]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_bmap_btree.c
xfs_repair: remove unused fs_attributes2_allowed
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_bmap_btree.c
1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_alloc.h"
30 #include "xfs_btree.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_bmap.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_rmap.h"
36
37 /*
38 * Convert on-disk form of btree root to in-memory form.
39 */
40 void
41 xfs_bmdr_to_bmbt(
42 struct xfs_inode *ip,
43 xfs_bmdr_block_t *dblock,
44 int dblocklen,
45 struct xfs_btree_block *rblock,
46 int rblocklen)
47 {
48 struct xfs_mount *mp = ip->i_mount;
49 int dmxr;
50 xfs_bmbt_key_t *fkp;
51 __be64 *fpp;
52 xfs_bmbt_key_t *tkp;
53 __be64 *tpp;
54
55 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL,
56 XFS_BTNUM_BMAP, 0, 0, ip->i_ino,
57 XFS_BTREE_LONG_PTRS);
58 rblock->bb_level = dblock->bb_level;
59 ASSERT(be16_to_cpu(rblock->bb_level) > 0);
60 rblock->bb_numrecs = dblock->bb_numrecs;
61 dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
62 fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
63 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
64 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
65 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
66 dmxr = be16_to_cpu(dblock->bb_numrecs);
67 memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
68 memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
69 }
70
71 void
72 xfs_bmbt_disk_get_all(
73 struct xfs_bmbt_rec *rec,
74 struct xfs_bmbt_irec *irec)
75 {
76 uint64_t l0 = get_unaligned_be64(&rec->l0);
77 uint64_t l1 = get_unaligned_be64(&rec->l1);
78
79 irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
80 irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
81 irec->br_blockcount = l1 & xfs_mask64lo(21);
82 if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
83 irec->br_state = XFS_EXT_UNWRITTEN;
84 else
85 irec->br_state = XFS_EXT_NORM;
86 }
87
88 /*
89 * Extract the blockcount field from an on disk bmap extent record.
90 */
91 xfs_filblks_t
92 xfs_bmbt_disk_get_blockcount(
93 xfs_bmbt_rec_t *r)
94 {
95 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
96 }
97
98 /*
99 * Extract the startoff field from a disk format bmap extent record.
100 */
101 xfs_fileoff_t
102 xfs_bmbt_disk_get_startoff(
103 xfs_bmbt_rec_t *r)
104 {
105 return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
106 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
107 }
108
109 /*
110 * Set all the fields in a bmap extent record from the uncompressed form.
111 */
112 void
113 xfs_bmbt_disk_set_all(
114 struct xfs_bmbt_rec *r,
115 struct xfs_bmbt_irec *s)
116 {
117 int extent_flag = (s->br_state != XFS_EXT_NORM);
118
119 ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
120 ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
121 ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
122 ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
123
124 put_unaligned_be64(
125 ((xfs_bmbt_rec_base_t)extent_flag << 63) |
126 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
127 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
128 put_unaligned_be64(
129 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
130 ((xfs_bmbt_rec_base_t)s->br_blockcount &
131 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
132 }
133
134 /*
135 * Convert in-memory form of btree root to on-disk form.
136 */
137 void
138 xfs_bmbt_to_bmdr(
139 struct xfs_mount *mp,
140 struct xfs_btree_block *rblock,
141 int rblocklen,
142 xfs_bmdr_block_t *dblock,
143 int dblocklen)
144 {
145 int dmxr;
146 xfs_bmbt_key_t *fkp;
147 __be64 *fpp;
148 xfs_bmbt_key_t *tkp;
149 __be64 *tpp;
150
151 if (xfs_sb_version_hascrc(&mp->m_sb)) {
152 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
153 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
154 &mp->m_sb.sb_meta_uuid));
155 ASSERT(rblock->bb_u.l.bb_blkno ==
156 cpu_to_be64(XFS_BUF_DADDR_NULL));
157 } else
158 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
159 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
160 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
161 ASSERT(rblock->bb_level != 0);
162 dblock->bb_level = rblock->bb_level;
163 dblock->bb_numrecs = rblock->bb_numrecs;
164 dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
165 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
166 tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
167 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
168 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
169 dmxr = be16_to_cpu(dblock->bb_numrecs);
170 memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
171 memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
172 }
173
174 STATIC struct xfs_btree_cur *
175 xfs_bmbt_dup_cursor(
176 struct xfs_btree_cur *cur)
177 {
178 struct xfs_btree_cur *new;
179
180 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
181 cur->bc_private.b.ip, cur->bc_private.b.whichfork);
182
183 /*
184 * Copy the firstblock, dfops, and flags values,
185 * since init cursor doesn't get them.
186 */
187 new->bc_private.b.firstblock = cur->bc_private.b.firstblock;
188 new->bc_private.b.dfops = cur->bc_private.b.dfops;
189 new->bc_private.b.flags = cur->bc_private.b.flags;
190
191 return new;
192 }
193
194 STATIC void
195 xfs_bmbt_update_cursor(
196 struct xfs_btree_cur *src,
197 struct xfs_btree_cur *dst)
198 {
199 ASSERT((dst->bc_private.b.firstblock != NULLFSBLOCK) ||
200 (dst->bc_private.b.ip->i_d.di_flags & XFS_DIFLAG_REALTIME));
201 ASSERT(dst->bc_private.b.dfops == src->bc_private.b.dfops);
202
203 dst->bc_private.b.allocated += src->bc_private.b.allocated;
204 dst->bc_private.b.firstblock = src->bc_private.b.firstblock;
205
206 src->bc_private.b.allocated = 0;
207 }
208
209 STATIC int
210 xfs_bmbt_alloc_block(
211 struct xfs_btree_cur *cur,
212 union xfs_btree_ptr *start,
213 union xfs_btree_ptr *new,
214 int *stat)
215 {
216 xfs_alloc_arg_t args; /* block allocation args */
217 int error; /* error return value */
218
219 memset(&args, 0, sizeof(args));
220 args.tp = cur->bc_tp;
221 args.mp = cur->bc_mp;
222 args.fsbno = cur->bc_private.b.firstblock;
223 args.firstblock = args.fsbno;
224 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_private.b.ip->i_ino,
225 cur->bc_private.b.whichfork);
226
227 if (args.fsbno == NULLFSBLOCK) {
228 args.fsbno = be64_to_cpu(start->l);
229 args.type = XFS_ALLOCTYPE_START_BNO;
230 /*
231 * Make sure there is sufficient room left in the AG to
232 * complete a full tree split for an extent insert. If
233 * we are converting the middle part of an extent then
234 * we may need space for two tree splits.
235 *
236 * We are relying on the caller to make the correct block
237 * reservation for this operation to succeed. If the
238 * reservation amount is insufficient then we may fail a
239 * block allocation here and corrupt the filesystem.
240 */
241 args.minleft = args.tp->t_blk_res;
242 } else if (cur->bc_private.b.dfops->dop_low) {
243 args.type = XFS_ALLOCTYPE_START_BNO;
244 } else {
245 args.type = XFS_ALLOCTYPE_NEAR_BNO;
246 }
247
248 args.minlen = args.maxlen = args.prod = 1;
249 args.wasdel = cur->bc_private.b.flags & XFS_BTCUR_BPRV_WASDEL;
250 if (!args.wasdel && args.tp->t_blk_res == 0) {
251 error = -ENOSPC;
252 goto error0;
253 }
254 error = xfs_alloc_vextent(&args);
255 if (error)
256 goto error0;
257
258 if (args.fsbno == NULLFSBLOCK && args.minleft) {
259 /*
260 * Could not find an AG with enough free space to satisfy
261 * a full btree split. Try again and if
262 * successful activate the lowspace algorithm.
263 */
264 args.fsbno = 0;
265 args.type = XFS_ALLOCTYPE_FIRST_AG;
266 error = xfs_alloc_vextent(&args);
267 if (error)
268 goto error0;
269 cur->bc_private.b.dfops->dop_low = true;
270 }
271 if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
272 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
273 *stat = 0;
274 return 0;
275 }
276 ASSERT(args.len == 1);
277 cur->bc_private.b.firstblock = args.fsbno;
278 cur->bc_private.b.allocated++;
279 cur->bc_private.b.ip->i_d.di_nblocks++;
280 xfs_trans_log_inode(args.tp, cur->bc_private.b.ip, XFS_ILOG_CORE);
281 xfs_trans_mod_dquot_byino(args.tp, cur->bc_private.b.ip,
282 XFS_TRANS_DQ_BCOUNT, 1L);
283
284 new->l = cpu_to_be64(args.fsbno);
285
286 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
287 *stat = 1;
288 return 0;
289
290 error0:
291 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
292 return error;
293 }
294
295 STATIC int
296 xfs_bmbt_free_block(
297 struct xfs_btree_cur *cur,
298 struct xfs_buf *bp)
299 {
300 struct xfs_mount *mp = cur->bc_mp;
301 struct xfs_inode *ip = cur->bc_private.b.ip;
302 struct xfs_trans *tp = cur->bc_tp;
303 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, XFS_BUF_ADDR(bp));
304 struct xfs_owner_info oinfo;
305
306 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_private.b.whichfork);
307 xfs_bmap_add_free(mp, cur->bc_private.b.dfops, fsbno, 1, &oinfo);
308 ip->i_d.di_nblocks--;
309
310 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
311 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
312 return 0;
313 }
314
315 STATIC int
316 xfs_bmbt_get_minrecs(
317 struct xfs_btree_cur *cur,
318 int level)
319 {
320 if (level == cur->bc_nlevels - 1) {
321 struct xfs_ifork *ifp;
322
323 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip,
324 cur->bc_private.b.whichfork);
325
326 return xfs_bmbt_maxrecs(cur->bc_mp,
327 ifp->if_broot_bytes, level == 0) / 2;
328 }
329
330 return cur->bc_mp->m_bmap_dmnr[level != 0];
331 }
332
333 int
334 xfs_bmbt_get_maxrecs(
335 struct xfs_btree_cur *cur,
336 int level)
337 {
338 if (level == cur->bc_nlevels - 1) {
339 struct xfs_ifork *ifp;
340
341 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip,
342 cur->bc_private.b.whichfork);
343
344 return xfs_bmbt_maxrecs(cur->bc_mp,
345 ifp->if_broot_bytes, level == 0);
346 }
347
348 return cur->bc_mp->m_bmap_dmxr[level != 0];
349
350 }
351
352 /*
353 * Get the maximum records we could store in the on-disk format.
354 *
355 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
356 * for the root node this checks the available space in the dinode fork
357 * so that we can resize the in-memory buffer to match it. After a
358 * resize to the maximum size this function returns the same value
359 * as xfs_bmbt_get_maxrecs for the root node, too.
360 */
361 STATIC int
362 xfs_bmbt_get_dmaxrecs(
363 struct xfs_btree_cur *cur,
364 int level)
365 {
366 if (level != cur->bc_nlevels - 1)
367 return cur->bc_mp->m_bmap_dmxr[level != 0];
368 return xfs_bmdr_maxrecs(cur->bc_private.b.forksize, level == 0);
369 }
370
371 STATIC void
372 xfs_bmbt_init_key_from_rec(
373 union xfs_btree_key *key,
374 union xfs_btree_rec *rec)
375 {
376 key->bmbt.br_startoff =
377 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
378 }
379
380 STATIC void
381 xfs_bmbt_init_high_key_from_rec(
382 union xfs_btree_key *key,
383 union xfs_btree_rec *rec)
384 {
385 key->bmbt.br_startoff = cpu_to_be64(
386 xfs_bmbt_disk_get_startoff(&rec->bmbt) +
387 xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
388 }
389
390 STATIC void
391 xfs_bmbt_init_rec_from_cur(
392 struct xfs_btree_cur *cur,
393 union xfs_btree_rec *rec)
394 {
395 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
396 }
397
398 STATIC void
399 xfs_bmbt_init_ptr_from_cur(
400 struct xfs_btree_cur *cur,
401 union xfs_btree_ptr *ptr)
402 {
403 ptr->l = 0;
404 }
405
406 STATIC int64_t
407 xfs_bmbt_key_diff(
408 struct xfs_btree_cur *cur,
409 union xfs_btree_key *key)
410 {
411 return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
412 cur->bc_rec.b.br_startoff;
413 }
414
415 STATIC int64_t
416 xfs_bmbt_diff_two_keys(
417 struct xfs_btree_cur *cur,
418 union xfs_btree_key *k1,
419 union xfs_btree_key *k2)
420 {
421 return (int64_t)be64_to_cpu(k1->bmbt.br_startoff) -
422 be64_to_cpu(k2->bmbt.br_startoff);
423 }
424
425 static xfs_failaddr_t
426 xfs_bmbt_verify(
427 struct xfs_buf *bp)
428 {
429 struct xfs_mount *mp = bp->b_target->bt_mount;
430 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
431 xfs_failaddr_t fa;
432 unsigned int level;
433
434 switch (block->bb_magic) {
435 case cpu_to_be32(XFS_BMAP_CRC_MAGIC):
436 /*
437 * XXX: need a better way of verifying the owner here. Right now
438 * just make sure there has been one set.
439 */
440 fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
441 if (fa)
442 return fa;
443 /* fall through */
444 case cpu_to_be32(XFS_BMAP_MAGIC):
445 break;
446 default:
447 return __this_address;
448 }
449
450 /*
451 * numrecs and level verification.
452 *
453 * We don't know what fork we belong to, so just verify that the level
454 * is less than the maximum of the two. Later checks will be more
455 * precise.
456 */
457 level = be16_to_cpu(block->bb_level);
458 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
459 return __this_address;
460
461 return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
462 }
463
464 static void
465 xfs_bmbt_read_verify(
466 struct xfs_buf *bp)
467 {
468 xfs_failaddr_t fa;
469
470 if (!xfs_btree_lblock_verify_crc(bp))
471 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
472 else {
473 fa = xfs_bmbt_verify(bp);
474 if (fa)
475 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
476 }
477
478 if (bp->b_error)
479 trace_xfs_btree_corrupt(bp, _RET_IP_);
480 }
481
482 static void
483 xfs_bmbt_write_verify(
484 struct xfs_buf *bp)
485 {
486 xfs_failaddr_t fa;
487
488 fa = xfs_bmbt_verify(bp);
489 if (fa) {
490 trace_xfs_btree_corrupt(bp, _RET_IP_);
491 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
492 return;
493 }
494 xfs_btree_lblock_calc_crc(bp);
495 }
496
497 const struct xfs_buf_ops xfs_bmbt_buf_ops = {
498 .name = "xfs_bmbt",
499 .verify_read = xfs_bmbt_read_verify,
500 .verify_write = xfs_bmbt_write_verify,
501 .verify_struct = xfs_bmbt_verify,
502 };
503
504
505 STATIC int
506 xfs_bmbt_keys_inorder(
507 struct xfs_btree_cur *cur,
508 union xfs_btree_key *k1,
509 union xfs_btree_key *k2)
510 {
511 return be64_to_cpu(k1->bmbt.br_startoff) <
512 be64_to_cpu(k2->bmbt.br_startoff);
513 }
514
515 STATIC int
516 xfs_bmbt_recs_inorder(
517 struct xfs_btree_cur *cur,
518 union xfs_btree_rec *r1,
519 union xfs_btree_rec *r2)
520 {
521 return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
522 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
523 xfs_bmbt_disk_get_startoff(&r2->bmbt);
524 }
525
526 static const struct xfs_btree_ops xfs_bmbt_ops = {
527 .rec_len = sizeof(xfs_bmbt_rec_t),
528 .key_len = sizeof(xfs_bmbt_key_t),
529
530 .dup_cursor = xfs_bmbt_dup_cursor,
531 .update_cursor = xfs_bmbt_update_cursor,
532 .alloc_block = xfs_bmbt_alloc_block,
533 .free_block = xfs_bmbt_free_block,
534 .get_maxrecs = xfs_bmbt_get_maxrecs,
535 .get_minrecs = xfs_bmbt_get_minrecs,
536 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs,
537 .init_key_from_rec = xfs_bmbt_init_key_from_rec,
538 .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec,
539 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur,
540 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur,
541 .key_diff = xfs_bmbt_key_diff,
542 .diff_two_keys = xfs_bmbt_diff_two_keys,
543 .buf_ops = &xfs_bmbt_buf_ops,
544 .keys_inorder = xfs_bmbt_keys_inorder,
545 .recs_inorder = xfs_bmbt_recs_inorder,
546 };
547
548 /*
549 * Allocate a new bmap btree cursor.
550 */
551 struct xfs_btree_cur * /* new bmap btree cursor */
552 xfs_bmbt_init_cursor(
553 struct xfs_mount *mp, /* file system mount point */
554 struct xfs_trans *tp, /* transaction pointer */
555 struct xfs_inode *ip, /* inode owning the btree */
556 int whichfork) /* data or attr fork */
557 {
558 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
559 struct xfs_btree_cur *cur;
560 ASSERT(whichfork != XFS_COW_FORK);
561
562 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
563
564 cur->bc_tp = tp;
565 cur->bc_mp = mp;
566 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
567 cur->bc_btnum = XFS_BTNUM_BMAP;
568 cur->bc_blocklog = mp->m_sb.sb_blocklog;
569 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2);
570
571 cur->bc_ops = &xfs_bmbt_ops;
572 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE;
573 if (xfs_sb_version_hascrc(&mp->m_sb))
574 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
575
576 cur->bc_private.b.forksize = XFS_IFORK_SIZE(ip, whichfork);
577 cur->bc_private.b.ip = ip;
578 cur->bc_private.b.firstblock = NULLFSBLOCK;
579 cur->bc_private.b.dfops = NULL;
580 cur->bc_private.b.allocated = 0;
581 cur->bc_private.b.flags = 0;
582 cur->bc_private.b.whichfork = whichfork;
583
584 return cur;
585 }
586
587 /*
588 * Calculate number of records in a bmap btree block.
589 */
590 int
591 xfs_bmbt_maxrecs(
592 struct xfs_mount *mp,
593 int blocklen,
594 int leaf)
595 {
596 blocklen -= XFS_BMBT_BLOCK_LEN(mp);
597
598 if (leaf)
599 return blocklen / sizeof(xfs_bmbt_rec_t);
600 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
601 }
602
603 /*
604 * Calculate number of records in a bmap btree inode root.
605 */
606 int
607 xfs_bmdr_maxrecs(
608 int blocklen,
609 int leaf)
610 {
611 blocklen -= sizeof(xfs_bmdr_block_t);
612
613 if (leaf)
614 return blocklen / sizeof(xfs_bmdr_rec_t);
615 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
616 }
617
618 /*
619 * Change the owner of a btree format fork fo the inode passed in. Change it to
620 * the owner of that is passed in so that we can change owners before or after
621 * we switch forks between inodes. The operation that the caller is doing will
622 * determine whether is needs to change owner before or after the switch.
623 *
624 * For demand paged transactional modification, the fork switch should be done
625 * after reading in all the blocks, modifying them and pinning them in the
626 * transaction. For modification when the buffers are already pinned in memory,
627 * the fork switch can be done before changing the owner as we won't need to
628 * validate the owner until the btree buffers are unpinned and writes can occur
629 * again.
630 *
631 * For recovery based ownership change, there is no transactional context and
632 * so a buffer list must be supplied so that we can record the buffers that we
633 * modified for the caller to issue IO on.
634 */
635 int
636 xfs_bmbt_change_owner(
637 struct xfs_trans *tp,
638 struct xfs_inode *ip,
639 int whichfork,
640 xfs_ino_t new_owner,
641 struct list_head *buffer_list)
642 {
643 struct xfs_btree_cur *cur;
644 int error;
645
646 ASSERT(tp || buffer_list);
647 ASSERT(!(tp && buffer_list));
648 if (whichfork == XFS_DATA_FORK)
649 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_BTREE);
650 else
651 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE);
652
653 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
654 if (!cur)
655 return -ENOMEM;
656 cur->bc_private.b.flags |= XFS_BTCUR_BPRV_INVALID_OWNER;
657
658 error = xfs_btree_change_owner(cur, new_owner, buffer_list);
659 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
660 return error;
661 }