sfe->valuelen);
924 }
925 return -ENOATTR;
926 }
927
928 /* Convert from using the shortform to the leaf format. */
929 int
930 xfs_attr_shortform_to_leaf(
931 struct xfs_da_args *args)
932 {
933 struct xfs_inode *dp;
934 struct xfs_attr_shortform *sf;
935 struct xfs_attr_sf_entry *sfe;
936 struct xfs_da_args nargs;
937 char *tmpbuffer;
938 int error, i, size;
939 xfs_dablk_t blkno;
940 struct xfs_buf *bp;
941 struct xfs_ifork *ifp;
942
943 trace_xfs_attr_sf_to_leaf(args);
944
945 dp = args->dp;
946 ifp = &dp->i_af;
947 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
948 size = be16_to_cpu(sf->hdr.totsize);
949 tmpbuffer = kmem_alloc(size, 0);
950 ASSERT(tmpbuffer != NULL);
951 memcpy(tmpbuffer, ifp->if_u1.if_data, size);
952 sf = (struct xfs_attr_shortform *)tmpbuffer;
953
954 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
955 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
956
957 bp = NULL;
958 error = xfs_da_grow_inode(args, &blkno);
959 if (error)
960 goto out;
961
962 ASSERT(blkno == 0);
963 error = xfs_attr3_leaf_create(args, blkno, &bp);
964 if (error)
965 goto out;
966
967 memset((char *)&nargs, 0, sizeof(nargs));
968 nargs.dp = dp;
969 nargs.geo = args->geo;
970 nargs.total = args->total;
971 nargs.whichfork = XFS_ATTR_FORK;
972 nargs.trans = args->trans;
973 nargs.op_flags = XFS_DA_OP_OKNOENT;
974
975 sfe = &sf->list[0];
976 for (i = 0; i < sf->hdr.count; i++) {
977 nargs.name = sfe->nameval;
978 nargs.namelen = sfe->namelen;
979 nargs.value = &sfe->nameval[nargs.namelen];
980 nargs.valuelen = sfe->valuelen;
981 nargs.hashval = xfs_da_hashname(sfe->nameval,
982 sfe->namelen);
983 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
984 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
985 ASSERT(error == -ENOATTR);
986 error = xfs_attr3_leaf_add(bp, &nargs);
987 ASSERT(error != -ENOSPC);
988 if (error)
989 goto out;
990 sfe = xfs_attr_sf_nextentry(sfe);
991 }
992 error = 0;
993 out:
994 kmem_free(tmpbuffer);
995 return error;
996 }
997
998 /*
999 * Check a leaf attribute block to see if all the entries would fit into
1000 * a shortform attribute list.
1001 */
1002 int
1003 xfs_attr_shortform_allfit(
1004 struct xfs_buf *bp,
1005 struct xfs_inode *dp)
1006 {
1007 struct xfs_attr_leafblock *leaf;
1008 struct xfs_attr_leaf_entry *entry;
1009 xfs_attr_leaf_name_local_t *name_loc;
1010 struct xfs_attr3_icleaf_hdr leafhdr;
1011 int bytes;
1012 int i;
1013 struct xfs_mount *mp = bp->b_mount;
1014
1015 leaf = bp->b_addr;
1016 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
1017 entry = xfs_attr3_leaf_entryp(leaf);
1018
1019 bytes = sizeof(struct xfs_attr_sf_hdr);
1020 for (i = 0; i < leafhdr.count; entry++, i++) {
1021 if (entry->flags & XFS_ATTR_INCOMPLETE)
1022 continue; /* don't copy partial entries */
1023 if (!(entry->flags & XFS_ATTR_LOCAL))
1024 return 0;
1025 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1026 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
1027 return 0;
1028 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
1029 return 0;
1030 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
1031 be16_to_cpu(name_loc->valuelen));
1032 }
1033 if (xfs_has_attr2(dp->i_mount) &&
1034 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
1035 (bytes == sizeof(struct xfs_attr_sf_hdr)))
1036 return -1;
1037 return xfs_attr_shortform_bytesfit(dp, bytes);
1038 }
1039
1040 /* Verify the consistency of an inline attribute fork. */
1041 xfs_failaddr_t
1042 xfs_attr_shortform_verify(
1043 struct xfs_inode *ip)
1044 {
1045 struct xfs_attr_shortform *sfp;
1046 struct xfs_attr_sf_entry *sfep;
1047 struct xfs_attr_sf_entry *next_sfep;
1048 char *endp;
1049 struct xfs_ifork *ifp;
1050 int i;
1051 int64_t size;
1052
1053 ASSERT(ip->i_af.if_format == XFS_DINODE_FMT_LOCAL);
1054 ifp = xfs_ifork_ptr(ip, XFS_ATTR_FORK);
1055 sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
1056 size = ifp->if_bytes;
1057
1058 /*
1059 * Give up if the attribute is way too short.
1060 */
1061 if (size < sizeof(struct xfs_attr_sf_hdr))
1062 return __this_address;
1063
1064 endp = (char *)sfp + size;
1065
1066 /* Check all reported entries */
1067 sfep = &sfp->list[0];
1068 for (i = 0; i < sfp->hdr.count; i++) {
1069 /*
1070 * struct xfs_attr_sf_entry has a variable length.
1071 * Check the fixed-offset parts of the structure are
1072 * within the data buffer.
1073 * xfs_attr_sf_entry is defined with a 1-byte variable
1074 * array at the end, so we must subtract that off.
1075 */
1076 if (((char *)sfep + sizeof(*sfep)) >= endp)
1077 return __this_address;
1078
1079 /* Don't allow names with known bad length. */
1080 if (sfep->namelen == 0)
1081 return __this_address;
1082
1083 /*
1084 * Check that the variable-length part of the structure is
1085 * within the data buffer. The next entry starts after the
1086 * name component, so nextentry is an acceptable test.
1087 */
1088 next_sfep = xfs_attr_sf_nextentry(sfep);
1089 if ((char *)next_sfep > endp)
1090 return __this_address;
1091
1092 /*
1093 * Check for unknown flags. Short form doesn't support
1094 * the incomplete or local bits, so we can use the namespace
1095 * mask here.
1096 */
1097 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
1098 return __this_address;
1099
1100 /*
1101 * Check for invalid namespace combinations. We only allow
1102 * one namespace flag per xattr, so we can just count the
1103 * bits (i.e. hweight) here.
1104 */
1105 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1)
1106 return __this_address;
1107
1108 sfep = next_sfep;
1109 }
1110 if ((void *)sfep != (void *)endp)
1111 return __this_address;
1112
1113 return NULL;
1114 }
1115
1116 /*
1117 * Convert a leaf attribute list to shortform attribute list
1118 */
1119 int
1120 xfs_attr3_leaf_to_shortform(
1121 struct xfs_buf *bp,
1122 struct xfs_da_args *args,
1123 int forkoff)
1124 {
1125 struct xfs_attr_leafblock *leaf;
1126 struct xfs_attr3_icleaf_hdr ichdr;
1127 struct xfs_attr_leaf_entry *entry;
1128 struct xfs_attr_leaf_name_local *name_loc;
1129 struct xfs_da_args nargs;
1130 struct xfs_inode *dp = args->dp;
1131 char *tmpbuffer;
1132 int error;
1133 int i;
1134
1135 trace_xfs_attr_leaf_to_sf(args);
1136
1137 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1138 if (!tmpbuffer)
1139 return -ENOMEM;
1140
1141 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1142
1143 leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1144 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1145 entry = xfs_attr3_leaf_entryp(leaf);
1146
1147 /* XXX (dgc): buffer is about to be marked stale - why zero it? */
1148 memset(bp->b_addr, 0, args->geo->blksize);
1149
1150 /*
1151 * Clean out the prior contents of the attribute list.
1152 */
1153 error = xfs_da_shrink_inode(args, 0, bp);
1154 if (error)
1155 goto out;
1156
1157 if (forkoff == -1) {
1158 /*
1159 * Don't remove the attr fork if this operation is the first
1160 * part of a attr replace operations. We're going to add a new
1161 * attr immediately, so we need to keep the attr fork around in
1162 * this case.
1163 */
1164 if (!(args->op_flags & XFS_DA_OP_REPLACE)) {
1165 ASSERT(xfs_has_attr2(dp->i_mount));
1166 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
1167 xfs_attr_fork_remove(dp, args->trans);
1168 }
1169 goto out;
1170 }
1171
1172 xfs_attr_shortform_create(args);
1173
1174 /*
1175 * Copy the attributes
1176 */
1177 memset((char *)&nargs, 0, sizeof(nargs));
1178 nargs.geo = args->geo;
1179 nargs.dp = dp;
1180 nargs.total = args->total;
1181 nargs.whichfork = XFS_ATTR_FORK;
1182 nargs.trans = args->trans;
1183 nargs.op_flags = XFS_DA_OP_OKNOENT;
1184
1185 for (i = 0; i < ichdr.count; entry++, i++) {
1186 if (entry->flags & XFS_ATTR_INCOMPLETE)
1187 continue; /* don't copy partial entries */
1188 if (!entry->nameidx)
1189 continue;
1190 ASSERT(entry->flags & XFS_ATTR_LOCAL);
1191 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1192 nargs.name = name_loc->nameval;
1193 nargs.namelen = name_loc->namelen;
1194 nargs.value = &name_loc->nameval[nargs.namelen];
1195 nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1196 nargs.hashval = be32_to_cpu(entry->hashval);
1197 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
1198 xfs_attr_shortform_add(&nargs, forkoff);
1199 }
1200 error = 0;
1201
1202 out:
1203 kmem_free(tmpbuffer);
1204 return error;
1205 }
1206
1207 /*
1208 * Convert from using a single leaf to a root node and a leaf.
1209 */
1210 int
1211 xfs_attr3_leaf_to_node(
1212 struct xfs_da_args *args)
1213 {
1214 struct xfs_attr_leafblock *leaf;
1215 struct xfs_attr3_icleaf_hdr icleafhdr;
1216 struct xfs_attr_leaf_entry *entries;
1217 struct xfs_da3_icnode_hdr icnodehdr;
1218 struct xfs_da_intnode *node;
1219 struct xfs_inode *dp = args->dp;
1220 struct xfs_mount *mp = dp->i_mount;
1221 struct xfs_buf *bp1 = NULL;
1222 struct xfs_buf *bp2 = NULL;
1223 xfs_dablk_t blkno;
1224 int error;
1225
1226 trace_xfs_attr_leaf_to_node(args);
1227
1228 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) {
1229 error = -EIO;
1230 goto out;
1231 }
1232
1233 error = xfs_da_grow_inode(args, &blkno);
1234 if (error)
1235 goto out;
1236 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1);
1237 if (error)
1238 goto out;
1239
1240 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
1241 if (error)
1242 goto out;
1243
1244 /* copy leaf to new buffer, update identifiers */
1245 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
1246 bp2->b_ops = bp1->b_ops;
1247 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize);
1248 if (xfs_has_crc(mp)) {
1249 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
1250 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp2));
1251 }
1252 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1253
1254 /*
1255 * Set up the new root node.
1256 */
1257 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1258 if (error)
1259 goto out;
1260 node = bp1->b_addr;
1261 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
1262
1263 leaf = bp2->b_addr;
1264 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1265 entries = xfs_attr3_leaf_entryp(leaf);
1266
1267 /* both on-disk, don't endian-flip twice */
1268 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1269 icnodehdr.btree[0].before = cpu_to_be32(blkno);
1270 icnodehdr.count = 1;
1271 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
1272 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1273 error = 0;
1274 out:
1275 return error;
1276 }
1277
1278 /*========================================================================
1279 * Routines used for growing the Btree.
1280 *========================================================================*/
1281
1282 /*
1283 * Create the initial contents of a leaf attribute list
1284 * or a leaf in a node attribute list.
1285 */
1286 STATIC int
1287 xfs_attr3_leaf_create(
1288 struct xfs_da_args *args,
1289 xfs_dablk_t blkno,
1290 struct xfs_buf **bpp)
1291 {
1292 struct xfs_attr_leafblock *leaf;
1293 struct xfs_attr3_icleaf_hdr ichdr;
1294 struct xfs_inode *dp = args->dp;
1295 struct xfs_mount *mp = dp->i_mount;
1296 struct xfs_buf *bp;
1297 int error;
1298
1299 trace_xfs_attr_leaf_create(args);
1300
1301 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
1302 XFS_ATTR_FORK);
1303 if (error)
1304 return error;
1305 bp->b_ops = &xfs_attr3_leaf_buf_ops;
1306 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1307 leaf = bp->b_addr;
1308 memset(leaf, 0, args->geo->blksize);
1309
1310 memset(&ichdr, 0, sizeof(ichdr));
1311 ichdr.firstused = args->geo->blksize;
1312
1313 if (xfs_has_crc(mp)) {
1314 struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1315
1316 ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1317
1318 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp));
1319 hdr3->owner = cpu_to_be64(dp->i_ino);
1320 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1321
1322 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1323 } else {
1324 ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1325 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1326 }
1327 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1328
1329 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1330 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1331
1332 *bpp = bp;
1333 return 0;
1334 }
1335
1336 /*
1337 * Split the leaf node, rebalance, then add the new entry.
1338 */
1339 int
1340 xfs_attr3_leaf_split(
1341 struct xfs_da_state *state,
1342 struct xfs_da_state_blk *oldblk,
1343 struct xfs_da_state_blk *newblk)
1344 {
1345 xfs_dablk_t blkno;
1346 int error;
1347
1348 trace_xfs_attr_leaf_split(state->args);
1349
1350 /*
1351 * Allocate space for a new leaf node.
1352 */
1353 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1354 error = xfs_da_grow_inode(state->args, &blkno);
1355 if (error)
1356 return error;
1357 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1358 if (error)
1359 return error;
1360 newblk->blkno = blkno;
1361 newblk->magic = XFS_ATTR_LEAF_MAGIC;
1362
1363 /*
1364 * Rebalance the entries across the two leaves.
1365 * NOTE: rebalance() currently depends on the 2nd block being empty.
1366 */
1367 xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1368 error = xfs_da3_blk_link(state, oldblk, newblk);
1369 if (error)
1370 return error;
1371
1372 /*
1373 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1374 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1375 * "new" attrs info. Will need the "old" info to remove it later.
1376 *
1377 * Insert the "new" entry in the correct block.
1378 */
1379 if (state->inleaf) {
1380 trace_xfs_attr_leaf_add_old(state->args);
1381 error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1382 } else {
1383 trace_xfs_attr_leaf_add_new(state->args);
1384 error = xfs_attr3_leaf_add(newblk->bp, state->args);
1385 }
1386
1387 /*
1388 * Update last hashval in each block since we added the name.
1389 */
1390 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1391 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1392 return error;
1393 }
1394
1395 /*
1396 * Add a name to the leaf attribute list structure.
1397 */
1398 int
1399 xfs_attr3_leaf_add(
1400 struct xfs_buf *bp,
1401 struct xfs_da_args *args)
1402 {
1403 struct xfs_attr_leafblock *leaf;
1404 struct xfs_attr3_icleaf_hdr ichdr;
1405 int tablesize;
1406 int entsize;
1407 int sum;
1408 int tmp;
1409 int i;
1410
1411 trace_xfs_attr_leaf_add(args);
1412
1413 leaf = bp->b_addr;
1414 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1415 ASSERT(args->index >= 0 && args->index <= ichdr.count);
1416 entsize = xfs_attr_leaf_newentsize(args, NULL);
1417
1418 /*
1419 * Search through freemap for first-fit on new name length.
1420 * (may need to figure in size of entry struct too)
1421 */
1422 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1423 + xfs_attr3_leaf_hdr_size(leaf);
1424 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1425 if (tablesize > ichdr.firstused) {
1426 sum += ichdr.freemap[i].size;
1427 continue;
1428 }
1429 if (!ichdr.freemap[i].size)
1430 continue; /* no space in this map */
1431 tmp = entsize;
1432 if (ichdr.freemap[i].base < ichdr.firstused)
1433 tmp += sizeof(xfs_attr_leaf_entry_t);
1434 if (ichdr.freemap[i].size >= tmp) {
1435 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1436 goto out_log_hdr;
1437 }
1438 sum += ichdr.freemap[i].size;
1439 }
1440
1441 /*
1442 * If there are no holes in the address space of the block,
1443 * and we don't have enough freespace, then compaction will do us
1444 * no good and we should just give up.
1445 */
1446 if (!ichdr.holes && sum < entsize)
1447 return -ENOSPC;
1448
1449 /*
1450 * Compact the entries to coalesce free space.
1451 * This may change the hdr->count via dropping INCOMPLETE entries.
1452 */
1453 xfs_attr3_leaf_compact(args, &ichdr, bp);
1454
1455 /*
1456 * After compaction, the block is guaranteed to have only one
1457 * free region, in freemap[0]. If it is not big enough, give up.
1458 */
1459 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1460 tmp = -ENOSPC;
1461 goto out_log_hdr;
1462 }
1463
1464 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1465
1466 out_log_hdr:
1467 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1468 xfs_trans_log_buf(args->trans, bp,
1469 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1470 xfs_attr3_leaf_hdr_size(leaf)));
1471 return tmp;
1472 }
1473
1474 /*
1475 * Add a name to a leaf attribute list structure.
1476 */
1477 STATIC int
1478 xfs_attr3_leaf_add_work(
1479 struct xfs_buf *bp,
1480 struct xfs_attr3_icleaf_hdr *ichdr,
1481 struct xfs_da_args *args,
1482 int mapindex)
1483 {
1484 struct xfs_attr_leafblock *leaf;
1485 struct xfs_attr_leaf_entry *entry;
1486 struct xfs_attr_leaf_name_local *name_loc;
1487 struct xfs_attr_leaf_name_remote *name_rmt;
1488 struct xfs_mount *mp;
1489 int tmp;
1490 int i;
1491
1492 trace_xfs_attr_leaf_add_work(args);
1493
1494 leaf = bp->b_addr;
1495 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1496 ASSERT(args->index >= 0 && args->index <= ichdr->count);
1497
1498 /*
1499 * Force open some space in the entry array and fill it in.
1500 */
1501 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1502 if (args->index < ichdr->count) {
1503 tmp = ichdr->count - args->index;
1504 tmp *= sizeof(xfs_attr_leaf_entry_t);
1505 memmove(entry + 1, entry, tmp);
1506 xfs_trans_log_buf(args->trans, bp,
1507 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1508 }
1509 ichdr->count++;
1510
1511 /*
1512 * Allocate space for the new string (at the end of the run).
1513 */
1514 mp = args->trans->t_mountp;
1515 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1516 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1517 ASSERT(ichdr->freemap[mapindex].size >=
1518 xfs_attr_leaf_newentsize(args, NULL));
1519 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1520 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1521
1522 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1523
1524 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1525 ichdr->freemap[mapindex].size);
1526 entry->hashval = cpu_to_be32(args->hashval);
1527 entry->flags = args->attr_filter;
1528 if (tmp)
1529 entry->flags |= XFS_ATTR_LOCAL;
1530 if (args->op_flags & XFS_DA_OP_REPLACE) {
1531 if (!(args->op_flags & XFS_DA_OP_LOGGED))
1532 entry->flags |= XFS_ATTR_INCOMPLETE;
1533 if ((args->blkno2 == args->blkno) &&
1534 (args->index2 <= args->index)) {
1535 args->index2++;
1536 }
1537 }
1538 xfs_trans_log_buf(args->trans, bp,
1539 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1540 ASSERT((args->index == 0) ||
1541 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1542 ASSERT((args->index == ichdr->count - 1) ||
1543 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1544
1545 /*
1546 * For "remote" attribute values, simply note that we need to
1547 * allocate space for the "remote" value. We can't actually
1548 * allocate the extents in this transaction, and we can't decide
1549 * which blocks they should be as we might allocate more blocks
1550 * as part of this transaction (a split operation for example).
1551 */
1552 if (entry->flags & XFS_ATTR_LOCAL) {
1553 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1554 name_loc->namelen = args->namelen;
1555 name_loc->valuelen = cpu_to_be16(args->valuelen);
1556 memcpy((char *)name_loc->nameval, args->name, args->namelen);
1557 memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1558 be16_to_cpu(name_loc->valuelen));
1559 } else {
1560 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1561 name_rmt->namelen = args->namelen;
1562 memcpy((char *)name_rmt->name, args->name, args->namelen);
1563 entry->flags |= XFS_ATTR_INCOMPLETE;
1564 /* just in case */
1565 name_rmt->valuelen = 0;
1566 name_rmt->valueblk = 0;
1567 args->rmtblkno = 1;
1568 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1569 args->rmtvaluelen = args->valuelen;
1570 }
1571 xfs_trans_log_buf(args->trans, bp,
1572 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1573 xfs_attr_leaf_entsize(leaf, args->index)));
1574
1575 /*
1576 * Update the control info for this leaf node
1577 */
1578 if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1579 ichdr->firstused = be16_to_cpu(entry->nameidx);
1580
1581 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1582 + xfs_attr3_leaf_hdr_size(leaf));
1583 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1584 + xfs_attr3_leaf_hdr_size(leaf);
1585
1586 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1587 if (ichdr->freemap[i].base == tmp) {
1588 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1589 ichdr->freemap[i].size -=
1590 min_t(uint16_t, ichdr->freemap[i].size,
1591 sizeof(xfs_attr_leaf_entry_t));
1592 }
1593 }
1594 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1595 return 0;
1596 }
1597
1598 /*
1599 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1600 */
1601 STATIC void
1602 xfs_attr3_leaf_compact(
1603 struct xfs_da_args *args,
1604 struct xfs_attr3_icleaf_hdr *ichdr_dst,
1605 struct xfs_buf *bp)
1606 {
1607 struct xfs_attr_leafblock *leaf_src;
1608 struct xfs_attr_leafblock *leaf_dst;
1609 struct xfs_attr3_icleaf_hdr ichdr_src;
1610 struct xfs_trans *trans = args->trans;
1611 char *tmpbuffer;
1612
1613 trace_xfs_attr_leaf_compact(args);
1614
1615 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1616 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1617 memset(bp->b_addr, 0, args->geo->blksize);
1618 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1619 leaf_dst = bp->b_addr;
1620
1621 /*
1622 * Copy the on-disk header back into the destination buffer to ensure
1623 * all the information in the header that is not part of the incore
1624 * header structure is preserved.
1625 */
1626 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1627
1628 /* Initialise the incore headers */
1629 ichdr_src = *ichdr_dst; /* struct copy */
1630 ichdr_dst->firstused = args->geo->blksize;
1631 ichdr_dst->usedbytes = 0;
1632 ichdr_dst->count = 0;
1633 ichdr_dst->holes = 0;
1634 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1635 ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1636 ichdr_dst->freemap[0].base;
1637
1638 /* write the header back to initialise the underlying buffer */
1639 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1640
1641 /*
1642 * Copy all entry's in the same (sorted) order,
1643 * but allocate name/value pairs packed and in sequence.
1644 */
1645 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1646 leaf_dst, ichdr_dst, 0, ichdr_src.count);
1647 /*
1648 * this logs the entire buffer, but the caller must write the header
1649 * back to the buffer when it is finished modifying it.
1650 */
1651 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1652
1653 kmem_free(tmpbuffer);
1654 }
1655
1656 /*
1657 * Compare two leaf blocks "order".
1658 * Return 0 unless leaf2 should go before leaf1.
1659 */
1660 static int
1661 xfs_attr3_leaf_order(
1662 struct xfs_buf *leaf1_bp,
1663 struct xfs_attr3_icleaf_hdr *leaf1hdr,
1664 struct xfs_buf *leaf2_bp,
1665 struct xfs_attr3_icleaf_hdr *leaf2hdr)
1666 {
1667 struct xfs_attr_leaf_entry *entries1;
1668 struct xfs_attr_leaf_entry *entries2;
1669
1670 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1671 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1672 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1673 ((be32_to_cpu(entries2[0].hashval) <
1674 be32_to_cpu(entries1[0].hashval)) ||
1675 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1676 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1677 return 1;
1678 }
1679 return 0;
1680 }
1681
1682 int
1683 xfs_attr_leaf_order(
1684 struct xfs_buf *leaf1_bp,
1685 struct xfs_buf *leaf2_bp)
1686 {
1687 struct xfs_attr3_icleaf_hdr ichdr1;
1688 struct xfs_attr3_icleaf_hdr ichdr2;
1689 struct xfs_mount *mp = leaf1_bp->b_mount;
1690
1691 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1692 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1693 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1694 }
1695
1696 /*
1697 * Redistribute the attribute list entries between two leaf nodes,
1698 * taking into account the size of the new entry.
1699 *
1700 * NOTE: if new block is empty, then it will get the upper half of the
1701 * old block. At present, all (one) callers pass in an empty second block.
1702 *
1703 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1704 * to match what it is doing in splitting the attribute leaf block. Those
1705 * values are used in "atomic rename" operations on attributes. Note that
1706 * the "new" and "old" values can end up in different blocks.
1707 */
1708 STATIC void
1709 xfs_attr3_leaf_rebalance(
1710 struct xfs_da_state *state,
1711 struct xfs_da_state_blk *blk1,
1712 struct xfs_da_state_blk *blk2)
1713 {
1714 struct xfs_da_args *args;
1715 struct xfs_attr_leafblock *leaf1;
1716 struct xfs_attr_leafblock *leaf2;
1717 struct xfs_attr3_icleaf_hdr ichdr1;
1718 struct xfs_attr3_icleaf_hdr ichdr2;
1719 struct xfs_attr_leaf_entry *entries1;
1720 struct xfs_attr_leaf_entry *entries2;
1721 int count;
1722 int totallen;
1723 int max;
1724 int space;
1725 int swap;
1726
1727 /*
1728 * Set up environment.
1729 */
1730 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1731 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1732 leaf1 = blk1->bp->b_addr;
1733 leaf2 = blk2->bp->b_addr;
1734 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1735 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1736 ASSERT(ichdr2.count == 0);
1737 args = state->args;
1738
1739 trace_xfs_attr_leaf_rebalance(args);
1740
1741 /*
1742 * Check ordering of blocks, reverse if it makes things simpler.
1743 *
1744 * NOTE: Given that all (current) callers pass in an empty
1745 * second block, this code should never set "swap".
1746 */
1747 swap = 0;
1748 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1749 swap(blk1, blk2);
1750
1751 /* swap structures rather than reconverting them */
1752 swap(ichdr1, ichdr2);
1753
1754 leaf1 = blk1->bp->b_addr;
1755 leaf2 = blk2->bp->b_addr;
1756 swap = 1;
1757 }
1758
1759 /*
1760 * Examine entries until we reduce the absolute difference in
1761 * byte usage between the two blocks to a minimum. Then get
1762 * the direction to copy and the number of elements to move.
1763 *
1764 * "inleaf" is true if the new entry should be inserted into blk1.
1765 * If "swap" is also true, then reverse the sense of "inleaf".
1766 */
1767 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1768 blk2, &ichdr2,
1769 &count, &totallen);
1770 if (swap)
1771 state->inleaf = !state->inleaf;
1772
1773 /*
1774 * Move any entries required from leaf to leaf:
1775 */
1776 if (count < ichdr1.count) {
1777 /*
1778 * Figure the total bytes to be added to the destination leaf.
1779 */
1780 /* number entries being moved */
1781 count = ichdr1.count - count;
1782 space = ichdr1.usedbytes - totallen;
1783 space += count * sizeof(xfs_attr_leaf_entry_t);
1784
1785 /*
1786 * leaf2 is the destination, compact it if it looks tight.
1787 */
1788 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1789 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1790 if (space > max)
1791 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1792
1793 /*
1794 * Move high entries from leaf1 to low end of leaf2.
1795 */
1796 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1797 ichdr1.count - count, leaf2, &ichdr2, 0, count);
1798
1799 } else if (count > ichdr1.count) {
1800 /*
1801 * I assert that since all callers pass in an empty
1802 * second buffer, this code should never execute.
1803 */
1804 ASSERT(0);
1805
1806 /*
1807 * Figure the total bytes to be added to the destination leaf.
1808 */
1809 /* number entries being moved */
1810 count -= ichdr1.count;
1811 space = totallen - ichdr1.usedbytes;
1812 space += count * sizeof(xfs_attr_leaf_entry_t);
1813
1814 /*
1815 * leaf1 is the destination, compact it if it looks tight.
1816 */
1817 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1818 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1819 if (space > max)
1820 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1821
1822 /*
1823 * Move low entries from leaf2 to high end of leaf1.
1824 */
1825 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1826 ichdr1.count, count);
1827 }
1828
1829 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1830 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1831 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1832 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1833
1834 /*
1835 * Copy out last hashval in each block for B-tree code.
1836 */
1837 entries1 = xfs_attr3_leaf_entryp(leaf1);
1838 entries2 = xfs_attr3_leaf_entryp(leaf2);
1839 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1840 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1841
1842 /*
1843 * Adjust the expected index for insertion.
1844 * NOTE: this code depends on the (current) situation that the
1845 * second block was originally empty.
1846 *
1847 * If the insertion point moved to the 2nd block, we must adjust
1848 * the index. We must also track the entry just following the
1849 * new entry for use in an "atomic rename" operation, that entry
1850 * is always the "old" entry and the "new" entry is what we are
1851 * inserting. The index/blkno fields refer to the "old" entry,
1852 * while the index2/blkno2 fields refer to the "new" entry.
1853 */
1854 if (blk1->index > ichdr1.count) {
1855 ASSERT(state->inleaf == 0);
1856 blk2->index = blk1->index - ichdr1.count;
1857 args->index = args->index2 = blk2->index;
1858 args->blkno = args->blkno2 = blk2->blkno;
1859 } else if (blk1->index == ichdr1.count) {
1860 if (state->inleaf) {
1861 args->index = blk1->index;
1862 args->blkno = blk1->blkno;
1863 args->index2 = 0;
1864 args->blkno2 = blk2->blkno;
1865 } else {
1866 /*
1867 * On a double leaf split, the original attr location
1868 * is already stored in blkno2/index2, so don't
1869 * overwrite it overwise we corrupt the tree.
1870 */
1871 blk2->index = blk1->index - ichdr1.count;
1872 args->index = blk2->index;
1873 args->blkno = blk2->blkno;
1874 if (!state->extravalid) {
1875 /*
1876 * set the new attr location to match the old
1877 * one and let the higher level split code
1878 * decide where in the leaf to place it.
1879 */
1880 args->index2 = blk2->index;
1881 args->blkno2 = blk2->blkno;
1882 }
1883 }
1884 } else {
1885 ASSERT(state->inleaf == 1);
1886 args->index = args->index2 = blk1->index;
1887 args->blkno = args->blkno2 = blk1->blkno;
1888 }
1889 }
1890
1891 /*
1892 * Examine entries until we reduce the absolute difference in
1893 * byte usage between the two blocks to a minimum.
1894 * GROT: Is this really necessary? With other than a 512 byte blocksize,
1895 * GROT: there will always be enough room in either block for a new entry.
1896 * GROT: Do a double-split for this case?
1897 */
1898 STATIC int
1899 xfs_attr3_leaf_figure_balance(
1900 struct xfs_da_state *state,
1901 struct xfs_da_state_blk *blk1,
1902 struct xfs_attr3_icleaf_hdr *ichdr1,
1903 struct xfs_da_state_blk *blk2,
1904 struct xfs_attr3_icleaf_hdr *ichdr2,
1905 int *countarg,
1906 int *usedbytesarg)
1907 {
1908 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
1909 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
1910 struct xfs_attr_leaf_entry *entry;
1911 int count;
1912 int max;
1913 int index;
1914 int totallen = 0;
1915 int half;
1916 int lastdelta;
1917 int foundit = 0;
1918 int tmp;
1919
1920 /*
1921 * Examine entries until we reduce the absolute difference in
1922 * byte usage between the two blocks to a minimum.
1923 */
1924 max = ichdr1->count + ichdr2->count;
1925 half = (max + 1) * sizeof(*entry);
1926 half += ichdr1->usedbytes + ichdr2->usedbytes +
1927 xfs_attr_leaf_newentsize(state->args, NULL);
1928 half /= 2;
1929 lastdelta = state->args->geo->blksize;
1930 entry = xfs_attr3_leaf_entryp(leaf1);
1931 for (count = index = 0; count < max; entry++, index++, count++) {
1932
1933 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
1934 /*
1935 * The new entry is in the first block, account for it.
1936 */
1937 if (count == blk1->index) {
1938 tmp = totallen + sizeof(*entry) +
1939 xfs_attr_leaf_newentsize(state->args, NULL);
1940 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1941 break;
1942 lastdelta = XFS_ATTR_ABS(half - tmp);
1943 totallen = tmp;
1944 foundit = 1;
1945 }
1946
1947 /*
1948 * Wrap around into the second block if necessary.
1949 */
1950 if (count == ichdr1->count) {
1951 leaf1 = leaf2;
1952 entry = xfs_attr3_leaf_entryp(leaf1);
1953 index = 0;
1954 }
1955
1956 /*
1957 * Figure out if next leaf entry would be too much.
1958 */
1959 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1960 index);
1961 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1962 break;
1963 lastdelta = XFS_ATTR_ABS(half - tmp);
1964 totallen = tmp;
1965 #undef XFS_ATTR_ABS
1966 }
1967
1968 /*
1969 * Calculate the number of usedbytes that will end up in lower block.
1970 * If new entry not in lower block, fix up the count.
1971 */
1972 totallen -= count * sizeof(*entry);
1973 if (foundit) {
1974 totallen -= sizeof(*entry) +
1975 xfs_attr_leaf_newentsize(state->args, NULL);
1976 }
1977
1978 *countarg = count;
1979 *usedbytesarg = totallen;
1980 return foundit;
1981 }
1982
1983 /*========================================================================
1984 * Routines used for shrinking the Btree.
1985 *========================================================================*/
1986
1987 /*
1988 * Check a leaf block and its neighbors to see if the block should be
1989 * collapsed into one or the other neighbor. Always keep the block
1990 * with the smaller block number.
1991 * If the current block is over 50% full, don't try to join it, return 0.
1992 * If the block is empty, fill in the state structure and return 2.
1993 * If it can be collapsed, fill in the state structure and return 1.
1994 * If nothing can be done, return 0.
1995 *
1996 * GROT: allow for INCOMPLETE entries in calculation.
1997 */
1998 int
1999 xfs_attr3_leaf_toosmall(
2000 struct xfs_da_state *state,
2001 int *action)
2002 {
2003 struct xfs_attr_leafblock *leaf;
2004 struct xfs_da_state_blk *blk;
2005 struct xfs_attr3_icleaf_hdr ichdr;
2006 struct xfs_buf *bp;
2007 xfs_dablk_t blkno;
2008 int bytes;
2009 int forward;
2010 int error;
2011 int retval;
2012 int i;
2013
2014 trace_xfs_attr_leaf_toosmall(state->args);
2015
2016 /*
2017 * Check for the degenerate case of the block being over 50% full.
2018 * If so, it's not worth even looking to see if we might be able
2019 * to coalesce with a sibling.
2020 */
2021 blk = &state->path.blk[ state->path.active-1 ];
2022 leaf = blk->bp->b_addr;
2023 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
2024 bytes = xfs_attr3_leaf_hdr_size(leaf) +
2025 ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
2026 ichdr.usedbytes;
2027 if (bytes > (state->args->geo->blksize >> 1)) {
2028 *action = 0; /* blk over 50%, don't try to join */
2029 return 0;
2030 }
2031
2032 /*
2033 * Check for the degenerate case of the block being empty.
2034 * If the block is empty, we'll simply delete it, no need to
2035 * coalesce it with a sibling block. We choose (arbitrarily)
2036 * to merge with the forward block unless it is NULL.
2037 */
2038 if (ichdr.count == 0) {
2039 /*
2040 * Make altpath point to the block we want to keep and
2041 * path point to the block we want to drop (this one).
2042 */
2043 forward = (ichdr.forw != 0);
2044 memcpy(&state->altpath, &state->path, sizeof(state->path));
2045 error = xfs_da3_path_shift(state, &state->altpath, forward,
2046 0, &retval);
2047 if (error)
2048 return error;
2049 if (retval) {
2050 *action = 0;
2051 } else {
2052 *action = 2;
2053 }
2054 return 0;
2055 }
2056
2057 /*
2058 * Examine each sibling block to see if we can coalesce with
2059 * at least 25% free space to spare. We need to figure out
2060 * whether to merge with the forward or the backward block.
2061 * We prefer coalescing with the lower numbered sibling so as
2062 * to shrink an attribute list over time.
2063 */
2064 /* start with smaller blk num */
2065 forward = ichdr.forw < ichdr.back;
2066 for (i = 0; i < 2; forward = !forward, i++) {
2067 struct xfs_attr3_icleaf_hdr ichdr2;
2068 if (forward)
2069 blkno = ichdr.forw;
2070 else
2071 blkno = ichdr.back;
2072 if (blkno == 0)
2073 continue;
2074 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
2075 blkno, &bp);
2076 if (error)
2077 return error;
2078
2079 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
2080
2081 bytes = state->args->geo->blksize -
2082 (state->args->geo->blksize >> 2) -
2083 ichdr.usedbytes - ichdr2.usedbytes -
2084 ((ichdr.count + ichdr2.count) *
2085 sizeof(xfs_attr_leaf_entry_t)) -
2086 xfs_attr3_leaf_hdr_size(leaf);
2087
2088 xfs_trans_brelse(state->args->trans, bp);
2089 if (bytes >= 0)
2090 break; /* fits with at least 25% to spare */
2091 }
2092 if (i >= 2) {
2093 *action = 0;
2094 return 0;
2095 }
2096
2097 /*
2098 * Make altpath point to the block we want to keep (the lower
2099 * numbered block) and path point to the block we want to drop.
2100 */
2101 memcpy(&state->altpath, &state->path, sizeof(state->path));
2102 if (blkno < blk->blkno) {
2103 error = xfs_da3_path_shift(state, &state->altpath, forward,
2104 0, &retval);
2105 } else {
2106 error = xfs_da3_path_shift(state, &state->path, forward,
2107 0, &retval);
2108 }
2109 if (error)
2110 return error;
2111 if (retval) {
2112 *action = 0;
2113 } else {
2114 *action = 1;
2115 }
2116 return 0;
2117 }
2118
2119 /*
2120 * Remove a name from the leaf attribute list structure.
2121 *
2122 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
2123 * If two leaves are 37% full, when combined they will leave 25% free.
2124 */
2125 int
2126 xfs_attr3_leaf_remove(
2127 struct xfs_buf *bp,
2128 struct xfs_da_args *args)
2129 {
2130 struct xfs_attr_leafblock *leaf;
2131 struct xfs_attr3_icleaf_hdr ichdr;
2132 struct xfs_attr_leaf_entry *entry;
2133 int before;
2134 int after;
2135 int smallest;
2136 int entsize;
2137 int tablesize;
2138 int tmp;
2139 int i;
2140
2141 trace_xfs_attr_leaf_remove(args);
2142
2143 leaf = bp->b_addr;
2144 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2145
2146 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2147 ASSERT(args->index >= 0 && args->index < ichdr.count);
2148 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2149 xfs_attr3_leaf_hdr_size(leaf));
2150
2151 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2152
2153 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2154 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2155
2156 /*
2157 * Scan through free region table:
2158 * check for adjacency of free'd entry with an existing one,
2159 * find smallest free region in case we need to replace it,
2160 * adjust any map that borders the entry table,
2161 */
2162 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2163 + xfs_attr3_leaf_hdr_size(leaf);
2164 tmp = ichdr.freemap[0].size;
2165 before = after = -1;
2166 smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2167 entsize = xfs_attr_leaf_entsize(leaf, args->index);
2168 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2169 ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2170 ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2171 if (ichdr.freemap[i].base == tablesize) {
2172 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2173 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2174 }
2175
2176 if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2177 be16_to_cpu(entry->nameidx)) {
2178 before = i;
2179 } else if (ichdr.freemap[i].base ==
2180 (be16_to_cpu(entry->nameidx) + entsize)) {
2181 after = i;
2182 } else if (ichdr.freemap[i].size < tmp) {
2183 tmp = ichdr.freemap[i].size;
2184 smallest = i;
2185 }
2186 }
2187
2188 /*
2189 * Coalesce adjacent freemap regions,
2190 * or replace the smallest region.
2191 */
2192 if ((before >= 0) || (after >= 0)) {
2193 if ((before >= 0) && (after >= 0)) {
2194 ichdr.freemap[before].size += entsize;
2195 ichdr.freemap[before].size += ichdr.freemap[after].size;
2196 ichdr.freemap[after].base = 0;
2197 ichdr.freemap[after].size = 0;
2198 } else if (before >= 0) {
2199 ichdr.freemap[before].size += entsize;
2200 } else {
2201 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2202 ichdr.freemap[after].size += entsize;
2203 }
2204 } else {
2205 /*
2206 * Replace smallest region (if it is smaller than free'd entry)
2207 */
2208 if (ichdr.freemap[smallest].size < entsize) {
2209 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2210 ichdr.freemap[smallest].size = entsize;
2211 }
2212 }
2213
2214 /*
2215 * Did we remove the first entry?
2216 */
2217 if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2218 smallest = 1;
2219 else
2220 smallest = 0;
2221
2222 /*
2223 * Compress the remaining entries and zero out the removed stuff.
2224 */
2225 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2226 ichdr.usedbytes -= entsize;
2227 xfs_trans_log_buf(args->trans, bp,
2228 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2229 entsize));
2230
2231 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2232 memmove(entry, entry + 1, tmp);
2233 ichdr.count--;
2234 xfs_trans_log_buf(args->trans, bp,
2235 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2236
2237 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2238 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2239
2240 /*
2241 * If we removed the first entry, re-find the first used byte
2242 * in the name area. Note that if the entry was the "firstused",
2243 * then we don't have a "hole" in our block resulting from
2244 * removing the name.
2245 */
2246 if (smallest) {
2247 tmp = args->geo->blksize;
2248 entry = xfs_attr3_leaf_entryp(leaf);
2249 for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2250 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2251 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2252
2253 if (be16_to_cpu(entry->nameidx) < tmp)
2254 tmp = be16_to_cpu(entry->nameidx);
2255 }
2256 ichdr.firstused = tmp;
2257 ASSERT(ichdr.firstused != 0);
2258 } else {
2259 ichdr.holes = 1; /* mark as needing compaction */
2260 }
2261 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2262 xfs_trans_log_buf(args->trans, bp,
2263 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2264 xfs_attr3_leaf_hdr_size(leaf)));
2265
2266 /*
2267 * Check if leaf is less than 50% full, caller may want to
2268 * "join" the leaf with a sibling if so.
2269 */
2270 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2271 ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2272
2273 return tmp < args->geo->magicpct; /* leaf is < 37% full */
2274 }
2275
2276 /*
2277 * Move all the attribute list entries from drop_leaf into save_leaf.
2278 */
2279 void
2280 xfs_attr3_leaf_unbalance(
2281 struct xfs_da_state *state,
2282 struct xfs_da_state_blk *drop_blk,
2283 struct xfs_da_state_blk *save_blk)
2284 {
2285 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2286 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2287 struct xfs_attr3_icleaf_hdr drophdr;
2288 struct xfs_attr3_icleaf_hdr savehdr;
2289 struct xfs_attr_leaf_entry *entry;
2290
2291 trace_xfs_attr_leaf_unbalance(state->args);
2292
2293 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2294 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2295 entry = xfs_attr3_leaf_entryp(drop_leaf);
2296
2297 /*
2298 * Save last hashval from dying block for later Btree fixup.
2299 */
2300 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2301
2302 /*
2303 * Check if we need a temp buffer, or can we do it in place.
2304 * Note that we don't check "leaf" for holes because we will
2305 * always be dropping it, toosmall() decided that for us already.
2306 */
2307 if (savehdr.holes == 0) {
2308 /*
2309 * dest leaf has no holes, so we add there. May need
2310 * to make some room in the entry array.
2311 */
2312 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2313 drop_blk->bp, &drophdr)) {
2314 xfs_attr3_leaf_moveents(state->args,
2315 drop_leaf, &drophdr, 0,
2316 save_leaf, &savehdr, 0,
2317 drophdr.count);
2318 } else {
2319 xfs_attr3_leaf_moveents(state->args,
2320 drop_leaf, &drophdr, 0,
2321 save_leaf, &savehdr,
2322 savehdr.count, drophdr.count);
2323 }
2324 } else {
2325 /*
2326 * Destination has holes, so we make a temporary copy
2327 * of the leaf and add them both to that.
2328 */
2329 struct xfs_attr_leafblock *tmp_leaf;
2330 struct xfs_attr3_icleaf_hdr tmphdr;
2331
2332 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0);
2333
2334 /*
2335 * Copy the header into the temp leaf so that all the stuff
2336 * not in the incore header is present and gets copied back in
2337 * once we've moved all the entries.
2338 */
2339 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2340
2341 memset(&tmphdr, 0, sizeof(tmphdr));
2342 tmphdr.magic = savehdr.magic;
2343 tmphdr.forw = savehdr.forw;
2344 tmphdr.back = savehdr.back;
2345 tmphdr.firstused = state->args->geo->blksize;
2346
2347 /* write the header to the temp buffer to initialise it */
2348 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2349
2350 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2351 drop_blk->bp, &drophdr)) {
2352 xfs_attr3_leaf_moveents(state->args,
2353 drop_leaf, &drophdr, 0,
2354 tmp_leaf, &tmphdr, 0,
2355 drophdr.count);
2356 xfs_attr3_leaf_moveents(state->args,
2357 save_leaf, &savehdr, 0,
2358 tmp_leaf, &tmphdr, tmphdr.count,
2359 savehdr.count);
2360 } else {
2361 xfs_attr3_leaf_moveents(state->args,
2362 save_leaf, &savehdr, 0,
2363 tmp_leaf, &tmphdr, 0,
2364 savehdr.count);
2365 xfs_attr3_leaf_moveents(state->args,
2366 drop_leaf, &drophdr, 0,
2367 tmp_leaf, &tmphdr, tmphdr.count,
2368 drophdr.count);
2369 }
2370 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2371 savehdr = tmphdr; /* struct copy */
2372 kmem_free(tmp_leaf);
2373 }
2374
2375 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2376 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2377 state->args->geo->blksize - 1);
2378
2379 /*
2380 * Copy out last hashval in each block for B-tree code.
2381 */
2382 entry = xfs_attr3_leaf_entryp(save_leaf);
2383 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2384 }
2385
2386 /*========================================================================
2387 * Routines used for finding things in the Btree.
2388 *========================================================================*/
2389
2390 /*
2391 * Look up a name in a leaf attribute list structure.
2392 * This is the internal routine, it uses the caller's buffer.
2393 *
2394 * Note that duplicate keys are allowed, but only check within the
2395 * current leaf node. The Btree code must check in adjacent leaf nodes.
2396 *
2397 * Return in args->index the index into the entry[] array of either
2398 * the found entry, or where the entry should have been (insert before
2399 * that entry).
2400 *
2401 * Don't change the args->value unless we find the attribute.
2402 */
2403 int
2404 xfs_attr3_leaf_lookup_int(
2405 struct xfs_buf *bp,
2406 struct xfs_da_args *args)
2407 {
2408 struct xfs_attr_leafblock *leaf;
2409 struct xfs_attr3_icleaf_hdr ichdr;
2410 struct xfs_attr_leaf_entry *entry;
2411 struct xfs_attr_leaf_entry *entries;
2412 struct xfs_attr_leaf_name_local *name_loc;
2413 struct xfs_attr_leaf_name_remote *name_rmt;
2414 xfs_dahash_t hashval;
2415 int probe;
2416 int span;
2417
2418 trace_xfs_attr_leaf_lookup(args);
2419
2420 leaf = bp->b_addr;
2421 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2422 entries = xfs_attr3_leaf_entryp(leaf);
2423 if (ichdr.count >= args->geo->blksize / 8) {
2424 xfs_buf_mark_corrupt(bp);
2425 return -EFSCORRUPTED;
2426 }
2427
2428 /*
2429 * Binary search. (note: small blocks will skip this loop)
2430 */
2431 hashval = args->hashval;
2432 probe = span = ichdr.count / 2;
2433 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2434 span /= 2;
2435 if (be32_to_cpu(entry->hashval) < hashval)
2436 probe += span;
2437 else if (be32_to_cpu(entry->hashval) > hashval)
2438 probe -= span;
2439 else
2440 break;
2441 }
2442 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2443 xfs_buf_mark_corrupt(bp);
2444 return -EFSCORRUPTED;
2445 }
2446 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2447 xfs_buf_mark_corrupt(bp);
2448 return -EFSCORRUPTED;
2449 }
2450
2451 /*
2452 * Since we may have duplicate hashval's, find the first matching
2453 * hashval in the leaf.
2454 */
2455 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2456 entry--;
2457 probe--;
2458 }
2459 while (probe < ichdr.count &&
2460 be32_to_cpu(entry->hashval) < hashval) {
2461 entry++;
2462 probe++;
2463 }
2464 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2465 args->index = probe;
2466 return -ENOATTR;
2467 }
2468
2469 /*
2470 * Duplicate keys may be present, so search all of them for a match.
2471 */
2472 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2473 entry++, probe++) {
2474 /*
2475 * GROT: Add code to remove incomplete entries.
2476 */
2477 if (entry->flags & XFS_ATTR_LOCAL) {
2478 name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2479 if (!xfs_attr_match(args, name_loc->namelen,
2480 name_loc->nameval, entry->flags))
2481 continue;
2482 args->index = probe;
2483 return -EEXIST;
2484 } else {
2485 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2486 if (!xfs_attr_match(args, name_rmt->namelen,
2487 name_rmt->name, entry->flags))
2488 continue;
2489 args->index = probe;
2490 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2491 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2492 args->rmtblkcnt = xfs_attr3_rmt_blocks(
2493 args->dp->i_mount,
2494 args->rmtvaluelen);
2495 return -EEXIST;
2496 }
2497 }
2498 args->index = probe;
2499 return -ENOATTR;
2500 }
2501
2502 /*
2503 * Get the value associated with an attribute name from a leaf attribute
2504 * list structure.
2505 *
2506 * If args->valuelen is zero, only the length needs to be returned. Unlike a
2507 * lookup, we only return an error if the attribute does not exist or we can't
2508 * retrieve the value.
2509 */
2510 int
2511 xfs_attr3_leaf_getvalue(
2512 struct xfs_buf *bp,
2513 struct xfs_da_args *args)
2514 {
2515 struct xfs_attr_leafblock *leaf;
2516 struct xfs_attr3_icleaf_hdr ichdr;
2517 struct xfs_attr_leaf_entry *entry;
2518 struct xfs_attr_leaf_name_local *name_loc;
2519 struct xfs_attr_leaf_name_remote *name_rmt;
2520
2521 leaf = bp->b_addr;
2522 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2523 ASSERT(ichdr.count < args->geo->blksize / 8);
2524 ASSERT(args->index < ichdr.count);
2525
2526 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2527 if (entry->flags & XFS_ATTR_LOCAL) {
2528 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2529 ASSERT(name_loc->namelen == args->namelen);
2530 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2531 return xfs_attr_copy_value(args,
2532 &name_loc->nameval[args->namelen],
2533 be16_to_cpu(name_loc->valuelen));
2534 }
2535
2536 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2537 ASSERT(name_rmt->namelen == args->namelen);
2538 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2539 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2540 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2541 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2542 args->rmtvaluelen);
2543 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2544 }
2545
2546 /*========================================================================
2547 * Utility routines.
2548 *========================================================================*/
2549
2550 /*
2551 * Move the indicated entries from one leaf to another.
2552 * NOTE: this routine modifies both source and destination leaves.
2553 */
2554 /*ARGSUSED*/
2555 STATIC void
2556 xfs_attr3_leaf_moveents(
2557 struct xfs_da_args *args,
2558 struct xfs_attr_leafblock *leaf_s,
2559 struct xfs_attr3_icleaf_hdr *ichdr_s,
2560 int start_s,
2561 struct xfs_attr_leafblock *leaf_d,
2562 struct xfs_attr3_icleaf_hdr *ichdr_d,
2563 int start_d,
2564 int count)
2565 {
2566 struct xfs_attr_leaf_entry *entry_s;
2567 struct xfs_attr_leaf_entry *entry_d;
2568 int desti;
2569 int tmp;
2570 int i;
2571
2572 /*
2573 * Check for nothing to do.
2574 */
2575 if (count == 0)
2576 return;
2577
2578 /*
2579 * Set up environment.
2580 */
2581 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2582 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2583 ASSERT(ichdr_s->magic == ichdr_d->magic);
2584 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2585 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2586 + xfs_attr3_leaf_hdr_size(leaf_s));
2587 ASSERT(ichdr_d->count < args->geo->blksize / 8);
2588 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2589 + xfs_attr3_leaf_hdr_size(leaf_d));
2590
2591 ASSERT(start_s < ichdr_s->count);
2592 ASSERT(start_d <= ichdr_d->count);
2593 ASSERT(count <= ichdr_s->count);
2594
2595
2596 /*
2597 * Move the entries in the destination leaf up to make a hole?
2598 */
2599 if (start_d < ichdr_d->count) {
2600 tmp = ichdr_d->count - start_d;
2601 tmp *= sizeof(xfs_attr_leaf_entry_t);
2602 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2603 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2604 memmove(entry_d, entry_s, tmp);
2605 }
2606
2607 /*
2608 * Copy all entry's in the same (sorted) order,
2609 * but allocate attribute info packed and in sequence.
2610 */
2611 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2612 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2613 desti = start_d;
2614 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2615 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2616 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2617 #ifdef GROT
2618 /*
2619 * Code to drop INCOMPLETE entries. Difficult to use as we
2620 * may also need to change the insertion index. Code turned
2621 * off for 6.2, should be revisited later.
2622 */
2623 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2624 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2625 ichdr_s->usedbytes -= tmp;
2626 ichdr_s->count -= 1;
2627 entry_d--; /* to compensate for ++ in loop hdr */
2628 desti--;
2629 if ((start_s + i) < offset)
2630 result++; /* insertion index adjustment */
2631 } else {
2632 #endif /* GROT */
2633 ichdr_d->firstused -= tmp;
2634 /* both on-disk, don't endian flip twice */
2635 entry_d->hashval = entry_s->hashval;
2636 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2637 entry_d->flags = entry_s->flags;
2638 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2639 <= args->geo->blksize);
2640 memmove(xfs_attr3_leaf_name(leaf_d, desti),
2641 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2642 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2643 <= args->geo->blksize);
2644 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2645 ichdr_s->usedbytes -= tmp;
2646 ichdr_d->usedbytes += tmp;
2647 ichdr_s->count -= 1;
2648 ichdr_d->count += 1;
2649 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2650 + xfs_attr3_leaf_hdr_size(leaf_d);
2651 ASSERT(ichdr_d->firstused >= tmp);
2652 #ifdef GROT
2653 }
2654 #endif /* GROT */
2655 }
2656
2657 /*
2658 * Zero out the entries we just copied.
2659 */
2660 if (start_s == ichdr_s->count) {
2661 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2662 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2663 ASSERT(((char *)entry_s + tmp) <=
2664 ((char *)leaf_s + args->geo->blksize));
2665 memset(entry_s, 0, tmp);
2666 } else {
2667 /*
2668 * Move the remaining entries down to fill the hole,
2669 * then zero the entries at the top.
2670 */
2671 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2672 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2673 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2674 memmove(entry_d, entry_s, tmp);
2675
2676 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2677 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2678 ASSERT(((char *)entry_s + tmp) <=
2679 ((char *)leaf_s + args->geo->blksize));
2680 memset(entry_s, 0, tmp);
2681 }
2682
2683 /*
2684 * Fill in the freemap information
2685 */
2686 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2687 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2688 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2689 ichdr_d->freemap[1].base = 0;
2690 ichdr_d->freemap[2].base = 0;
2691 ichdr_d->freemap[1].size = 0;
2692 ichdr_d->freemap[2].size = 0;
2693 ichdr_s->holes = 1; /* leaf may not be compact */
2694 }
2695
2696 /*
2697 * Pick up the last hashvalue from a leaf block.
2698 */
2699 xfs_dahash_t
2700 xfs_attr_leaf_lasthash(
2701 struct xfs_buf *bp,
2702 int *count)
2703 {
2704 struct xfs_attr3_icleaf_hdr ichdr;
2705 struct xfs_attr_leaf_entry *entries;
2706 struct xfs_mount *mp = bp->b_mount;
2707
2708 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2709 entries = xfs_attr3_leaf_entryp(bp->b_addr);
2710 if (count)
2711 *count = ichdr.count;
2712 if (!ichdr.count)
2713 return 0;
2714 return be32_to_cpu(entries[ichdr.count - 1].hashval);
2715 }
2716
2717 /*
2718 * Calculate the number of bytes used to store the indicated attribute
2719 * (whether local or remote only calculate bytes in this block).
2720 */
2721 STATIC int
2722 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2723 {
2724 struct xfs_attr_leaf_entry *entries;
2725 xfs_attr_leaf_name_local_t *name_loc;
2726 xfs_attr_leaf_name_remote_t *name_rmt;
2727 int size;
2728
2729 entries = xfs_attr3_leaf_entryp(leaf);
2730 if (entries[index].flags & XFS_ATTR_LOCAL) {
2731 name_loc = xfs_attr3_leaf_name_local(leaf, index);
2732 size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2733 be16_to_cpu(name_loc->valuelen));
2734 } else {
2735 name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2736 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2737 }
2738 return size;
2739 }
2740
2741 /*
2742 * Calculate the number of bytes that would be required to store the new
2743 * attribute (whether local or remote only calculate bytes in this block).
2744 * This routine decides as a side effect whether the attribute will be
2745 * a "local" or a "remote" attribute.
2746 */
2747 int
2748 xfs_attr_leaf_newentsize(
2749 struct xfs_da_args *args,
2750 int *local)
2751 {
2752 int size;
2753
2754 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2755 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2756 if (local)
2757 *local = 1;
2758 return size;
2759 }
2760 if (local)
2761 *local = 0;
2762 return xfs_attr_leaf_entsize_remote(args->namelen);
2763 }
2764
2765
2766 /*========================================================================
2767 * Manage the INCOMPLETE flag in a leaf entry
2768 *========================================================================*/
2769
2770 /*
2771 * Clear the INCOMPLETE flag on an entry in a leaf block.
2772 */
2773 int
2774 xfs_attr3_leaf_clearflag(
2775 struct xfs_da_args *args)
2776 {
2777 struct xfs_attr_leafblock *leaf;
2778 struct xfs_attr_leaf_entry *entry;
2779 struct xfs_attr_leaf_name_remote *name_rmt;
2780 struct xfs_buf *bp;
2781 int error;
2782 #ifdef DEBUG
2783 struct xfs_attr3_icleaf_hdr ichdr;
2784 xfs_attr_leaf_name_local_t *name_loc;
2785 int namelen;
2786 char *name;
2787 #endif /* DEBUG */
2788
2789 trace_xfs_attr_leaf_clearflag(args);
2790 /*
2791 * Set up the operation.
2792 */
2793 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2794 if (error)
2795 return error;
2796
2797 leaf = bp->b_addr;
2798 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2799 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2800
2801 #ifdef DEBUG
2802 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2803 ASSERT(args->index < ichdr.count);
2804 ASSERT(args->index >= 0);
2805
2806 if (entry->flags & XFS_ATTR_LOCAL) {
2807 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2808 namelen = name_loc->namelen;
2809 name = (char *)name_loc->nameval;
2810 } else {
2811 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2812 namelen = name_rmt->namelen;
2813 name = (char *)name_rmt->name;
2814 }
2815 ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2816 ASSERT(namelen == args->namelen);
2817 ASSERT(memcmp(name, args->name, namelen) == 0);
2818 #endif /* DEBUG */
2819
2820 entry->flags &= ~XFS_ATTR_INCOMPLETE;
2821 xfs_trans_log_buf(args->trans, bp,
2822 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2823
2824 if (args->rmtblkno) {
2825 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2826 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2827 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2828 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2829 xfs_trans_log_buf(args->trans, bp,
2830 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2831 }
2832
2833 return 0;
2834 }
2835
2836 /*
2837 * Set the INCOMPLETE flag on an entry in a leaf block.
2838 */
2839 int
2840 xfs_attr3_leaf_setflag(
2841 struct xfs_da_args *args)
2842 {
2843 struct xfs_attr_leafblock *leaf;
2844 struct xfs_attr_leaf_entry *entry;
2845 struct xfs_attr_leaf_name_remote *name_rmt;
2846 struct xfs_buf *bp;
2847 int error;
2848 #ifdef DEBUG
2849 struct xfs_attr3_icleaf_hdr ichdr;
2850 #endif
2851
2852 trace_xfs_attr_leaf_setflag(args);
2853
2854 /*
2855 * Set up the operation.
2856 */
2857 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2858 if (error)
2859 return error;
2860
2861 leaf = bp->b_addr;
2862 #ifdef DEBUG
2863 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2864 ASSERT(args->index < ichdr.count);
2865 ASSERT(args->index >= 0);
2866 #endif
2867 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2868
2869 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2870 entry->flags |= XFS_ATTR_INCOMPLETE;
2871 xfs_trans_log_buf(args->trans, bp,
2872 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2873 if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2874 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2875 name_rmt->valueblk = 0;
2876 name_rmt->valuelen = 0;
2877 xfs_trans_log_buf(args->trans, bp,
2878 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2879 }
2880
2881 return 0;
2882 }
2883
2884 /*
2885 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2886 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2887 * entry given by args->blkno2/index2.
2888 *
2889 * Note that they could be in different blocks, or in the same block.
2890 */
2891 int
2892 xfs_attr3_leaf_flipflags(
2893 struct xfs_da_args *args)
2894 {
2895 struct xfs_attr_leafblock *leaf1;
2896 struct xfs_attr_leafblock *leaf2;
2897 struct xfs_attr_leaf_entry *entry1;
2898 struct xfs_attr_leaf_entry *entry2;
2899 struct xfs_attr_leaf_name_remote *name_rmt;
2900 struct xfs_buf *bp1;
2901 struct xfs_buf *bp2;
2902 int error;
2903 #ifdef DEBUG
2904 struct xfs_attr3_icleaf_hdr ichdr1;
2905 struct xfs_attr3_icleaf_hdr ichdr2;
2906 xfs_attr_leaf_name_local_t *name_loc;
2907 int namelen1, namelen2;
2908 char *name1, *name2;
2909 #endif /* DEBUG */
2910
2911 trace_xfs_attr_leaf_flipflags(args);
2912
2913 /*
2914 * Read the block containing the "old" attr
2915 */
2916 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1);
2917 if (error)
2918 return error;
2919
2920 /*
2921 * Read the block containing the "new" attr, if it is different
2922 */
2923 if (args->blkno2 != args->blkno) {
2924 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2925 &bp2);
2926 if (error)
2927 return error;
2928 } else {
2929 bp2 = bp1;
2930 }
2931
2932 leaf1 = bp1->b_addr;
2933 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2934
2935 leaf2 = bp2->b_addr;
2936 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2937
2938 #ifdef DEBUG
2939 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2940 ASSERT(args->index < ichdr1.count);
2941 ASSERT(args->index >= 0);
2942
2943 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2944 ASSERT(args->index2 < ichdr2.count);
2945 ASSERT(args->index2 >= 0);
2946
2947 if (entry1->flags & XFS_ATTR_LOCAL) {
2948 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2949 namelen1 = name_loc->namelen;
2950 name1 = (char *)name_loc->nameval;
2951 } else {
2952 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2953 namelen1 = name_rmt->namelen;
2954 name1 = (char *)name_rmt->name;
2955 }
2956 if (entry2->flags & XFS_ATTR_LOCAL) {
2957 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2958 namelen2 = name_loc->namelen;
2959 name2 = (char *)name_loc->nameval;
2960 } else {
2961 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2962 namelen2 = name_rmt->namelen;
2963 name2 = (char *)name_rmt->name;
2964 }
2965 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2966 ASSERT(namelen1 == namelen2);
2967 ASSERT(memcmp(name1, name2, namelen1) == 0);
2968 #endif /* DEBUG */
2969
2970 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2971 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2972
2973 entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2974 xfs_trans_log_buf(args->trans, bp1,
2975 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2976 if (args->rmtblkno) {
2977 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2978 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2979 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2980 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2981 xfs_trans_log_buf(args->trans, bp1,
2982 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2983 }
2984
2985 entry2->flags |= XFS_ATTR_INCOMPLETE;
2986 xfs_trans_log_buf(args->trans, bp2,
2987 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2988 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2989 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2990 name_rmt->valueblk = 0;
2991 name_rmt->valuelen = 0;
2992 xfs_trans_log_buf(args->trans, bp2,
2993 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2994 }
2995
2996 return 0;
2997 }