]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_btree.c
xfs_repair: fix libxfs api violations in quota repair code
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_btree.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_btree.h"
30 #include "xfs_errortag.h"
31 #include "xfs_trace.h"
32 #include "xfs_cksum.h"
33 #include "xfs_alloc.h"
34
35 /*
36 * Cursor allocation zone.
37 */
38 kmem_zone_t *xfs_btree_cur_zone;
39
40 /*
41 * Btree magic numbers.
42 */
43 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
44 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
45 XFS_FIBT_MAGIC, 0 },
46 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
47 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
48 XFS_REFC_CRC_MAGIC }
49 };
50
51 uint32_t
52 xfs_btree_magic(
53 int crc,
54 xfs_btnum_t btnum)
55 {
56 uint32_t magic = xfs_magics[crc][btnum];
57
58 /* Ensure we asked for crc for crc-only magics. */
59 ASSERT(magic != 0);
60 return magic;
61 }
62
63 /*
64 * Check a long btree block header. Return the address of the failing check,
65 * or NULL if everything is ok.
66 */
67 xfs_failaddr_t
68 __xfs_btree_check_lblock(
69 struct xfs_btree_cur *cur,
70 struct xfs_btree_block *block,
71 int level,
72 struct xfs_buf *bp)
73 {
74 struct xfs_mount *mp = cur->bc_mp;
75 xfs_btnum_t btnum = cur->bc_btnum;
76 int crc = xfs_sb_version_hascrc(&mp->m_sb);
77
78 if (crc) {
79 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
80 return __this_address;
81 if (block->bb_u.l.bb_blkno !=
82 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
83 return __this_address;
84 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
85 return __this_address;
86 }
87
88 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
89 return __this_address;
90 if (be16_to_cpu(block->bb_level) != level)
91 return __this_address;
92 if (be16_to_cpu(block->bb_numrecs) >
93 cur->bc_ops->get_maxrecs(cur, level))
94 return __this_address;
95 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
96 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
97 level + 1))
98 return __this_address;
99 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
100 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
101 level + 1))
102 return __this_address;
103
104 return NULL;
105 }
106
107 /* Check a long btree block header. */
108 static int
109 xfs_btree_check_lblock(
110 struct xfs_btree_cur *cur,
111 struct xfs_btree_block *block,
112 int level,
113 struct xfs_buf *bp)
114 {
115 struct xfs_mount *mp = cur->bc_mp;
116 xfs_failaddr_t fa;
117
118 fa = __xfs_btree_check_lblock(cur, block, level, bp);
119 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
120 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
121 if (bp)
122 trace_xfs_btree_corrupt(bp, _RET_IP_);
123 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
124 return -EFSCORRUPTED;
125 }
126 return 0;
127 }
128
129 /*
130 * Check a short btree block header. Return the address of the failing check,
131 * or NULL if everything is ok.
132 */
133 xfs_failaddr_t
134 __xfs_btree_check_sblock(
135 struct xfs_btree_cur *cur,
136 struct xfs_btree_block *block,
137 int level,
138 struct xfs_buf *bp)
139 {
140 struct xfs_mount *mp = cur->bc_mp;
141 xfs_btnum_t btnum = cur->bc_btnum;
142 int crc = xfs_sb_version_hascrc(&mp->m_sb);
143
144 if (crc) {
145 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
146 return __this_address;
147 if (block->bb_u.s.bb_blkno !=
148 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
149 return __this_address;
150 }
151
152 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
153 return __this_address;
154 if (be16_to_cpu(block->bb_level) != level)
155 return __this_address;
156 if (be16_to_cpu(block->bb_numrecs) >
157 cur->bc_ops->get_maxrecs(cur, level))
158 return __this_address;
159 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
160 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
161 level + 1))
162 return __this_address;
163 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
164 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
165 level + 1))
166 return __this_address;
167
168 return NULL;
169 }
170
171 /* Check a short btree block header. */
172 STATIC int
173 xfs_btree_check_sblock(
174 struct xfs_btree_cur *cur,
175 struct xfs_btree_block *block,
176 int level,
177 struct xfs_buf *bp)
178 {
179 struct xfs_mount *mp = cur->bc_mp;
180 xfs_failaddr_t fa;
181
182 fa = __xfs_btree_check_sblock(cur, block, level, bp);
183 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
184 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
185 if (bp)
186 trace_xfs_btree_corrupt(bp, _RET_IP_);
187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
188 return -EFSCORRUPTED;
189 }
190 return 0;
191 }
192
193 /*
194 * Debug routine: check that block header is ok.
195 */
196 int
197 xfs_btree_check_block(
198 struct xfs_btree_cur *cur, /* btree cursor */
199 struct xfs_btree_block *block, /* generic btree block pointer */
200 int level, /* level of the btree block */
201 struct xfs_buf *bp) /* buffer containing block, if any */
202 {
203 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
204 return xfs_btree_check_lblock(cur, block, level, bp);
205 else
206 return xfs_btree_check_sblock(cur, block, level, bp);
207 }
208
209 /* Check that this long pointer is valid and points within the fs. */
210 bool
211 xfs_btree_check_lptr(
212 struct xfs_btree_cur *cur,
213 xfs_fsblock_t fsbno,
214 int level)
215 {
216 if (level <= 0)
217 return false;
218 return xfs_verify_fsbno(cur->bc_mp, fsbno);
219 }
220
221 /* Check that this short pointer is valid and points within the AG. */
222 bool
223 xfs_btree_check_sptr(
224 struct xfs_btree_cur *cur,
225 xfs_agblock_t agbno,
226 int level)
227 {
228 if (level <= 0)
229 return false;
230 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
231 }
232
233 #ifdef DEBUG
234 /*
235 * Check that a given (indexed) btree pointer at a certain level of a
236 * btree is valid and doesn't point past where it should.
237 */
238 static int
239 xfs_btree_check_ptr(
240 struct xfs_btree_cur *cur,
241 union xfs_btree_ptr *ptr,
242 int index,
243 int level)
244 {
245 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
246 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
247 xfs_btree_check_lptr(cur,
248 be64_to_cpu((&ptr->l)[index]), level));
249 } else {
250 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
251 xfs_btree_check_sptr(cur,
252 be32_to_cpu((&ptr->s)[index]), level));
253 }
254
255 return 0;
256 }
257 #endif
258
259 /*
260 * Calculate CRC on the whole btree block and stuff it into the
261 * long-form btree header.
262 *
263 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
264 * it into the buffer so recovery knows what the last modification was that made
265 * it to disk.
266 */
267 void
268 xfs_btree_lblock_calc_crc(
269 struct xfs_buf *bp)
270 {
271 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
272 struct xfs_buf_log_item *bip = bp->b_log_item;
273
274 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
275 return;
276 if (bip)
277 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
278 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
279 }
280
281 bool
282 xfs_btree_lblock_verify_crc(
283 struct xfs_buf *bp)
284 {
285 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
286 struct xfs_mount *mp = bp->b_target->bt_mount;
287
288 if (xfs_sb_version_hascrc(&mp->m_sb)) {
289 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
290 return false;
291 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
292 }
293
294 return true;
295 }
296
297 /*
298 * Calculate CRC on the whole btree block and stuff it into the
299 * short-form btree header.
300 *
301 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
302 * it into the buffer so recovery knows what the last modification was that made
303 * it to disk.
304 */
305 void
306 xfs_btree_sblock_calc_crc(
307 struct xfs_buf *bp)
308 {
309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
310 struct xfs_buf_log_item *bip = bp->b_log_item;
311
312 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
313 return;
314 if (bip)
315 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
316 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
317 }
318
319 bool
320 xfs_btree_sblock_verify_crc(
321 struct xfs_buf *bp)
322 {
323 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
324 struct xfs_mount *mp = bp->b_target->bt_mount;
325
326 if (xfs_sb_version_hascrc(&mp->m_sb)) {
327 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
328 return __this_address;
329 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
330 }
331
332 return true;
333 }
334
335 static int
336 xfs_btree_free_block(
337 struct xfs_btree_cur *cur,
338 struct xfs_buf *bp)
339 {
340 int error;
341
342 error = cur->bc_ops->free_block(cur, bp);
343 if (!error) {
344 xfs_trans_binval(cur->bc_tp, bp);
345 XFS_BTREE_STATS_INC(cur, free);
346 }
347 return error;
348 }
349
350 /*
351 * Delete the btree cursor.
352 */
353 void
354 xfs_btree_del_cursor(
355 xfs_btree_cur_t *cur, /* btree cursor */
356 int error) /* del because of error */
357 {
358 int i; /* btree level */
359
360 /*
361 * Clear the buffer pointers, and release the buffers.
362 * If we're doing this in the face of an error, we
363 * need to make sure to inspect all of the entries
364 * in the bc_bufs array for buffers to be unlocked.
365 * This is because some of the btree code works from
366 * level n down to 0, and if we get an error along
367 * the way we won't have initialized all the entries
368 * down to 0.
369 */
370 for (i = 0; i < cur->bc_nlevels; i++) {
371 if (cur->bc_bufs[i])
372 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
373 else if (!error)
374 break;
375 }
376 /*
377 * Can't free a bmap cursor without having dealt with the
378 * allocated indirect blocks' accounting.
379 */
380 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
381 cur->bc_private.b.allocated == 0);
382 /*
383 * Free the cursor.
384 */
385 kmem_zone_free(xfs_btree_cur_zone, cur);
386 }
387
388 /*
389 * Duplicate the btree cursor.
390 * Allocate a new one, copy the record, re-get the buffers.
391 */
392 int /* error */
393 xfs_btree_dup_cursor(
394 xfs_btree_cur_t *cur, /* input cursor */
395 xfs_btree_cur_t **ncur) /* output cursor */
396 {
397 xfs_buf_t *bp; /* btree block's buffer pointer */
398 int error; /* error return value */
399 int i; /* level number of btree block */
400 xfs_mount_t *mp; /* mount structure for filesystem */
401 xfs_btree_cur_t *new; /* new cursor value */
402 xfs_trans_t *tp; /* transaction pointer, can be NULL */
403
404 tp = cur->bc_tp;
405 mp = cur->bc_mp;
406
407 /*
408 * Allocate a new cursor like the old one.
409 */
410 new = cur->bc_ops->dup_cursor(cur);
411
412 /*
413 * Copy the record currently in the cursor.
414 */
415 new->bc_rec = cur->bc_rec;
416
417 /*
418 * For each level current, re-get the buffer and copy the ptr value.
419 */
420 for (i = 0; i < new->bc_nlevels; i++) {
421 new->bc_ptrs[i] = cur->bc_ptrs[i];
422 new->bc_ra[i] = cur->bc_ra[i];
423 bp = cur->bc_bufs[i];
424 if (bp) {
425 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
426 XFS_BUF_ADDR(bp), mp->m_bsize,
427 0, &bp,
428 cur->bc_ops->buf_ops);
429 if (error) {
430 xfs_btree_del_cursor(new, error);
431 *ncur = NULL;
432 return error;
433 }
434 }
435 new->bc_bufs[i] = bp;
436 }
437 *ncur = new;
438 return 0;
439 }
440
441 /*
442 * XFS btree block layout and addressing:
443 *
444 * There are two types of blocks in the btree: leaf and non-leaf blocks.
445 *
446 * The leaf record start with a header then followed by records containing
447 * the values. A non-leaf block also starts with the same header, and
448 * then first contains lookup keys followed by an equal number of pointers
449 * to the btree blocks at the previous level.
450 *
451 * +--------+-------+-------+-------+-------+-------+-------+
452 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
453 * +--------+-------+-------+-------+-------+-------+-------+
454 *
455 * +--------+-------+-------+-------+-------+-------+-------+
456 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
457 * +--------+-------+-------+-------+-------+-------+-------+
458 *
459 * The header is called struct xfs_btree_block for reasons better left unknown
460 * and comes in different versions for short (32bit) and long (64bit) block
461 * pointers. The record and key structures are defined by the btree instances
462 * and opaque to the btree core. The block pointers are simple disk endian
463 * integers, available in a short (32bit) and long (64bit) variant.
464 *
465 * The helpers below calculate the offset of a given record, key or pointer
466 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
467 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
468 * inside the btree block is done using indices starting at one, not zero!
469 *
470 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
471 * overlapping intervals. In such a tree, records are still sorted lowest to
472 * highest and indexed by the smallest key value that refers to the record.
473 * However, nodes are different: each pointer has two associated keys -- one
474 * indexing the lowest key available in the block(s) below (the same behavior
475 * as the key in a regular btree) and another indexing the highest key
476 * available in the block(s) below. Because records are /not/ sorted by the
477 * highest key, all leaf block updates require us to compute the highest key
478 * that matches any record in the leaf and to recursively update the high keys
479 * in the nodes going further up in the tree, if necessary. Nodes look like
480 * this:
481 *
482 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
483 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
484 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
485 *
486 * To perform an interval query on an overlapped tree, perform the usual
487 * depth-first search and use the low and high keys to decide if we can skip
488 * that particular node. If a leaf node is reached, return the records that
489 * intersect the interval. Note that an interval query may return numerous
490 * entries. For a non-overlapped tree, simply search for the record associated
491 * with the lowest key and iterate forward until a non-matching record is
492 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
493 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
494 * more detail.
495 *
496 * Why do we care about overlapping intervals? Let's say you have a bunch of
497 * reverse mapping records on a reflink filesystem:
498 *
499 * 1: +- file A startblock B offset C length D -----------+
500 * 2: +- file E startblock F offset G length H --------------+
501 * 3: +- file I startblock F offset J length K --+
502 * 4: +- file L... --+
503 *
504 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
505 * we'd simply increment the length of record 1. But how do we find the record
506 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
507 * record 3 because the keys are ordered first by startblock. An interval
508 * query would return records 1 and 2 because they both overlap (B+D-1), and
509 * from that we can pick out record 1 as the appropriate left neighbor.
510 *
511 * In the non-overlapped case you can do a LE lookup and decrement the cursor
512 * because a record's interval must end before the next record.
513 */
514
515 /*
516 * Return size of the btree block header for this btree instance.
517 */
518 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
519 {
520 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
521 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
522 return XFS_BTREE_LBLOCK_CRC_LEN;
523 return XFS_BTREE_LBLOCK_LEN;
524 }
525 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526 return XFS_BTREE_SBLOCK_CRC_LEN;
527 return XFS_BTREE_SBLOCK_LEN;
528 }
529
530 /*
531 * Return size of btree block pointers for this btree instance.
532 */
533 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
534 {
535 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
536 sizeof(__be64) : sizeof(__be32);
537 }
538
539 /*
540 * Calculate offset of the n-th record in a btree block.
541 */
542 STATIC size_t
543 xfs_btree_rec_offset(
544 struct xfs_btree_cur *cur,
545 int n)
546 {
547 return xfs_btree_block_len(cur) +
548 (n - 1) * cur->bc_ops->rec_len;
549 }
550
551 /*
552 * Calculate offset of the n-th key in a btree block.
553 */
554 STATIC size_t
555 xfs_btree_key_offset(
556 struct xfs_btree_cur *cur,
557 int n)
558 {
559 return xfs_btree_block_len(cur) +
560 (n - 1) * cur->bc_ops->key_len;
561 }
562
563 /*
564 * Calculate offset of the n-th high key in a btree block.
565 */
566 STATIC size_t
567 xfs_btree_high_key_offset(
568 struct xfs_btree_cur *cur,
569 int n)
570 {
571 return xfs_btree_block_len(cur) +
572 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
573 }
574
575 /*
576 * Calculate offset of the n-th block pointer in a btree block.
577 */
578 STATIC size_t
579 xfs_btree_ptr_offset(
580 struct xfs_btree_cur *cur,
581 int n,
582 int level)
583 {
584 return xfs_btree_block_len(cur) +
585 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
586 (n - 1) * xfs_btree_ptr_len(cur);
587 }
588
589 /*
590 * Return a pointer to the n-th record in the btree block.
591 */
592 union xfs_btree_rec *
593 xfs_btree_rec_addr(
594 struct xfs_btree_cur *cur,
595 int n,
596 struct xfs_btree_block *block)
597 {
598 return (union xfs_btree_rec *)
599 ((char *)block + xfs_btree_rec_offset(cur, n));
600 }
601
602 /*
603 * Return a pointer to the n-th key in the btree block.
604 */
605 union xfs_btree_key *
606 xfs_btree_key_addr(
607 struct xfs_btree_cur *cur,
608 int n,
609 struct xfs_btree_block *block)
610 {
611 return (union xfs_btree_key *)
612 ((char *)block + xfs_btree_key_offset(cur, n));
613 }
614
615 /*
616 * Return a pointer to the n-th high key in the btree block.
617 */
618 union xfs_btree_key *
619 xfs_btree_high_key_addr(
620 struct xfs_btree_cur *cur,
621 int n,
622 struct xfs_btree_block *block)
623 {
624 return (union xfs_btree_key *)
625 ((char *)block + xfs_btree_high_key_offset(cur, n));
626 }
627
628 /*
629 * Return a pointer to the n-th block pointer in the btree block.
630 */
631 union xfs_btree_ptr *
632 xfs_btree_ptr_addr(
633 struct xfs_btree_cur *cur,
634 int n,
635 struct xfs_btree_block *block)
636 {
637 int level = xfs_btree_get_level(block);
638
639 ASSERT(block->bb_level != 0);
640
641 return (union xfs_btree_ptr *)
642 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
643 }
644
645 /*
646 * Get the root block which is stored in the inode.
647 *
648 * For now this btree implementation assumes the btree root is always
649 * stored in the if_broot field of an inode fork.
650 */
651 STATIC struct xfs_btree_block *
652 xfs_btree_get_iroot(
653 struct xfs_btree_cur *cur)
654 {
655 struct xfs_ifork *ifp;
656
657 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
658 return (struct xfs_btree_block *)ifp->if_broot;
659 }
660
661 /*
662 * Retrieve the block pointer from the cursor at the given level.
663 * This may be an inode btree root or from a buffer.
664 */
665 struct xfs_btree_block * /* generic btree block pointer */
666 xfs_btree_get_block(
667 struct xfs_btree_cur *cur, /* btree cursor */
668 int level, /* level in btree */
669 struct xfs_buf **bpp) /* buffer containing the block */
670 {
671 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
672 (level == cur->bc_nlevels - 1)) {
673 *bpp = NULL;
674 return xfs_btree_get_iroot(cur);
675 }
676
677 *bpp = cur->bc_bufs[level];
678 return XFS_BUF_TO_BLOCK(*bpp);
679 }
680
681 /*
682 * Get a buffer for the block, return it with no data read.
683 * Long-form addressing.
684 */
685 xfs_buf_t * /* buffer for fsbno */
686 xfs_btree_get_bufl(
687 xfs_mount_t *mp, /* file system mount point */
688 xfs_trans_t *tp, /* transaction pointer */
689 xfs_fsblock_t fsbno, /* file system block number */
690 uint lock) /* lock flags for get_buf */
691 {
692 xfs_daddr_t d; /* real disk block address */
693
694 ASSERT(fsbno != NULLFSBLOCK);
695 d = XFS_FSB_TO_DADDR(mp, fsbno);
696 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
697 }
698
699 /*
700 * Get a buffer for the block, return it with no data read.
701 * Short-form addressing.
702 */
703 xfs_buf_t * /* buffer for agno/agbno */
704 xfs_btree_get_bufs(
705 xfs_mount_t *mp, /* file system mount point */
706 xfs_trans_t *tp, /* transaction pointer */
707 xfs_agnumber_t agno, /* allocation group number */
708 xfs_agblock_t agbno, /* allocation group block number */
709 uint lock) /* lock flags for get_buf */
710 {
711 xfs_daddr_t d; /* real disk block address */
712
713 ASSERT(agno != NULLAGNUMBER);
714 ASSERT(agbno != NULLAGBLOCK);
715 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
716 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
717 }
718
719 /*
720 * Check for the cursor referring to the last block at the given level.
721 */
722 int /* 1=is last block, 0=not last block */
723 xfs_btree_islastblock(
724 xfs_btree_cur_t *cur, /* btree cursor */
725 int level) /* level to check */
726 {
727 struct xfs_btree_block *block; /* generic btree block pointer */
728 xfs_buf_t *bp; /* buffer containing block */
729
730 block = xfs_btree_get_block(cur, level, &bp);
731 xfs_btree_check_block(cur, block, level, bp);
732 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
733 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
734 else
735 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
736 }
737
738 /*
739 * Change the cursor to point to the first record at the given level.
740 * Other levels are unaffected.
741 */
742 STATIC int /* success=1, failure=0 */
743 xfs_btree_firstrec(
744 xfs_btree_cur_t *cur, /* btree cursor */
745 int level) /* level to change */
746 {
747 struct xfs_btree_block *block; /* generic btree block pointer */
748 xfs_buf_t *bp; /* buffer containing block */
749
750 /*
751 * Get the block pointer for this level.
752 */
753 block = xfs_btree_get_block(cur, level, &bp);
754 if (xfs_btree_check_block(cur, block, level, bp))
755 return 0;
756 /*
757 * It's empty, there is no such record.
758 */
759 if (!block->bb_numrecs)
760 return 0;
761 /*
762 * Set the ptr value to 1, that's the first record/key.
763 */
764 cur->bc_ptrs[level] = 1;
765 return 1;
766 }
767
768 /*
769 * Change the cursor to point to the last record in the current block
770 * at the given level. Other levels are unaffected.
771 */
772 STATIC int /* success=1, failure=0 */
773 xfs_btree_lastrec(
774 xfs_btree_cur_t *cur, /* btree cursor */
775 int level) /* level to change */
776 {
777 struct xfs_btree_block *block; /* generic btree block pointer */
778 xfs_buf_t *bp; /* buffer containing block */
779
780 /*
781 * Get the block pointer for this level.
782 */
783 block = xfs_btree_get_block(cur, level, &bp);
784 if (xfs_btree_check_block(cur, block, level, bp))
785 return 0;
786 /*
787 * It's empty, there is no such record.
788 */
789 if (!block->bb_numrecs)
790 return 0;
791 /*
792 * Set the ptr value to numrecs, that's the last record/key.
793 */
794 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
795 return 1;
796 }
797
798 /*
799 * Compute first and last byte offsets for the fields given.
800 * Interprets the offsets table, which contains struct field offsets.
801 */
802 void
803 xfs_btree_offsets(
804 int64_t fields, /* bitmask of fields */
805 const short *offsets, /* table of field offsets */
806 int nbits, /* number of bits to inspect */
807 int *first, /* output: first byte offset */
808 int *last) /* output: last byte offset */
809 {
810 int i; /* current bit number */
811 int64_t imask; /* mask for current bit number */
812
813 ASSERT(fields != 0);
814 /*
815 * Find the lowest bit, so the first byte offset.
816 */
817 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
818 if (imask & fields) {
819 *first = offsets[i];
820 break;
821 }
822 }
823 /*
824 * Find the highest bit, so the last byte offset.
825 */
826 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
827 if (imask & fields) {
828 *last = offsets[i + 1] - 1;
829 break;
830 }
831 }
832 }
833
834 /*
835 * Get a buffer for the block, return it read in.
836 * Long-form addressing.
837 */
838 int
839 xfs_btree_read_bufl(
840 struct xfs_mount *mp, /* file system mount point */
841 struct xfs_trans *tp, /* transaction pointer */
842 xfs_fsblock_t fsbno, /* file system block number */
843 uint lock, /* lock flags for read_buf */
844 struct xfs_buf **bpp, /* buffer for fsbno */
845 int refval, /* ref count value for buffer */
846 const struct xfs_buf_ops *ops)
847 {
848 struct xfs_buf *bp; /* return value */
849 xfs_daddr_t d; /* real disk block address */
850 int error;
851
852 if (!xfs_verify_fsbno(mp, fsbno))
853 return -EFSCORRUPTED;
854 d = XFS_FSB_TO_DADDR(mp, fsbno);
855 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
856 mp->m_bsize, lock, &bp, ops);
857 if (error)
858 return error;
859 if (bp)
860 xfs_buf_set_ref(bp, refval);
861 *bpp = bp;
862 return 0;
863 }
864
865 /*
866 * Read-ahead the block, don't wait for it, don't return a buffer.
867 * Long-form addressing.
868 */
869 /* ARGSUSED */
870 void
871 xfs_btree_reada_bufl(
872 struct xfs_mount *mp, /* file system mount point */
873 xfs_fsblock_t fsbno, /* file system block number */
874 xfs_extlen_t count, /* count of filesystem blocks */
875 const struct xfs_buf_ops *ops)
876 {
877 xfs_daddr_t d;
878
879 ASSERT(fsbno != NULLFSBLOCK);
880 d = XFS_FSB_TO_DADDR(mp, fsbno);
881 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
882 }
883
884 /*
885 * Read-ahead the block, don't wait for it, don't return a buffer.
886 * Short-form addressing.
887 */
888 /* ARGSUSED */
889 void
890 xfs_btree_reada_bufs(
891 struct xfs_mount *mp, /* file system mount point */
892 xfs_agnumber_t agno, /* allocation group number */
893 xfs_agblock_t agbno, /* allocation group block number */
894 xfs_extlen_t count, /* count of filesystem blocks */
895 const struct xfs_buf_ops *ops)
896 {
897 xfs_daddr_t d;
898
899 ASSERT(agno != NULLAGNUMBER);
900 ASSERT(agbno != NULLAGBLOCK);
901 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
902 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
903 }
904
905 STATIC int
906 xfs_btree_readahead_lblock(
907 struct xfs_btree_cur *cur,
908 int lr,
909 struct xfs_btree_block *block)
910 {
911 int rval = 0;
912 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
913 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
914
915 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
916 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
917 cur->bc_ops->buf_ops);
918 rval++;
919 }
920
921 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
922 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
923 cur->bc_ops->buf_ops);
924 rval++;
925 }
926
927 return rval;
928 }
929
930 STATIC int
931 xfs_btree_readahead_sblock(
932 struct xfs_btree_cur *cur,
933 int lr,
934 struct xfs_btree_block *block)
935 {
936 int rval = 0;
937 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
938 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
939
940
941 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
942 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
943 left, 1, cur->bc_ops->buf_ops);
944 rval++;
945 }
946
947 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
948 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
949 right, 1, cur->bc_ops->buf_ops);
950 rval++;
951 }
952
953 return rval;
954 }
955
956 /*
957 * Read-ahead btree blocks, at the given level.
958 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
959 */
960 STATIC int
961 xfs_btree_readahead(
962 struct xfs_btree_cur *cur, /* btree cursor */
963 int lev, /* level in btree */
964 int lr) /* left/right bits */
965 {
966 struct xfs_btree_block *block;
967
968 /*
969 * No readahead needed if we are at the root level and the
970 * btree root is stored in the inode.
971 */
972 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
973 (lev == cur->bc_nlevels - 1))
974 return 0;
975
976 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
977 return 0;
978
979 cur->bc_ra[lev] |= lr;
980 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
981
982 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
983 return xfs_btree_readahead_lblock(cur, lr, block);
984 return xfs_btree_readahead_sblock(cur, lr, block);
985 }
986
987 STATIC xfs_daddr_t
988 xfs_btree_ptr_to_daddr(
989 struct xfs_btree_cur *cur,
990 union xfs_btree_ptr *ptr)
991 {
992 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
993 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
994
995 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
996 } else {
997 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
998 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
999
1000 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1001 be32_to_cpu(ptr->s));
1002 }
1003 }
1004
1005 /*
1006 * Readahead @count btree blocks at the given @ptr location.
1007 *
1008 * We don't need to care about long or short form btrees here as we have a
1009 * method of converting the ptr directly to a daddr available to us.
1010 */
1011 STATIC void
1012 xfs_btree_readahead_ptr(
1013 struct xfs_btree_cur *cur,
1014 union xfs_btree_ptr *ptr,
1015 xfs_extlen_t count)
1016 {
1017 xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
1018 xfs_btree_ptr_to_daddr(cur, ptr),
1019 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1020 }
1021
1022 /*
1023 * Set the buffer for level "lev" in the cursor to bp, releasing
1024 * any previous buffer.
1025 */
1026 STATIC void
1027 xfs_btree_setbuf(
1028 xfs_btree_cur_t *cur, /* btree cursor */
1029 int lev, /* level in btree */
1030 xfs_buf_t *bp) /* new buffer to set */
1031 {
1032 struct xfs_btree_block *b; /* btree block */
1033
1034 if (cur->bc_bufs[lev])
1035 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1036 cur->bc_bufs[lev] = bp;
1037 cur->bc_ra[lev] = 0;
1038
1039 b = XFS_BUF_TO_BLOCK(bp);
1040 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1041 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1042 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1043 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1044 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1045 } else {
1046 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1047 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1048 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1049 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1050 }
1051 }
1052
1053 bool
1054 xfs_btree_ptr_is_null(
1055 struct xfs_btree_cur *cur,
1056 union xfs_btree_ptr *ptr)
1057 {
1058 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1059 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1060 else
1061 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1062 }
1063
1064 STATIC void
1065 xfs_btree_set_ptr_null(
1066 struct xfs_btree_cur *cur,
1067 union xfs_btree_ptr *ptr)
1068 {
1069 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1070 ptr->l = cpu_to_be64(NULLFSBLOCK);
1071 else
1072 ptr->s = cpu_to_be32(NULLAGBLOCK);
1073 }
1074
1075 /*
1076 * Get/set/init sibling pointers
1077 */
1078 void
1079 xfs_btree_get_sibling(
1080 struct xfs_btree_cur *cur,
1081 struct xfs_btree_block *block,
1082 union xfs_btree_ptr *ptr,
1083 int lr)
1084 {
1085 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1086
1087 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1088 if (lr == XFS_BB_RIGHTSIB)
1089 ptr->l = block->bb_u.l.bb_rightsib;
1090 else
1091 ptr->l = block->bb_u.l.bb_leftsib;
1092 } else {
1093 if (lr == XFS_BB_RIGHTSIB)
1094 ptr->s = block->bb_u.s.bb_rightsib;
1095 else
1096 ptr->s = block->bb_u.s.bb_leftsib;
1097 }
1098 }
1099
1100 STATIC void
1101 xfs_btree_set_sibling(
1102 struct xfs_btree_cur *cur,
1103 struct xfs_btree_block *block,
1104 union xfs_btree_ptr *ptr,
1105 int lr)
1106 {
1107 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1108
1109 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1110 if (lr == XFS_BB_RIGHTSIB)
1111 block->bb_u.l.bb_rightsib = ptr->l;
1112 else
1113 block->bb_u.l.bb_leftsib = ptr->l;
1114 } else {
1115 if (lr == XFS_BB_RIGHTSIB)
1116 block->bb_u.s.bb_rightsib = ptr->s;
1117 else
1118 block->bb_u.s.bb_leftsib = ptr->s;
1119 }
1120 }
1121
1122 void
1123 xfs_btree_init_block_int(
1124 struct xfs_mount *mp,
1125 struct xfs_btree_block *buf,
1126 xfs_daddr_t blkno,
1127 xfs_btnum_t btnum,
1128 __u16 level,
1129 __u16 numrecs,
1130 __u64 owner,
1131 unsigned int flags)
1132 {
1133 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1134 __u32 magic = xfs_btree_magic(crc, btnum);
1135
1136 buf->bb_magic = cpu_to_be32(magic);
1137 buf->bb_level = cpu_to_be16(level);
1138 buf->bb_numrecs = cpu_to_be16(numrecs);
1139
1140 if (flags & XFS_BTREE_LONG_PTRS) {
1141 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1142 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1143 if (crc) {
1144 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1145 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1146 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1147 buf->bb_u.l.bb_pad = 0;
1148 buf->bb_u.l.bb_lsn = 0;
1149 }
1150 } else {
1151 /* owner is a 32 bit value on short blocks */
1152 __u32 __owner = (__u32)owner;
1153
1154 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1155 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1156 if (crc) {
1157 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1158 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1159 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1160 buf->bb_u.s.bb_lsn = 0;
1161 }
1162 }
1163 }
1164
1165 void
1166 xfs_btree_init_block(
1167 struct xfs_mount *mp,
1168 struct xfs_buf *bp,
1169 xfs_btnum_t btnum,
1170 __u16 level,
1171 __u16 numrecs,
1172 __u64 owner,
1173 unsigned int flags)
1174 {
1175 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1176 btnum, level, numrecs, owner, flags);
1177 }
1178
1179 STATIC void
1180 xfs_btree_init_block_cur(
1181 struct xfs_btree_cur *cur,
1182 struct xfs_buf *bp,
1183 int level,
1184 int numrecs)
1185 {
1186 __u64 owner;
1187
1188 /*
1189 * we can pull the owner from the cursor right now as the different
1190 * owners align directly with the pointer size of the btree. This may
1191 * change in future, but is safe for current users of the generic btree
1192 * code.
1193 */
1194 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1195 owner = cur->bc_private.b.ip->i_ino;
1196 else
1197 owner = cur->bc_private.a.agno;
1198
1199 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1200 cur->bc_btnum, level, numrecs,
1201 owner, cur->bc_flags);
1202 }
1203
1204 /*
1205 * Return true if ptr is the last record in the btree and
1206 * we need to track updates to this record. The decision
1207 * will be further refined in the update_lastrec method.
1208 */
1209 STATIC int
1210 xfs_btree_is_lastrec(
1211 struct xfs_btree_cur *cur,
1212 struct xfs_btree_block *block,
1213 int level)
1214 {
1215 union xfs_btree_ptr ptr;
1216
1217 if (level > 0)
1218 return 0;
1219 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1220 return 0;
1221
1222 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1223 if (!xfs_btree_ptr_is_null(cur, &ptr))
1224 return 0;
1225 return 1;
1226 }
1227
1228 STATIC void
1229 xfs_btree_buf_to_ptr(
1230 struct xfs_btree_cur *cur,
1231 struct xfs_buf *bp,
1232 union xfs_btree_ptr *ptr)
1233 {
1234 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1235 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1236 XFS_BUF_ADDR(bp)));
1237 else {
1238 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1239 XFS_BUF_ADDR(bp)));
1240 }
1241 }
1242
1243 STATIC void
1244 xfs_btree_set_refs(
1245 struct xfs_btree_cur *cur,
1246 struct xfs_buf *bp)
1247 {
1248 switch (cur->bc_btnum) {
1249 case XFS_BTNUM_BNO:
1250 case XFS_BTNUM_CNT:
1251 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1252 break;
1253 case XFS_BTNUM_INO:
1254 case XFS_BTNUM_FINO:
1255 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1256 break;
1257 case XFS_BTNUM_BMAP:
1258 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1259 break;
1260 case XFS_BTNUM_RMAP:
1261 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1262 break;
1263 case XFS_BTNUM_REFC:
1264 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1265 break;
1266 default:
1267 ASSERT(0);
1268 }
1269 }
1270
1271 STATIC int
1272 xfs_btree_get_buf_block(
1273 struct xfs_btree_cur *cur,
1274 union xfs_btree_ptr *ptr,
1275 int flags,
1276 struct xfs_btree_block **block,
1277 struct xfs_buf **bpp)
1278 {
1279 struct xfs_mount *mp = cur->bc_mp;
1280 xfs_daddr_t d;
1281
1282 /* need to sort out how callers deal with failures first */
1283 ASSERT(!(flags & XBF_TRYLOCK));
1284
1285 d = xfs_btree_ptr_to_daddr(cur, ptr);
1286 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1287 mp->m_bsize, flags);
1288
1289 if (!*bpp)
1290 return -ENOMEM;
1291
1292 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1293 *block = XFS_BUF_TO_BLOCK(*bpp);
1294 return 0;
1295 }
1296
1297 /*
1298 * Read in the buffer at the given ptr and return the buffer and
1299 * the block pointer within the buffer.
1300 */
1301 STATIC int
1302 xfs_btree_read_buf_block(
1303 struct xfs_btree_cur *cur,
1304 union xfs_btree_ptr *ptr,
1305 int flags,
1306 struct xfs_btree_block **block,
1307 struct xfs_buf **bpp)
1308 {
1309 struct xfs_mount *mp = cur->bc_mp;
1310 xfs_daddr_t d;
1311 int error;
1312
1313 /* need to sort out how callers deal with failures first */
1314 ASSERT(!(flags & XBF_TRYLOCK));
1315
1316 d = xfs_btree_ptr_to_daddr(cur, ptr);
1317 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1318 mp->m_bsize, flags, bpp,
1319 cur->bc_ops->buf_ops);
1320 if (error)
1321 return error;
1322
1323 xfs_btree_set_refs(cur, *bpp);
1324 *block = XFS_BUF_TO_BLOCK(*bpp);
1325 return 0;
1326 }
1327
1328 /*
1329 * Copy keys from one btree block to another.
1330 */
1331 STATIC void
1332 xfs_btree_copy_keys(
1333 struct xfs_btree_cur *cur,
1334 union xfs_btree_key *dst_key,
1335 union xfs_btree_key *src_key,
1336 int numkeys)
1337 {
1338 ASSERT(numkeys >= 0);
1339 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1340 }
1341
1342 /*
1343 * Copy records from one btree block to another.
1344 */
1345 STATIC void
1346 xfs_btree_copy_recs(
1347 struct xfs_btree_cur *cur,
1348 union xfs_btree_rec *dst_rec,
1349 union xfs_btree_rec *src_rec,
1350 int numrecs)
1351 {
1352 ASSERT(numrecs >= 0);
1353 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1354 }
1355
1356 /*
1357 * Copy block pointers from one btree block to another.
1358 */
1359 STATIC void
1360 xfs_btree_copy_ptrs(
1361 struct xfs_btree_cur *cur,
1362 union xfs_btree_ptr *dst_ptr,
1363 union xfs_btree_ptr *src_ptr,
1364 int numptrs)
1365 {
1366 ASSERT(numptrs >= 0);
1367 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1368 }
1369
1370 /*
1371 * Shift keys one index left/right inside a single btree block.
1372 */
1373 STATIC void
1374 xfs_btree_shift_keys(
1375 struct xfs_btree_cur *cur,
1376 union xfs_btree_key *key,
1377 int dir,
1378 int numkeys)
1379 {
1380 char *dst_key;
1381
1382 ASSERT(numkeys >= 0);
1383 ASSERT(dir == 1 || dir == -1);
1384
1385 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1386 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1387 }
1388
1389 /*
1390 * Shift records one index left/right inside a single btree block.
1391 */
1392 STATIC void
1393 xfs_btree_shift_recs(
1394 struct xfs_btree_cur *cur,
1395 union xfs_btree_rec *rec,
1396 int dir,
1397 int numrecs)
1398 {
1399 char *dst_rec;
1400
1401 ASSERT(numrecs >= 0);
1402 ASSERT(dir == 1 || dir == -1);
1403
1404 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1405 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1406 }
1407
1408 /*
1409 * Shift block pointers one index left/right inside a single btree block.
1410 */
1411 STATIC void
1412 xfs_btree_shift_ptrs(
1413 struct xfs_btree_cur *cur,
1414 union xfs_btree_ptr *ptr,
1415 int dir,
1416 int numptrs)
1417 {
1418 char *dst_ptr;
1419
1420 ASSERT(numptrs >= 0);
1421 ASSERT(dir == 1 || dir == -1);
1422
1423 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1424 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1425 }
1426
1427 /*
1428 * Log key values from the btree block.
1429 */
1430 STATIC void
1431 xfs_btree_log_keys(
1432 struct xfs_btree_cur *cur,
1433 struct xfs_buf *bp,
1434 int first,
1435 int last)
1436 {
1437
1438 if (bp) {
1439 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1440 xfs_trans_log_buf(cur->bc_tp, bp,
1441 xfs_btree_key_offset(cur, first),
1442 xfs_btree_key_offset(cur, last + 1) - 1);
1443 } else {
1444 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1445 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1446 }
1447 }
1448
1449 /*
1450 * Log record values from the btree block.
1451 */
1452 void
1453 xfs_btree_log_recs(
1454 struct xfs_btree_cur *cur,
1455 struct xfs_buf *bp,
1456 int first,
1457 int last)
1458 {
1459
1460 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1461 xfs_trans_log_buf(cur->bc_tp, bp,
1462 xfs_btree_rec_offset(cur, first),
1463 xfs_btree_rec_offset(cur, last + 1) - 1);
1464
1465 }
1466
1467 /*
1468 * Log block pointer fields from a btree block (nonleaf).
1469 */
1470 STATIC void
1471 xfs_btree_log_ptrs(
1472 struct xfs_btree_cur *cur, /* btree cursor */
1473 struct xfs_buf *bp, /* buffer containing btree block */
1474 int first, /* index of first pointer to log */
1475 int last) /* index of last pointer to log */
1476 {
1477
1478 if (bp) {
1479 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1480 int level = xfs_btree_get_level(block);
1481
1482 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1483 xfs_trans_log_buf(cur->bc_tp, bp,
1484 xfs_btree_ptr_offset(cur, first, level),
1485 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1486 } else {
1487 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1488 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1489 }
1490
1491 }
1492
1493 /*
1494 * Log fields from a btree block header.
1495 */
1496 void
1497 xfs_btree_log_block(
1498 struct xfs_btree_cur *cur, /* btree cursor */
1499 struct xfs_buf *bp, /* buffer containing btree block */
1500 int fields) /* mask of fields: XFS_BB_... */
1501 {
1502 int first; /* first byte offset logged */
1503 int last; /* last byte offset logged */
1504 static const short soffsets[] = { /* table of offsets (short) */
1505 offsetof(struct xfs_btree_block, bb_magic),
1506 offsetof(struct xfs_btree_block, bb_level),
1507 offsetof(struct xfs_btree_block, bb_numrecs),
1508 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1509 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1510 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1511 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1512 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1513 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1514 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1515 XFS_BTREE_SBLOCK_CRC_LEN
1516 };
1517 static const short loffsets[] = { /* table of offsets (long) */
1518 offsetof(struct xfs_btree_block, bb_magic),
1519 offsetof(struct xfs_btree_block, bb_level),
1520 offsetof(struct xfs_btree_block, bb_numrecs),
1521 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1522 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1523 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1524 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1525 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1526 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1527 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1528 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1529 XFS_BTREE_LBLOCK_CRC_LEN
1530 };
1531
1532 if (bp) {
1533 int nbits;
1534
1535 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1536 /*
1537 * We don't log the CRC when updating a btree
1538 * block but instead recreate it during log
1539 * recovery. As the log buffers have checksums
1540 * of their own this is safe and avoids logging a crc
1541 * update in a lot of places.
1542 */
1543 if (fields == XFS_BB_ALL_BITS)
1544 fields = XFS_BB_ALL_BITS_CRC;
1545 nbits = XFS_BB_NUM_BITS_CRC;
1546 } else {
1547 nbits = XFS_BB_NUM_BITS;
1548 }
1549 xfs_btree_offsets(fields,
1550 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1551 loffsets : soffsets,
1552 nbits, &first, &last);
1553 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1554 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1555 } else {
1556 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1557 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1558 }
1559 }
1560
1561 /*
1562 * Increment cursor by one record at the level.
1563 * For nonzero levels the leaf-ward information is untouched.
1564 */
1565 int /* error */
1566 xfs_btree_increment(
1567 struct xfs_btree_cur *cur,
1568 int level,
1569 int *stat) /* success/failure */
1570 {
1571 struct xfs_btree_block *block;
1572 union xfs_btree_ptr ptr;
1573 struct xfs_buf *bp;
1574 int error; /* error return value */
1575 int lev;
1576
1577 ASSERT(level < cur->bc_nlevels);
1578
1579 /* Read-ahead to the right at this level. */
1580 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1581
1582 /* Get a pointer to the btree block. */
1583 block = xfs_btree_get_block(cur, level, &bp);
1584
1585 #ifdef DEBUG
1586 error = xfs_btree_check_block(cur, block, level, bp);
1587 if (error)
1588 goto error0;
1589 #endif
1590
1591 /* We're done if we remain in the block after the increment. */
1592 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1593 goto out1;
1594
1595 /* Fail if we just went off the right edge of the tree. */
1596 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1597 if (xfs_btree_ptr_is_null(cur, &ptr))
1598 goto out0;
1599
1600 XFS_BTREE_STATS_INC(cur, increment);
1601
1602 /*
1603 * March up the tree incrementing pointers.
1604 * Stop when we don't go off the right edge of a block.
1605 */
1606 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1607 block = xfs_btree_get_block(cur, lev, &bp);
1608
1609 #ifdef DEBUG
1610 error = xfs_btree_check_block(cur, block, lev, bp);
1611 if (error)
1612 goto error0;
1613 #endif
1614
1615 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1616 break;
1617
1618 /* Read-ahead the right block for the next loop. */
1619 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1620 }
1621
1622 /*
1623 * If we went off the root then we are either seriously
1624 * confused or have the tree root in an inode.
1625 */
1626 if (lev == cur->bc_nlevels) {
1627 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1628 goto out0;
1629 ASSERT(0);
1630 error = -EFSCORRUPTED;
1631 goto error0;
1632 }
1633 ASSERT(lev < cur->bc_nlevels);
1634
1635 /*
1636 * Now walk back down the tree, fixing up the cursor's buffer
1637 * pointers and key numbers.
1638 */
1639 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1640 union xfs_btree_ptr *ptrp;
1641
1642 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1643 --lev;
1644 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1645 if (error)
1646 goto error0;
1647
1648 xfs_btree_setbuf(cur, lev, bp);
1649 cur->bc_ptrs[lev] = 1;
1650 }
1651 out1:
1652 *stat = 1;
1653 return 0;
1654
1655 out0:
1656 *stat = 0;
1657 return 0;
1658
1659 error0:
1660 return error;
1661 }
1662
1663 /*
1664 * Decrement cursor by one record at the level.
1665 * For nonzero levels the leaf-ward information is untouched.
1666 */
1667 int /* error */
1668 xfs_btree_decrement(
1669 struct xfs_btree_cur *cur,
1670 int level,
1671 int *stat) /* success/failure */
1672 {
1673 struct xfs_btree_block *block;
1674 xfs_buf_t *bp;
1675 int error; /* error return value */
1676 int lev;
1677 union xfs_btree_ptr ptr;
1678
1679 ASSERT(level < cur->bc_nlevels);
1680
1681 /* Read-ahead to the left at this level. */
1682 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1683
1684 /* We're done if we remain in the block after the decrement. */
1685 if (--cur->bc_ptrs[level] > 0)
1686 goto out1;
1687
1688 /* Get a pointer to the btree block. */
1689 block = xfs_btree_get_block(cur, level, &bp);
1690
1691 #ifdef DEBUG
1692 error = xfs_btree_check_block(cur, block, level, bp);
1693 if (error)
1694 goto error0;
1695 #endif
1696
1697 /* Fail if we just went off the left edge of the tree. */
1698 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1699 if (xfs_btree_ptr_is_null(cur, &ptr))
1700 goto out0;
1701
1702 XFS_BTREE_STATS_INC(cur, decrement);
1703
1704 /*
1705 * March up the tree decrementing pointers.
1706 * Stop when we don't go off the left edge of a block.
1707 */
1708 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1709 if (--cur->bc_ptrs[lev] > 0)
1710 break;
1711 /* Read-ahead the left block for the next loop. */
1712 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1713 }
1714
1715 /*
1716 * If we went off the root then we are seriously confused.
1717 * or the root of the tree is in an inode.
1718 */
1719 if (lev == cur->bc_nlevels) {
1720 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1721 goto out0;
1722 ASSERT(0);
1723 error = -EFSCORRUPTED;
1724 goto error0;
1725 }
1726 ASSERT(lev < cur->bc_nlevels);
1727
1728 /*
1729 * Now walk back down the tree, fixing up the cursor's buffer
1730 * pointers and key numbers.
1731 */
1732 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1733 union xfs_btree_ptr *ptrp;
1734
1735 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1736 --lev;
1737 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1738 if (error)
1739 goto error0;
1740 xfs_btree_setbuf(cur, lev, bp);
1741 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1742 }
1743 out1:
1744 *stat = 1;
1745 return 0;
1746
1747 out0:
1748 *stat = 0;
1749 return 0;
1750
1751 error0:
1752 return error;
1753 }
1754
1755 int
1756 xfs_btree_lookup_get_block(
1757 struct xfs_btree_cur *cur, /* btree cursor */
1758 int level, /* level in the btree */
1759 union xfs_btree_ptr *pp, /* ptr to btree block */
1760 struct xfs_btree_block **blkp) /* return btree block */
1761 {
1762 struct xfs_buf *bp; /* buffer pointer for btree block */
1763 int error = 0;
1764
1765 /* special case the root block if in an inode */
1766 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1767 (level == cur->bc_nlevels - 1)) {
1768 *blkp = xfs_btree_get_iroot(cur);
1769 return 0;
1770 }
1771
1772 /*
1773 * If the old buffer at this level for the disk address we are
1774 * looking for re-use it.
1775 *
1776 * Otherwise throw it away and get a new one.
1777 */
1778 bp = cur->bc_bufs[level];
1779 if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1780 *blkp = XFS_BUF_TO_BLOCK(bp);
1781 return 0;
1782 }
1783
1784 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1785 if (error)
1786 return error;
1787
1788 /* Check the inode owner since the verifiers don't. */
1789 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1790 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1791 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1792 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1793 cur->bc_private.b.ip->i_ino)
1794 goto out_bad;
1795
1796 /* Did we get the level we were looking for? */
1797 if (be16_to_cpu((*blkp)->bb_level) != level)
1798 goto out_bad;
1799
1800 /* Check that internal nodes have at least one record. */
1801 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1802 goto out_bad;
1803
1804 xfs_btree_setbuf(cur, level, bp);
1805 return 0;
1806
1807 out_bad:
1808 *blkp = NULL;
1809 xfs_trans_brelse(cur->bc_tp, bp);
1810 return -EFSCORRUPTED;
1811 }
1812
1813 /*
1814 * Get current search key. For level 0 we don't actually have a key
1815 * structure so we make one up from the record. For all other levels
1816 * we just return the right key.
1817 */
1818 STATIC union xfs_btree_key *
1819 xfs_lookup_get_search_key(
1820 struct xfs_btree_cur *cur,
1821 int level,
1822 int keyno,
1823 struct xfs_btree_block *block,
1824 union xfs_btree_key *kp)
1825 {
1826 if (level == 0) {
1827 cur->bc_ops->init_key_from_rec(kp,
1828 xfs_btree_rec_addr(cur, keyno, block));
1829 return kp;
1830 }
1831
1832 return xfs_btree_key_addr(cur, keyno, block);
1833 }
1834
1835 /*
1836 * Lookup the record. The cursor is made to point to it, based on dir.
1837 * stat is set to 0 if can't find any such record, 1 for success.
1838 */
1839 int /* error */
1840 xfs_btree_lookup(
1841 struct xfs_btree_cur *cur, /* btree cursor */
1842 xfs_lookup_t dir, /* <=, ==, or >= */
1843 int *stat) /* success/failure */
1844 {
1845 struct xfs_btree_block *block; /* current btree block */
1846 int64_t diff; /* difference for the current key */
1847 int error; /* error return value */
1848 int keyno; /* current key number */
1849 int level; /* level in the btree */
1850 union xfs_btree_ptr *pp; /* ptr to btree block */
1851 union xfs_btree_ptr ptr; /* ptr to btree block */
1852
1853 XFS_BTREE_STATS_INC(cur, lookup);
1854
1855 /* No such thing as a zero-level tree. */
1856 if (cur->bc_nlevels == 0)
1857 return -EFSCORRUPTED;
1858
1859 block = NULL;
1860 keyno = 0;
1861
1862 /* initialise start pointer from cursor */
1863 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1864 pp = &ptr;
1865
1866 /*
1867 * Iterate over each level in the btree, starting at the root.
1868 * For each level above the leaves, find the key we need, based
1869 * on the lookup record, then follow the corresponding block
1870 * pointer down to the next level.
1871 */
1872 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1873 /* Get the block we need to do the lookup on. */
1874 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1875 if (error)
1876 goto error0;
1877
1878 if (diff == 0) {
1879 /*
1880 * If we already had a key match at a higher level, we
1881 * know we need to use the first entry in this block.
1882 */
1883 keyno = 1;
1884 } else {
1885 /* Otherwise search this block. Do a binary search. */
1886
1887 int high; /* high entry number */
1888 int low; /* low entry number */
1889
1890 /* Set low and high entry numbers, 1-based. */
1891 low = 1;
1892 high = xfs_btree_get_numrecs(block);
1893 if (!high) {
1894 /* Block is empty, must be an empty leaf. */
1895 ASSERT(level == 0 && cur->bc_nlevels == 1);
1896
1897 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1898 *stat = 0;
1899 return 0;
1900 }
1901
1902 /* Binary search the block. */
1903 while (low <= high) {
1904 union xfs_btree_key key;
1905 union xfs_btree_key *kp;
1906
1907 XFS_BTREE_STATS_INC(cur, compare);
1908
1909 /* keyno is average of low and high. */
1910 keyno = (low + high) >> 1;
1911
1912 /* Get current search key */
1913 kp = xfs_lookup_get_search_key(cur, level,
1914 keyno, block, &key);
1915
1916 /*
1917 * Compute difference to get next direction:
1918 * - less than, move right
1919 * - greater than, move left
1920 * - equal, we're done
1921 */
1922 diff = cur->bc_ops->key_diff(cur, kp);
1923 if (diff < 0)
1924 low = keyno + 1;
1925 else if (diff > 0)
1926 high = keyno - 1;
1927 else
1928 break;
1929 }
1930 }
1931
1932 /*
1933 * If there are more levels, set up for the next level
1934 * by getting the block number and filling in the cursor.
1935 */
1936 if (level > 0) {
1937 /*
1938 * If we moved left, need the previous key number,
1939 * unless there isn't one.
1940 */
1941 if (diff > 0 && --keyno < 1)
1942 keyno = 1;
1943 pp = xfs_btree_ptr_addr(cur, keyno, block);
1944
1945 #ifdef DEBUG
1946 error = xfs_btree_check_ptr(cur, pp, 0, level);
1947 if (error)
1948 goto error0;
1949 #endif
1950 cur->bc_ptrs[level] = keyno;
1951 }
1952 }
1953
1954 /* Done with the search. See if we need to adjust the results. */
1955 if (dir != XFS_LOOKUP_LE && diff < 0) {
1956 keyno++;
1957 /*
1958 * If ge search and we went off the end of the block, but it's
1959 * not the last block, we're in the wrong block.
1960 */
1961 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1962 if (dir == XFS_LOOKUP_GE &&
1963 keyno > xfs_btree_get_numrecs(block) &&
1964 !xfs_btree_ptr_is_null(cur, &ptr)) {
1965 int i;
1966
1967 cur->bc_ptrs[0] = keyno;
1968 error = xfs_btree_increment(cur, 0, &i);
1969 if (error)
1970 goto error0;
1971 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1972 *stat = 1;
1973 return 0;
1974 }
1975 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1976 keyno--;
1977 cur->bc_ptrs[0] = keyno;
1978
1979 /* Return if we succeeded or not. */
1980 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1981 *stat = 0;
1982 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1983 *stat = 1;
1984 else
1985 *stat = 0;
1986 return 0;
1987
1988 error0:
1989 return error;
1990 }
1991
1992 /* Find the high key storage area from a regular key. */
1993 union xfs_btree_key *
1994 xfs_btree_high_key_from_key(
1995 struct xfs_btree_cur *cur,
1996 union xfs_btree_key *key)
1997 {
1998 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1999 return (union xfs_btree_key *)((char *)key +
2000 (cur->bc_ops->key_len / 2));
2001 }
2002
2003 /* Determine the low (and high if overlapped) keys of a leaf block */
2004 STATIC void
2005 xfs_btree_get_leaf_keys(
2006 struct xfs_btree_cur *cur,
2007 struct xfs_btree_block *block,
2008 union xfs_btree_key *key)
2009 {
2010 union xfs_btree_key max_hkey;
2011 union xfs_btree_key hkey;
2012 union xfs_btree_rec *rec;
2013 union xfs_btree_key *high;
2014 int n;
2015
2016 rec = xfs_btree_rec_addr(cur, 1, block);
2017 cur->bc_ops->init_key_from_rec(key, rec);
2018
2019 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2020
2021 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2022 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2023 rec = xfs_btree_rec_addr(cur, n, block);
2024 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2025 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2026 > 0)
2027 max_hkey = hkey;
2028 }
2029
2030 high = xfs_btree_high_key_from_key(cur, key);
2031 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2032 }
2033 }
2034
2035 /* Determine the low (and high if overlapped) keys of a node block */
2036 STATIC void
2037 xfs_btree_get_node_keys(
2038 struct xfs_btree_cur *cur,
2039 struct xfs_btree_block *block,
2040 union xfs_btree_key *key)
2041 {
2042 union xfs_btree_key *hkey;
2043 union xfs_btree_key *max_hkey;
2044 union xfs_btree_key *high;
2045 int n;
2046
2047 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2048 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2049 cur->bc_ops->key_len / 2);
2050
2051 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2052 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2053 hkey = xfs_btree_high_key_addr(cur, n, block);
2054 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2055 max_hkey = hkey;
2056 }
2057
2058 high = xfs_btree_high_key_from_key(cur, key);
2059 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2060 } else {
2061 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2062 cur->bc_ops->key_len);
2063 }
2064 }
2065
2066 /* Derive the keys for any btree block. */
2067 void
2068 xfs_btree_get_keys(
2069 struct xfs_btree_cur *cur,
2070 struct xfs_btree_block *block,
2071 union xfs_btree_key *key)
2072 {
2073 if (be16_to_cpu(block->bb_level) == 0)
2074 xfs_btree_get_leaf_keys(cur, block, key);
2075 else
2076 xfs_btree_get_node_keys(cur, block, key);
2077 }
2078
2079 /*
2080 * Decide if we need to update the parent keys of a btree block. For
2081 * a standard btree this is only necessary if we're updating the first
2082 * record/key. For an overlapping btree, we must always update the
2083 * keys because the highest key can be in any of the records or keys
2084 * in the block.
2085 */
2086 static inline bool
2087 xfs_btree_needs_key_update(
2088 struct xfs_btree_cur *cur,
2089 int ptr)
2090 {
2091 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2092 }
2093
2094 /*
2095 * Update the low and high parent keys of the given level, progressing
2096 * towards the root. If force_all is false, stop if the keys for a given
2097 * level do not need updating.
2098 */
2099 STATIC int
2100 __xfs_btree_updkeys(
2101 struct xfs_btree_cur *cur,
2102 int level,
2103 struct xfs_btree_block *block,
2104 struct xfs_buf *bp0,
2105 bool force_all)
2106 {
2107 union xfs_btree_key key; /* keys from current level */
2108 union xfs_btree_key *lkey; /* keys from the next level up */
2109 union xfs_btree_key *hkey;
2110 union xfs_btree_key *nlkey; /* keys from the next level up */
2111 union xfs_btree_key *nhkey;
2112 struct xfs_buf *bp;
2113 int ptr;
2114
2115 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2116
2117 /* Exit if there aren't any parent levels to update. */
2118 if (level + 1 >= cur->bc_nlevels)
2119 return 0;
2120
2121 trace_xfs_btree_updkeys(cur, level, bp0);
2122
2123 lkey = &key;
2124 hkey = xfs_btree_high_key_from_key(cur, lkey);
2125 xfs_btree_get_keys(cur, block, lkey);
2126 for (level++; level < cur->bc_nlevels; level++) {
2127 #ifdef DEBUG
2128 int error;
2129 #endif
2130 block = xfs_btree_get_block(cur, level, &bp);
2131 trace_xfs_btree_updkeys(cur, level, bp);
2132 #ifdef DEBUG
2133 error = xfs_btree_check_block(cur, block, level, bp);
2134 if (error)
2135 return error;
2136 #endif
2137 ptr = cur->bc_ptrs[level];
2138 nlkey = xfs_btree_key_addr(cur, ptr, block);
2139 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2140 if (!force_all &&
2141 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2142 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2143 break;
2144 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2145 xfs_btree_log_keys(cur, bp, ptr, ptr);
2146 if (level + 1 >= cur->bc_nlevels)
2147 break;
2148 xfs_btree_get_node_keys(cur, block, lkey);
2149 }
2150
2151 return 0;
2152 }
2153
2154 /* Update all the keys from some level in cursor back to the root. */
2155 STATIC int
2156 xfs_btree_updkeys_force(
2157 struct xfs_btree_cur *cur,
2158 int level)
2159 {
2160 struct xfs_buf *bp;
2161 struct xfs_btree_block *block;
2162
2163 block = xfs_btree_get_block(cur, level, &bp);
2164 return __xfs_btree_updkeys(cur, level, block, bp, true);
2165 }
2166
2167 /*
2168 * Update the parent keys of the given level, progressing towards the root.
2169 */
2170 STATIC int
2171 xfs_btree_update_keys(
2172 struct xfs_btree_cur *cur,
2173 int level)
2174 {
2175 struct xfs_btree_block *block;
2176 struct xfs_buf *bp;
2177 union xfs_btree_key *kp;
2178 union xfs_btree_key key;
2179 int ptr;
2180
2181 ASSERT(level >= 0);
2182
2183 block = xfs_btree_get_block(cur, level, &bp);
2184 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2185 return __xfs_btree_updkeys(cur, level, block, bp, false);
2186
2187 /*
2188 * Go up the tree from this level toward the root.
2189 * At each level, update the key value to the value input.
2190 * Stop when we reach a level where the cursor isn't pointing
2191 * at the first entry in the block.
2192 */
2193 xfs_btree_get_keys(cur, block, &key);
2194 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2195 #ifdef DEBUG
2196 int error;
2197 #endif
2198 block = xfs_btree_get_block(cur, level, &bp);
2199 #ifdef DEBUG
2200 error = xfs_btree_check_block(cur, block, level, bp);
2201 if (error)
2202 return error;
2203 #endif
2204 ptr = cur->bc_ptrs[level];
2205 kp = xfs_btree_key_addr(cur, ptr, block);
2206 xfs_btree_copy_keys(cur, kp, &key, 1);
2207 xfs_btree_log_keys(cur, bp, ptr, ptr);
2208 }
2209
2210 return 0;
2211 }
2212
2213 /*
2214 * Update the record referred to by cur to the value in the
2215 * given record. This either works (return 0) or gets an
2216 * EFSCORRUPTED error.
2217 */
2218 int
2219 xfs_btree_update(
2220 struct xfs_btree_cur *cur,
2221 union xfs_btree_rec *rec)
2222 {
2223 struct xfs_btree_block *block;
2224 struct xfs_buf *bp;
2225 int error;
2226 int ptr;
2227 union xfs_btree_rec *rp;
2228
2229 /* Pick up the current block. */
2230 block = xfs_btree_get_block(cur, 0, &bp);
2231
2232 #ifdef DEBUG
2233 error = xfs_btree_check_block(cur, block, 0, bp);
2234 if (error)
2235 goto error0;
2236 #endif
2237 /* Get the address of the rec to be updated. */
2238 ptr = cur->bc_ptrs[0];
2239 rp = xfs_btree_rec_addr(cur, ptr, block);
2240
2241 /* Fill in the new contents and log them. */
2242 xfs_btree_copy_recs(cur, rp, rec, 1);
2243 xfs_btree_log_recs(cur, bp, ptr, ptr);
2244
2245 /*
2246 * If we are tracking the last record in the tree and
2247 * we are at the far right edge of the tree, update it.
2248 */
2249 if (xfs_btree_is_lastrec(cur, block, 0)) {
2250 cur->bc_ops->update_lastrec(cur, block, rec,
2251 ptr, LASTREC_UPDATE);
2252 }
2253
2254 /* Pass new key value up to our parent. */
2255 if (xfs_btree_needs_key_update(cur, ptr)) {
2256 error = xfs_btree_update_keys(cur, 0);
2257 if (error)
2258 goto error0;
2259 }
2260
2261 return 0;
2262
2263 error0:
2264 return error;
2265 }
2266
2267 /*
2268 * Move 1 record left from cur/level if possible.
2269 * Update cur to reflect the new path.
2270 */
2271 STATIC int /* error */
2272 xfs_btree_lshift(
2273 struct xfs_btree_cur *cur,
2274 int level,
2275 int *stat) /* success/failure */
2276 {
2277 struct xfs_buf *lbp; /* left buffer pointer */
2278 struct xfs_btree_block *left; /* left btree block */
2279 int lrecs; /* left record count */
2280 struct xfs_buf *rbp; /* right buffer pointer */
2281 struct xfs_btree_block *right; /* right btree block */
2282 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2283 int rrecs; /* right record count */
2284 union xfs_btree_ptr lptr; /* left btree pointer */
2285 union xfs_btree_key *rkp = NULL; /* right btree key */
2286 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2287 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2288 int error; /* error return value */
2289 int i;
2290
2291 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2292 level == cur->bc_nlevels - 1)
2293 goto out0;
2294
2295 /* Set up variables for this block as "right". */
2296 right = xfs_btree_get_block(cur, level, &rbp);
2297
2298 #ifdef DEBUG
2299 error = xfs_btree_check_block(cur, right, level, rbp);
2300 if (error)
2301 goto error0;
2302 #endif
2303
2304 /* If we've got no left sibling then we can't shift an entry left. */
2305 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2306 if (xfs_btree_ptr_is_null(cur, &lptr))
2307 goto out0;
2308
2309 /*
2310 * If the cursor entry is the one that would be moved, don't
2311 * do it... it's too complicated.
2312 */
2313 if (cur->bc_ptrs[level] <= 1)
2314 goto out0;
2315
2316 /* Set up the left neighbor as "left". */
2317 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2318 if (error)
2319 goto error0;
2320
2321 /* If it's full, it can't take another entry. */
2322 lrecs = xfs_btree_get_numrecs(left);
2323 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2324 goto out0;
2325
2326 rrecs = xfs_btree_get_numrecs(right);
2327
2328 /*
2329 * We add one entry to the left side and remove one for the right side.
2330 * Account for it here, the changes will be updated on disk and logged
2331 * later.
2332 */
2333 lrecs++;
2334 rrecs--;
2335
2336 XFS_BTREE_STATS_INC(cur, lshift);
2337 XFS_BTREE_STATS_ADD(cur, moves, 1);
2338
2339 /*
2340 * If non-leaf, copy a key and a ptr to the left block.
2341 * Log the changes to the left block.
2342 */
2343 if (level > 0) {
2344 /* It's a non-leaf. Move keys and pointers. */
2345 union xfs_btree_key *lkp; /* left btree key */
2346 union xfs_btree_ptr *lpp; /* left address pointer */
2347
2348 lkp = xfs_btree_key_addr(cur, lrecs, left);
2349 rkp = xfs_btree_key_addr(cur, 1, right);
2350
2351 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2352 rpp = xfs_btree_ptr_addr(cur, 1, right);
2353 #ifdef DEBUG
2354 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2355 if (error)
2356 goto error0;
2357 #endif
2358 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2359 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2360
2361 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2362 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2363
2364 ASSERT(cur->bc_ops->keys_inorder(cur,
2365 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2366 } else {
2367 /* It's a leaf. Move records. */
2368 union xfs_btree_rec *lrp; /* left record pointer */
2369
2370 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2371 rrp = xfs_btree_rec_addr(cur, 1, right);
2372
2373 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2374 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2375
2376 ASSERT(cur->bc_ops->recs_inorder(cur,
2377 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2378 }
2379
2380 xfs_btree_set_numrecs(left, lrecs);
2381 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2382
2383 xfs_btree_set_numrecs(right, rrecs);
2384 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2385
2386 /*
2387 * Slide the contents of right down one entry.
2388 */
2389 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2390 if (level > 0) {
2391 /* It's a nonleaf. operate on keys and ptrs */
2392 #ifdef DEBUG
2393 int i; /* loop index */
2394
2395 for (i = 0; i < rrecs; i++) {
2396 error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2397 if (error)
2398 goto error0;
2399 }
2400 #endif
2401 xfs_btree_shift_keys(cur,
2402 xfs_btree_key_addr(cur, 2, right),
2403 -1, rrecs);
2404 xfs_btree_shift_ptrs(cur,
2405 xfs_btree_ptr_addr(cur, 2, right),
2406 -1, rrecs);
2407
2408 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2409 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2410 } else {
2411 /* It's a leaf. operate on records */
2412 xfs_btree_shift_recs(cur,
2413 xfs_btree_rec_addr(cur, 2, right),
2414 -1, rrecs);
2415 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2416 }
2417
2418 /*
2419 * Using a temporary cursor, update the parent key values of the
2420 * block on the left.
2421 */
2422 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2423 error = xfs_btree_dup_cursor(cur, &tcur);
2424 if (error)
2425 goto error0;
2426 i = xfs_btree_firstrec(tcur, level);
2427 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2428
2429 error = xfs_btree_decrement(tcur, level, &i);
2430 if (error)
2431 goto error1;
2432
2433 /* Update the parent high keys of the left block, if needed. */
2434 error = xfs_btree_update_keys(tcur, level);
2435 if (error)
2436 goto error1;
2437
2438 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2439 }
2440
2441 /* Update the parent keys of the right block. */
2442 error = xfs_btree_update_keys(cur, level);
2443 if (error)
2444 goto error0;
2445
2446 /* Slide the cursor value left one. */
2447 cur->bc_ptrs[level]--;
2448
2449 *stat = 1;
2450 return 0;
2451
2452 out0:
2453 *stat = 0;
2454 return 0;
2455
2456 error0:
2457 return error;
2458
2459 error1:
2460 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2461 return error;
2462 }
2463
2464 /*
2465 * Move 1 record right from cur/level if possible.
2466 * Update cur to reflect the new path.
2467 */
2468 STATIC int /* error */
2469 xfs_btree_rshift(
2470 struct xfs_btree_cur *cur,
2471 int level,
2472 int *stat) /* success/failure */
2473 {
2474 struct xfs_buf *lbp; /* left buffer pointer */
2475 struct xfs_btree_block *left; /* left btree block */
2476 struct xfs_buf *rbp; /* right buffer pointer */
2477 struct xfs_btree_block *right; /* right btree block */
2478 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2479 union xfs_btree_ptr rptr; /* right block pointer */
2480 union xfs_btree_key *rkp; /* right btree key */
2481 int rrecs; /* right record count */
2482 int lrecs; /* left record count */
2483 int error; /* error return value */
2484 int i; /* loop counter */
2485
2486 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2487 (level == cur->bc_nlevels - 1))
2488 goto out0;
2489
2490 /* Set up variables for this block as "left". */
2491 left = xfs_btree_get_block(cur, level, &lbp);
2492
2493 #ifdef DEBUG
2494 error = xfs_btree_check_block(cur, left, level, lbp);
2495 if (error)
2496 goto error0;
2497 #endif
2498
2499 /* If we've got no right sibling then we can't shift an entry right. */
2500 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2501 if (xfs_btree_ptr_is_null(cur, &rptr))
2502 goto out0;
2503
2504 /*
2505 * If the cursor entry is the one that would be moved, don't
2506 * do it... it's too complicated.
2507 */
2508 lrecs = xfs_btree_get_numrecs(left);
2509 if (cur->bc_ptrs[level] >= lrecs)
2510 goto out0;
2511
2512 /* Set up the right neighbor as "right". */
2513 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2514 if (error)
2515 goto error0;
2516
2517 /* If it's full, it can't take another entry. */
2518 rrecs = xfs_btree_get_numrecs(right);
2519 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2520 goto out0;
2521
2522 XFS_BTREE_STATS_INC(cur, rshift);
2523 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2524
2525 /*
2526 * Make a hole at the start of the right neighbor block, then
2527 * copy the last left block entry to the hole.
2528 */
2529 if (level > 0) {
2530 /* It's a nonleaf. make a hole in the keys and ptrs */
2531 union xfs_btree_key *lkp;
2532 union xfs_btree_ptr *lpp;
2533 union xfs_btree_ptr *rpp;
2534
2535 lkp = xfs_btree_key_addr(cur, lrecs, left);
2536 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2537 rkp = xfs_btree_key_addr(cur, 1, right);
2538 rpp = xfs_btree_ptr_addr(cur, 1, right);
2539
2540 #ifdef DEBUG
2541 for (i = rrecs - 1; i >= 0; i--) {
2542 error = xfs_btree_check_ptr(cur, rpp, i, level);
2543 if (error)
2544 goto error0;
2545 }
2546 #endif
2547
2548 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2549 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2550
2551 #ifdef DEBUG
2552 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2553 if (error)
2554 goto error0;
2555 #endif
2556
2557 /* Now put the new data in, and log it. */
2558 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2559 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2560
2561 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2562 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2563
2564 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2565 xfs_btree_key_addr(cur, 2, right)));
2566 } else {
2567 /* It's a leaf. make a hole in the records */
2568 union xfs_btree_rec *lrp;
2569 union xfs_btree_rec *rrp;
2570
2571 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2572 rrp = xfs_btree_rec_addr(cur, 1, right);
2573
2574 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2575
2576 /* Now put the new data in, and log it. */
2577 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2578 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2579 }
2580
2581 /*
2582 * Decrement and log left's numrecs, bump and log right's numrecs.
2583 */
2584 xfs_btree_set_numrecs(left, --lrecs);
2585 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2586
2587 xfs_btree_set_numrecs(right, ++rrecs);
2588 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2589
2590 /*
2591 * Using a temporary cursor, update the parent key values of the
2592 * block on the right.
2593 */
2594 error = xfs_btree_dup_cursor(cur, &tcur);
2595 if (error)
2596 goto error0;
2597 i = xfs_btree_lastrec(tcur, level);
2598 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2599
2600 error = xfs_btree_increment(tcur, level, &i);
2601 if (error)
2602 goto error1;
2603
2604 /* Update the parent high keys of the left block, if needed. */
2605 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2606 error = xfs_btree_update_keys(cur, level);
2607 if (error)
2608 goto error1;
2609 }
2610
2611 /* Update the parent keys of the right block. */
2612 error = xfs_btree_update_keys(tcur, level);
2613 if (error)
2614 goto error1;
2615
2616 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2617
2618 *stat = 1;
2619 return 0;
2620
2621 out0:
2622 *stat = 0;
2623 return 0;
2624
2625 error0:
2626 return error;
2627
2628 error1:
2629 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2630 return error;
2631 }
2632
2633 /*
2634 * Split cur/level block in half.
2635 * Return new block number and the key to its first
2636 * record (to be inserted into parent).
2637 */
2638 STATIC int /* error */
2639 __xfs_btree_split(
2640 struct xfs_btree_cur *cur,
2641 int level,
2642 union xfs_btree_ptr *ptrp,
2643 union xfs_btree_key *key,
2644 struct xfs_btree_cur **curp,
2645 int *stat) /* success/failure */
2646 {
2647 union xfs_btree_ptr lptr; /* left sibling block ptr */
2648 struct xfs_buf *lbp; /* left buffer pointer */
2649 struct xfs_btree_block *left; /* left btree block */
2650 union xfs_btree_ptr rptr; /* right sibling block ptr */
2651 struct xfs_buf *rbp; /* right buffer pointer */
2652 struct xfs_btree_block *right; /* right btree block */
2653 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2654 struct xfs_buf *rrbp; /* right-right buffer pointer */
2655 struct xfs_btree_block *rrblock; /* right-right btree block */
2656 int lrecs;
2657 int rrecs;
2658 int src_index;
2659 int error; /* error return value */
2660 #ifdef DEBUG
2661 int i;
2662 #endif
2663
2664 XFS_BTREE_STATS_INC(cur, split);
2665
2666 /* Set up left block (current one). */
2667 left = xfs_btree_get_block(cur, level, &lbp);
2668
2669 #ifdef DEBUG
2670 error = xfs_btree_check_block(cur, left, level, lbp);
2671 if (error)
2672 goto error0;
2673 #endif
2674
2675 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2676
2677 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2678 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2679 if (error)
2680 goto error0;
2681 if (*stat == 0)
2682 goto out0;
2683 XFS_BTREE_STATS_INC(cur, alloc);
2684
2685 /* Set up the new block as "right". */
2686 error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2687 if (error)
2688 goto error0;
2689
2690 /* Fill in the btree header for the new right block. */
2691 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2692
2693 /*
2694 * Split the entries between the old and the new block evenly.
2695 * Make sure that if there's an odd number of entries now, that
2696 * each new block will have the same number of entries.
2697 */
2698 lrecs = xfs_btree_get_numrecs(left);
2699 rrecs = lrecs / 2;
2700 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2701 rrecs++;
2702 src_index = (lrecs - rrecs + 1);
2703
2704 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2705
2706 /* Adjust numrecs for the later get_*_keys() calls. */
2707 lrecs -= rrecs;
2708 xfs_btree_set_numrecs(left, lrecs);
2709 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2710
2711 /*
2712 * Copy btree block entries from the left block over to the
2713 * new block, the right. Update the right block and log the
2714 * changes.
2715 */
2716 if (level > 0) {
2717 /* It's a non-leaf. Move keys and pointers. */
2718 union xfs_btree_key *lkp; /* left btree key */
2719 union xfs_btree_ptr *lpp; /* left address pointer */
2720 union xfs_btree_key *rkp; /* right btree key */
2721 union xfs_btree_ptr *rpp; /* right address pointer */
2722
2723 lkp = xfs_btree_key_addr(cur, src_index, left);
2724 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2725 rkp = xfs_btree_key_addr(cur, 1, right);
2726 rpp = xfs_btree_ptr_addr(cur, 1, right);
2727
2728 #ifdef DEBUG
2729 for (i = src_index; i < rrecs; i++) {
2730 error = xfs_btree_check_ptr(cur, lpp, i, level);
2731 if (error)
2732 goto error0;
2733 }
2734 #endif
2735
2736 /* Copy the keys & pointers to the new block. */
2737 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2738 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2739
2740 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2741 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2742
2743 /* Stash the keys of the new block for later insertion. */
2744 xfs_btree_get_node_keys(cur, right, key);
2745 } else {
2746 /* It's a leaf. Move records. */
2747 union xfs_btree_rec *lrp; /* left record pointer */
2748 union xfs_btree_rec *rrp; /* right record pointer */
2749
2750 lrp = xfs_btree_rec_addr(cur, src_index, left);
2751 rrp = xfs_btree_rec_addr(cur, 1, right);
2752
2753 /* Copy records to the new block. */
2754 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2755 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2756
2757 /* Stash the keys of the new block for later insertion. */
2758 xfs_btree_get_leaf_keys(cur, right, key);
2759 }
2760
2761 /*
2762 * Find the left block number by looking in the buffer.
2763 * Adjust sibling pointers.
2764 */
2765 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2766 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2767 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2768 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2769
2770 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2771 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2772
2773 /*
2774 * If there's a block to the new block's right, make that block
2775 * point back to right instead of to left.
2776 */
2777 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2778 error = xfs_btree_read_buf_block(cur, &rrptr,
2779 0, &rrblock, &rrbp);
2780 if (error)
2781 goto error0;
2782 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2783 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2784 }
2785
2786 /* Update the parent high keys of the left block, if needed. */
2787 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2788 error = xfs_btree_update_keys(cur, level);
2789 if (error)
2790 goto error0;
2791 }
2792
2793 /*
2794 * If the cursor is really in the right block, move it there.
2795 * If it's just pointing past the last entry in left, then we'll
2796 * insert there, so don't change anything in that case.
2797 */
2798 if (cur->bc_ptrs[level] > lrecs + 1) {
2799 xfs_btree_setbuf(cur, level, rbp);
2800 cur->bc_ptrs[level] -= lrecs;
2801 }
2802 /*
2803 * If there are more levels, we'll need another cursor which refers
2804 * the right block, no matter where this cursor was.
2805 */
2806 if (level + 1 < cur->bc_nlevels) {
2807 error = xfs_btree_dup_cursor(cur, curp);
2808 if (error)
2809 goto error0;
2810 (*curp)->bc_ptrs[level + 1]++;
2811 }
2812 *ptrp = rptr;
2813 *stat = 1;
2814 return 0;
2815 out0:
2816 *stat = 0;
2817 return 0;
2818
2819 error0:
2820 return error;
2821 }
2822
2823 #ifdef __KERNEL__
2824 struct xfs_btree_split_args {
2825 struct xfs_btree_cur *cur;
2826 int level;
2827 union xfs_btree_ptr *ptrp;
2828 union xfs_btree_key *key;
2829 struct xfs_btree_cur **curp;
2830 int *stat; /* success/failure */
2831 int result;
2832 bool kswapd; /* allocation in kswapd context */
2833 struct completion *done;
2834 struct work_struct work;
2835 };
2836
2837 /*
2838 * Stack switching interfaces for allocation
2839 */
2840 static void
2841 xfs_btree_split_worker(
2842 struct work_struct *work)
2843 {
2844 struct xfs_btree_split_args *args = container_of(work,
2845 struct xfs_btree_split_args, work);
2846 unsigned long pflags;
2847 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2848
2849 /*
2850 * we are in a transaction context here, but may also be doing work
2851 * in kswapd context, and hence we may need to inherit that state
2852 * temporarily to ensure that we don't block waiting for memory reclaim
2853 * in any way.
2854 */
2855 if (args->kswapd)
2856 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2857
2858 current_set_flags_nested(&pflags, new_pflags);
2859
2860 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2861 args->key, args->curp, args->stat);
2862 complete(args->done);
2863
2864 current_restore_flags_nested(&pflags, new_pflags);
2865 }
2866
2867 /*
2868 * BMBT split requests often come in with little stack to work on. Push
2869 * them off to a worker thread so there is lots of stack to use. For the other
2870 * btree types, just call directly to avoid the context switch overhead here.
2871 */
2872 STATIC int /* error */
2873 xfs_btree_split(
2874 struct xfs_btree_cur *cur,
2875 int level,
2876 union xfs_btree_ptr *ptrp,
2877 union xfs_btree_key *key,
2878 struct xfs_btree_cur **curp,
2879 int *stat) /* success/failure */
2880 {
2881 struct xfs_btree_split_args args;
2882 DECLARE_COMPLETION_ONSTACK(done);
2883
2884 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2885 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2886
2887 args.cur = cur;
2888 args.level = level;
2889 args.ptrp = ptrp;
2890 args.key = key;
2891 args.curp = curp;
2892 args.stat = stat;
2893 args.done = &done;
2894 args.kswapd = current_is_kswapd();
2895 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2896 queue_work(xfs_alloc_wq, &args.work);
2897 wait_for_completion(&done);
2898 destroy_work_on_stack(&args.work);
2899 return args.result;
2900 }
2901 #else /* !KERNEL */
2902 #define xfs_btree_split __xfs_btree_split
2903 #endif
2904
2905
2906 /*
2907 * Copy the old inode root contents into a real block and make the
2908 * broot point to it.
2909 */
2910 int /* error */
2911 xfs_btree_new_iroot(
2912 struct xfs_btree_cur *cur, /* btree cursor */
2913 int *logflags, /* logging flags for inode */
2914 int *stat) /* return status - 0 fail */
2915 {
2916 struct xfs_buf *cbp; /* buffer for cblock */
2917 struct xfs_btree_block *block; /* btree block */
2918 struct xfs_btree_block *cblock; /* child btree block */
2919 union xfs_btree_key *ckp; /* child key pointer */
2920 union xfs_btree_ptr *cpp; /* child ptr pointer */
2921 union xfs_btree_key *kp; /* pointer to btree key */
2922 union xfs_btree_ptr *pp; /* pointer to block addr */
2923 union xfs_btree_ptr nptr; /* new block addr */
2924 int level; /* btree level */
2925 int error; /* error return code */
2926 #ifdef DEBUG
2927 int i; /* loop counter */
2928 #endif
2929
2930 XFS_BTREE_STATS_INC(cur, newroot);
2931
2932 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2933
2934 level = cur->bc_nlevels - 1;
2935
2936 block = xfs_btree_get_iroot(cur);
2937 pp = xfs_btree_ptr_addr(cur, 1, block);
2938
2939 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2940 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2941 if (error)
2942 goto error0;
2943 if (*stat == 0)
2944 return 0;
2945
2946 XFS_BTREE_STATS_INC(cur, alloc);
2947
2948 /* Copy the root into a real block. */
2949 error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2950 if (error)
2951 goto error0;
2952
2953 /*
2954 * we can't just memcpy() the root in for CRC enabled btree blocks.
2955 * In that case have to also ensure the blkno remains correct
2956 */
2957 memcpy(cblock, block, xfs_btree_block_len(cur));
2958 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2959 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2960 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2961 else
2962 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2963 }
2964
2965 be16_add_cpu(&block->bb_level, 1);
2966 xfs_btree_set_numrecs(block, 1);
2967 cur->bc_nlevels++;
2968 cur->bc_ptrs[level + 1] = 1;
2969
2970 kp = xfs_btree_key_addr(cur, 1, block);
2971 ckp = xfs_btree_key_addr(cur, 1, cblock);
2972 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2973
2974 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2975 #ifdef DEBUG
2976 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2977 error = xfs_btree_check_ptr(cur, pp, i, level);
2978 if (error)
2979 goto error0;
2980 }
2981 #endif
2982 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2983
2984 #ifdef DEBUG
2985 error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2986 if (error)
2987 goto error0;
2988 #endif
2989 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2990
2991 xfs_iroot_realloc(cur->bc_private.b.ip,
2992 1 - xfs_btree_get_numrecs(cblock),
2993 cur->bc_private.b.whichfork);
2994
2995 xfs_btree_setbuf(cur, level, cbp);
2996
2997 /*
2998 * Do all this logging at the end so that
2999 * the root is at the right level.
3000 */
3001 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3002 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3003 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3004
3005 *logflags |=
3006 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3007 *stat = 1;
3008 return 0;
3009 error0:
3010 return error;
3011 }
3012
3013 /*
3014 * Allocate a new root block, fill it in.
3015 */
3016 STATIC int /* error */
3017 xfs_btree_new_root(
3018 struct xfs_btree_cur *cur, /* btree cursor */
3019 int *stat) /* success/failure */
3020 {
3021 struct xfs_btree_block *block; /* one half of the old root block */
3022 struct xfs_buf *bp; /* buffer containing block */
3023 int error; /* error return value */
3024 struct xfs_buf *lbp; /* left buffer pointer */
3025 struct xfs_btree_block *left; /* left btree block */
3026 struct xfs_buf *nbp; /* new (root) buffer */
3027 struct xfs_btree_block *new; /* new (root) btree block */
3028 int nptr; /* new value for key index, 1 or 2 */
3029 struct xfs_buf *rbp; /* right buffer pointer */
3030 struct xfs_btree_block *right; /* right btree block */
3031 union xfs_btree_ptr rptr;
3032 union xfs_btree_ptr lptr;
3033
3034 XFS_BTREE_STATS_INC(cur, newroot);
3035
3036 /* initialise our start point from the cursor */
3037 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3038
3039 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3040 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3041 if (error)
3042 goto error0;
3043 if (*stat == 0)
3044 goto out0;
3045 XFS_BTREE_STATS_INC(cur, alloc);
3046
3047 /* Set up the new block. */
3048 error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3049 if (error)
3050 goto error0;
3051
3052 /* Set the root in the holding structure increasing the level by 1. */
3053 cur->bc_ops->set_root(cur, &lptr, 1);
3054
3055 /*
3056 * At the previous root level there are now two blocks: the old root,
3057 * and the new block generated when it was split. We don't know which
3058 * one the cursor is pointing at, so we set up variables "left" and
3059 * "right" for each case.
3060 */
3061 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3062
3063 #ifdef DEBUG
3064 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3065 if (error)
3066 goto error0;
3067 #endif
3068
3069 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3070 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3071 /* Our block is left, pick up the right block. */
3072 lbp = bp;
3073 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3074 left = block;
3075 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3076 if (error)
3077 goto error0;
3078 bp = rbp;
3079 nptr = 1;
3080 } else {
3081 /* Our block is right, pick up the left block. */
3082 rbp = bp;
3083 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3084 right = block;
3085 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3086 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3087 if (error)
3088 goto error0;
3089 bp = lbp;
3090 nptr = 2;
3091 }
3092
3093 /* Fill in the new block's btree header and log it. */
3094 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3095 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3096 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3097 !xfs_btree_ptr_is_null(cur, &rptr));
3098
3099 /* Fill in the key data in the new root. */
3100 if (xfs_btree_get_level(left) > 0) {
3101 /*
3102 * Get the keys for the left block's keys and put them directly
3103 * in the parent block. Do the same for the right block.
3104 */
3105 xfs_btree_get_node_keys(cur, left,
3106 xfs_btree_key_addr(cur, 1, new));
3107 xfs_btree_get_node_keys(cur, right,
3108 xfs_btree_key_addr(cur, 2, new));
3109 } else {
3110 /*
3111 * Get the keys for the left block's records and put them
3112 * directly in the parent block. Do the same for the right
3113 * block.
3114 */
3115 xfs_btree_get_leaf_keys(cur, left,
3116 xfs_btree_key_addr(cur, 1, new));
3117 xfs_btree_get_leaf_keys(cur, right,
3118 xfs_btree_key_addr(cur, 2, new));
3119 }
3120 xfs_btree_log_keys(cur, nbp, 1, 2);
3121
3122 /* Fill in the pointer data in the new root. */
3123 xfs_btree_copy_ptrs(cur,
3124 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3125 xfs_btree_copy_ptrs(cur,
3126 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3127 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3128
3129 /* Fix up the cursor. */
3130 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3131 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3132 cur->bc_nlevels++;
3133 *stat = 1;
3134 return 0;
3135 error0:
3136 return error;
3137 out0:
3138 *stat = 0;
3139 return 0;
3140 }
3141
3142 STATIC int
3143 xfs_btree_make_block_unfull(
3144 struct xfs_btree_cur *cur, /* btree cursor */
3145 int level, /* btree level */
3146 int numrecs,/* # of recs in block */
3147 int *oindex,/* old tree index */
3148 int *index, /* new tree index */
3149 union xfs_btree_ptr *nptr, /* new btree ptr */
3150 struct xfs_btree_cur **ncur, /* new btree cursor */
3151 union xfs_btree_key *key, /* key of new block */
3152 int *stat)
3153 {
3154 int error = 0;
3155
3156 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3157 level == cur->bc_nlevels - 1) {
3158 struct xfs_inode *ip = cur->bc_private.b.ip;
3159
3160 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3161 /* A root block that can be made bigger. */
3162 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3163 *stat = 1;
3164 } else {
3165 /* A root block that needs replacing */
3166 int logflags = 0;
3167
3168 error = xfs_btree_new_iroot(cur, &logflags, stat);
3169 if (error || *stat == 0)
3170 return error;
3171
3172 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3173 }
3174
3175 return 0;
3176 }
3177
3178 /* First, try shifting an entry to the right neighbor. */
3179 error = xfs_btree_rshift(cur, level, stat);
3180 if (error || *stat)
3181 return error;
3182
3183 /* Next, try shifting an entry to the left neighbor. */
3184 error = xfs_btree_lshift(cur, level, stat);
3185 if (error)
3186 return error;
3187
3188 if (*stat) {
3189 *oindex = *index = cur->bc_ptrs[level];
3190 return 0;
3191 }
3192
3193 /*
3194 * Next, try splitting the current block in half.
3195 *
3196 * If this works we have to re-set our variables because we
3197 * could be in a different block now.
3198 */
3199 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3200 if (error || *stat == 0)
3201 return error;
3202
3203
3204 *index = cur->bc_ptrs[level];
3205 return 0;
3206 }
3207
3208 /*
3209 * Insert one record/level. Return information to the caller
3210 * allowing the next level up to proceed if necessary.
3211 */
3212 STATIC int
3213 xfs_btree_insrec(
3214 struct xfs_btree_cur *cur, /* btree cursor */
3215 int level, /* level to insert record at */
3216 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3217 union xfs_btree_rec *rec, /* record to insert */
3218 union xfs_btree_key *key, /* i/o: block key for ptrp */
3219 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3220 int *stat) /* success/failure */
3221 {
3222 struct xfs_btree_block *block; /* btree block */
3223 struct xfs_buf *bp; /* buffer for block */
3224 union xfs_btree_ptr nptr; /* new block ptr */
3225 struct xfs_btree_cur *ncur; /* new btree cursor */
3226 union xfs_btree_key nkey; /* new block key */
3227 union xfs_btree_key *lkey;
3228 int optr; /* old key/record index */
3229 int ptr; /* key/record index */
3230 int numrecs;/* number of records */
3231 int error; /* error return value */
3232 #ifdef DEBUG
3233 int i;
3234 #endif
3235 xfs_daddr_t old_bn;
3236
3237 ncur = NULL;
3238 lkey = &nkey;
3239
3240 /*
3241 * If we have an external root pointer, and we've made it to the
3242 * root level, allocate a new root block and we're done.
3243 */
3244 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3245 (level >= cur->bc_nlevels)) {
3246 error = xfs_btree_new_root(cur, stat);
3247 xfs_btree_set_ptr_null(cur, ptrp);
3248
3249 return error;
3250 }
3251
3252 /* If we're off the left edge, return failure. */
3253 ptr = cur->bc_ptrs[level];
3254 if (ptr == 0) {
3255 *stat = 0;
3256 return 0;
3257 }
3258
3259 optr = ptr;
3260
3261 XFS_BTREE_STATS_INC(cur, insrec);
3262
3263 /* Get pointers to the btree buffer and block. */
3264 block = xfs_btree_get_block(cur, level, &bp);
3265 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3266 numrecs = xfs_btree_get_numrecs(block);
3267
3268 #ifdef DEBUG
3269 error = xfs_btree_check_block(cur, block, level, bp);
3270 if (error)
3271 goto error0;
3272
3273 /* Check that the new entry is being inserted in the right place. */
3274 if (ptr <= numrecs) {
3275 if (level == 0) {
3276 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3277 xfs_btree_rec_addr(cur, ptr, block)));
3278 } else {
3279 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3280 xfs_btree_key_addr(cur, ptr, block)));
3281 }
3282 }
3283 #endif
3284
3285 /*
3286 * If the block is full, we can't insert the new entry until we
3287 * make the block un-full.
3288 */
3289 xfs_btree_set_ptr_null(cur, &nptr);
3290 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3291 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3292 &optr, &ptr, &nptr, &ncur, lkey, stat);
3293 if (error || *stat == 0)
3294 goto error0;
3295 }
3296
3297 /*
3298 * The current block may have changed if the block was
3299 * previously full and we have just made space in it.
3300 */
3301 block = xfs_btree_get_block(cur, level, &bp);
3302 numrecs = xfs_btree_get_numrecs(block);
3303
3304 #ifdef DEBUG
3305 error = xfs_btree_check_block(cur, block, level, bp);
3306 if (error)
3307 return error;
3308 #endif
3309
3310 /*
3311 * At this point we know there's room for our new entry in the block
3312 * we're pointing at.
3313 */
3314 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3315
3316 if (level > 0) {
3317 /* It's a nonleaf. make a hole in the keys and ptrs */
3318 union xfs_btree_key *kp;
3319 union xfs_btree_ptr *pp;
3320
3321 kp = xfs_btree_key_addr(cur, ptr, block);
3322 pp = xfs_btree_ptr_addr(cur, ptr, block);
3323
3324 #ifdef DEBUG
3325 for (i = numrecs - ptr; i >= 0; i--) {
3326 error = xfs_btree_check_ptr(cur, pp, i, level);
3327 if (error)
3328 return error;
3329 }
3330 #endif
3331
3332 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3333 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3334
3335 #ifdef DEBUG
3336 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3337 if (error)
3338 goto error0;
3339 #endif
3340
3341 /* Now put the new data in, bump numrecs and log it. */
3342 xfs_btree_copy_keys(cur, kp, key, 1);
3343 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3344 numrecs++;
3345 xfs_btree_set_numrecs(block, numrecs);
3346 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3347 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3348 #ifdef DEBUG
3349 if (ptr < numrecs) {
3350 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3351 xfs_btree_key_addr(cur, ptr + 1, block)));
3352 }
3353 #endif
3354 } else {
3355 /* It's a leaf. make a hole in the records */
3356 union xfs_btree_rec *rp;
3357
3358 rp = xfs_btree_rec_addr(cur, ptr, block);
3359
3360 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3361
3362 /* Now put the new data in, bump numrecs and log it. */
3363 xfs_btree_copy_recs(cur, rp, rec, 1);
3364 xfs_btree_set_numrecs(block, ++numrecs);
3365 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3366 #ifdef DEBUG
3367 if (ptr < numrecs) {
3368 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3369 xfs_btree_rec_addr(cur, ptr + 1, block)));
3370 }
3371 #endif
3372 }
3373
3374 /* Log the new number of records in the btree header. */
3375 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3376
3377 /*
3378 * If we just inserted into a new tree block, we have to
3379 * recalculate nkey here because nkey is out of date.
3380 *
3381 * Otherwise we're just updating an existing block (having shoved
3382 * some records into the new tree block), so use the regular key
3383 * update mechanism.
3384 */
3385 if (bp && bp->b_bn != old_bn) {
3386 xfs_btree_get_keys(cur, block, lkey);
3387 } else if (xfs_btree_needs_key_update(cur, optr)) {
3388 error = xfs_btree_update_keys(cur, level);
3389 if (error)
3390 goto error0;
3391 }
3392
3393 /*
3394 * If we are tracking the last record in the tree and
3395 * we are at the far right edge of the tree, update it.
3396 */
3397 if (xfs_btree_is_lastrec(cur, block, level)) {
3398 cur->bc_ops->update_lastrec(cur, block, rec,
3399 ptr, LASTREC_INSREC);
3400 }
3401
3402 /*
3403 * Return the new block number, if any.
3404 * If there is one, give back a record value and a cursor too.
3405 */
3406 *ptrp = nptr;
3407 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3408 xfs_btree_copy_keys(cur, key, lkey, 1);
3409 *curp = ncur;
3410 }
3411
3412 *stat = 1;
3413 return 0;
3414
3415 error0:
3416 return error;
3417 }
3418
3419 /*
3420 * Insert the record at the point referenced by cur.
3421 *
3422 * A multi-level split of the tree on insert will invalidate the original
3423 * cursor. All callers of this function should assume that the cursor is
3424 * no longer valid and revalidate it.
3425 */
3426 int
3427 xfs_btree_insert(
3428 struct xfs_btree_cur *cur,
3429 int *stat)
3430 {
3431 int error; /* error return value */
3432 int i; /* result value, 0 for failure */
3433 int level; /* current level number in btree */
3434 union xfs_btree_ptr nptr; /* new block number (split result) */
3435 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3436 struct xfs_btree_cur *pcur; /* previous level's cursor */
3437 union xfs_btree_key bkey; /* key of block to insert */
3438 union xfs_btree_key *key;
3439 union xfs_btree_rec rec; /* record to insert */
3440
3441 level = 0;
3442 ncur = NULL;
3443 pcur = cur;
3444 key = &bkey;
3445
3446 xfs_btree_set_ptr_null(cur, &nptr);
3447
3448 /* Make a key out of the record data to be inserted, and save it. */
3449 cur->bc_ops->init_rec_from_cur(cur, &rec);
3450 cur->bc_ops->init_key_from_rec(key, &rec);
3451
3452 /*
3453 * Loop going up the tree, starting at the leaf level.
3454 * Stop when we don't get a split block, that must mean that
3455 * the insert is finished with this level.
3456 */
3457 do {
3458 /*
3459 * Insert nrec/nptr into this level of the tree.
3460 * Note if we fail, nptr will be null.
3461 */
3462 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3463 &ncur, &i);
3464 if (error) {
3465 if (pcur != cur)
3466 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3467 goto error0;
3468 }
3469
3470 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3471 level++;
3472
3473 /*
3474 * See if the cursor we just used is trash.
3475 * Can't trash the caller's cursor, but otherwise we should
3476 * if ncur is a new cursor or we're about to be done.
3477 */
3478 if (pcur != cur &&
3479 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3480 /* Save the state from the cursor before we trash it */
3481 if (cur->bc_ops->update_cursor)
3482 cur->bc_ops->update_cursor(pcur, cur);
3483 cur->bc_nlevels = pcur->bc_nlevels;
3484 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3485 }
3486 /* If we got a new cursor, switch to it. */
3487 if (ncur) {
3488 pcur = ncur;
3489 ncur = NULL;
3490 }
3491 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3492
3493 *stat = i;
3494 return 0;
3495 error0:
3496 return error;
3497 }
3498
3499 /*
3500 * Try to merge a non-leaf block back into the inode root.
3501 *
3502 * Note: the killroot names comes from the fact that we're effectively
3503 * killing the old root block. But because we can't just delete the
3504 * inode we have to copy the single block it was pointing to into the
3505 * inode.
3506 */
3507 STATIC int
3508 xfs_btree_kill_iroot(
3509 struct xfs_btree_cur *cur)
3510 {
3511 int whichfork = cur->bc_private.b.whichfork;
3512 struct xfs_inode *ip = cur->bc_private.b.ip;
3513 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3514 struct xfs_btree_block *block;
3515 struct xfs_btree_block *cblock;
3516 union xfs_btree_key *kp;
3517 union xfs_btree_key *ckp;
3518 union xfs_btree_ptr *pp;
3519 union xfs_btree_ptr *cpp;
3520 struct xfs_buf *cbp;
3521 int level;
3522 int index;
3523 int numrecs;
3524 int error;
3525 #ifdef DEBUG
3526 union xfs_btree_ptr ptr;
3527 int i;
3528 #endif
3529
3530 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3531 ASSERT(cur->bc_nlevels > 1);
3532
3533 /*
3534 * Don't deal with the root block needs to be a leaf case.
3535 * We're just going to turn the thing back into extents anyway.
3536 */
3537 level = cur->bc_nlevels - 1;
3538 if (level == 1)
3539 goto out0;
3540
3541 /*
3542 * Give up if the root has multiple children.
3543 */
3544 block = xfs_btree_get_iroot(cur);
3545 if (xfs_btree_get_numrecs(block) != 1)
3546 goto out0;
3547
3548 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3549 numrecs = xfs_btree_get_numrecs(cblock);
3550
3551 /*
3552 * Only do this if the next level will fit.
3553 * Then the data must be copied up to the inode,
3554 * instead of freeing the root you free the next level.
3555 */
3556 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3557 goto out0;
3558
3559 XFS_BTREE_STATS_INC(cur, killroot);
3560
3561 #ifdef DEBUG
3562 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3563 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3564 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3565 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3566 #endif
3567
3568 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3569 if (index) {
3570 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3571 cur->bc_private.b.whichfork);
3572 block = ifp->if_broot;
3573 }
3574
3575 be16_add_cpu(&block->bb_numrecs, index);
3576 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3577
3578 kp = xfs_btree_key_addr(cur, 1, block);
3579 ckp = xfs_btree_key_addr(cur, 1, cblock);
3580 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3581
3582 pp = xfs_btree_ptr_addr(cur, 1, block);
3583 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3584 #ifdef DEBUG
3585 for (i = 0; i < numrecs; i++) {
3586 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3587 if (error)
3588 return error;
3589 }
3590 #endif
3591 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3592
3593 error = xfs_btree_free_block(cur, cbp);
3594 if (error)
3595 return error;
3596
3597 cur->bc_bufs[level - 1] = NULL;
3598 be16_add_cpu(&block->bb_level, -1);
3599 xfs_trans_log_inode(cur->bc_tp, ip,
3600 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3601 cur->bc_nlevels--;
3602 out0:
3603 return 0;
3604 }
3605
3606 /*
3607 * Kill the current root node, and replace it with it's only child node.
3608 */
3609 STATIC int
3610 xfs_btree_kill_root(
3611 struct xfs_btree_cur *cur,
3612 struct xfs_buf *bp,
3613 int level,
3614 union xfs_btree_ptr *newroot)
3615 {
3616 int error;
3617
3618 XFS_BTREE_STATS_INC(cur, killroot);
3619
3620 /*
3621 * Update the root pointer, decreasing the level by 1 and then
3622 * free the old root.
3623 */
3624 cur->bc_ops->set_root(cur, newroot, -1);
3625
3626 error = xfs_btree_free_block(cur, bp);
3627 if (error)
3628 return error;
3629
3630 cur->bc_bufs[level] = NULL;
3631 cur->bc_ra[level] = 0;
3632 cur->bc_nlevels--;
3633
3634 return 0;
3635 }
3636
3637 STATIC int
3638 xfs_btree_dec_cursor(
3639 struct xfs_btree_cur *cur,
3640 int level,
3641 int *stat)
3642 {
3643 int error;
3644 int i;
3645
3646 if (level > 0) {
3647 error = xfs_btree_decrement(cur, level, &i);
3648 if (error)
3649 return error;
3650 }
3651
3652 *stat = 1;
3653 return 0;
3654 }
3655
3656 /*
3657 * Single level of the btree record deletion routine.
3658 * Delete record pointed to by cur/level.
3659 * Remove the record from its block then rebalance the tree.
3660 * Return 0 for error, 1 for done, 2 to go on to the next level.
3661 */
3662 STATIC int /* error */
3663 xfs_btree_delrec(
3664 struct xfs_btree_cur *cur, /* btree cursor */
3665 int level, /* level removing record from */
3666 int *stat) /* fail/done/go-on */
3667 {
3668 struct xfs_btree_block *block; /* btree block */
3669 union xfs_btree_ptr cptr; /* current block ptr */
3670 struct xfs_buf *bp; /* buffer for block */
3671 int error; /* error return value */
3672 int i; /* loop counter */
3673 union xfs_btree_ptr lptr; /* left sibling block ptr */
3674 struct xfs_buf *lbp; /* left buffer pointer */
3675 struct xfs_btree_block *left; /* left btree block */
3676 int lrecs = 0; /* left record count */
3677 int ptr; /* key/record index */
3678 union xfs_btree_ptr rptr; /* right sibling block ptr */
3679 struct xfs_buf *rbp; /* right buffer pointer */
3680 struct xfs_btree_block *right; /* right btree block */
3681 struct xfs_btree_block *rrblock; /* right-right btree block */
3682 struct xfs_buf *rrbp; /* right-right buffer pointer */
3683 int rrecs = 0; /* right record count */
3684 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3685 int numrecs; /* temporary numrec count */
3686
3687 tcur = NULL;
3688
3689 /* Get the index of the entry being deleted, check for nothing there. */
3690 ptr = cur->bc_ptrs[level];
3691 if (ptr == 0) {
3692 *stat = 0;
3693 return 0;
3694 }
3695
3696 /* Get the buffer & block containing the record or key/ptr. */
3697 block = xfs_btree_get_block(cur, level, &bp);
3698 numrecs = xfs_btree_get_numrecs(block);
3699
3700 #ifdef DEBUG
3701 error = xfs_btree_check_block(cur, block, level, bp);
3702 if (error)
3703 goto error0;
3704 #endif
3705
3706 /* Fail if we're off the end of the block. */
3707 if (ptr > numrecs) {
3708 *stat = 0;
3709 return 0;
3710 }
3711
3712 XFS_BTREE_STATS_INC(cur, delrec);
3713 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3714
3715 /* Excise the entries being deleted. */
3716 if (level > 0) {
3717 /* It's a nonleaf. operate on keys and ptrs */
3718 union xfs_btree_key *lkp;
3719 union xfs_btree_ptr *lpp;
3720
3721 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3722 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3723
3724 #ifdef DEBUG
3725 for (i = 0; i < numrecs - ptr; i++) {
3726 error = xfs_btree_check_ptr(cur, lpp, i, level);
3727 if (error)
3728 goto error0;
3729 }
3730 #endif
3731
3732 if (ptr < numrecs) {
3733 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3734 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3735 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3736 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3737 }
3738 } else {
3739 /* It's a leaf. operate on records */
3740 if (ptr < numrecs) {
3741 xfs_btree_shift_recs(cur,
3742 xfs_btree_rec_addr(cur, ptr + 1, block),
3743 -1, numrecs - ptr);
3744 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3745 }
3746 }
3747
3748 /*
3749 * Decrement and log the number of entries in the block.
3750 */
3751 xfs_btree_set_numrecs(block, --numrecs);
3752 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3753
3754 /*
3755 * If we are tracking the last record in the tree and
3756 * we are at the far right edge of the tree, update it.
3757 */
3758 if (xfs_btree_is_lastrec(cur, block, level)) {
3759 cur->bc_ops->update_lastrec(cur, block, NULL,
3760 ptr, LASTREC_DELREC);
3761 }
3762
3763 /*
3764 * We're at the root level. First, shrink the root block in-memory.
3765 * Try to get rid of the next level down. If we can't then there's
3766 * nothing left to do.
3767 */
3768 if (level == cur->bc_nlevels - 1) {
3769 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3770 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3771 cur->bc_private.b.whichfork);
3772
3773 error = xfs_btree_kill_iroot(cur);
3774 if (error)
3775 goto error0;
3776
3777 error = xfs_btree_dec_cursor(cur, level, stat);
3778 if (error)
3779 goto error0;
3780 *stat = 1;
3781 return 0;
3782 }
3783
3784 /*
3785 * If this is the root level, and there's only one entry left,
3786 * and it's NOT the leaf level, then we can get rid of this
3787 * level.
3788 */
3789 if (numrecs == 1 && level > 0) {
3790 union xfs_btree_ptr *pp;
3791 /*
3792 * pp is still set to the first pointer in the block.
3793 * Make it the new root of the btree.
3794 */
3795 pp = xfs_btree_ptr_addr(cur, 1, block);
3796 error = xfs_btree_kill_root(cur, bp, level, pp);
3797 if (error)
3798 goto error0;
3799 } else if (level > 0) {
3800 error = xfs_btree_dec_cursor(cur, level, stat);
3801 if (error)
3802 goto error0;
3803 }
3804 *stat = 1;
3805 return 0;
3806 }
3807
3808 /*
3809 * If we deleted the leftmost entry in the block, update the
3810 * key values above us in the tree.
3811 */
3812 if (xfs_btree_needs_key_update(cur, ptr)) {
3813 error = xfs_btree_update_keys(cur, level);
3814 if (error)
3815 goto error0;
3816 }
3817
3818 /*
3819 * If the number of records remaining in the block is at least
3820 * the minimum, we're done.
3821 */
3822 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3823 error = xfs_btree_dec_cursor(cur, level, stat);
3824 if (error)
3825 goto error0;
3826 return 0;
3827 }
3828
3829 /*
3830 * Otherwise, we have to move some records around to keep the
3831 * tree balanced. Look at the left and right sibling blocks to
3832 * see if we can re-balance by moving only one record.
3833 */
3834 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3835 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3836
3837 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3838 /*
3839 * One child of root, need to get a chance to copy its contents
3840 * into the root and delete it. Can't go up to next level,
3841 * there's nothing to delete there.
3842 */
3843 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3844 xfs_btree_ptr_is_null(cur, &lptr) &&
3845 level == cur->bc_nlevels - 2) {
3846 error = xfs_btree_kill_iroot(cur);
3847 if (!error)
3848 error = xfs_btree_dec_cursor(cur, level, stat);
3849 if (error)
3850 goto error0;
3851 return 0;
3852 }
3853 }
3854
3855 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3856 !xfs_btree_ptr_is_null(cur, &lptr));
3857
3858 /*
3859 * Duplicate the cursor so our btree manipulations here won't
3860 * disrupt the next level up.
3861 */
3862 error = xfs_btree_dup_cursor(cur, &tcur);
3863 if (error)
3864 goto error0;
3865
3866 /*
3867 * If there's a right sibling, see if it's ok to shift an entry
3868 * out of it.
3869 */
3870 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3871 /*
3872 * Move the temp cursor to the last entry in the next block.
3873 * Actually any entry but the first would suffice.
3874 */
3875 i = xfs_btree_lastrec(tcur, level);
3876 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3877
3878 error = xfs_btree_increment(tcur, level, &i);
3879 if (error)
3880 goto error0;
3881 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3882
3883 i = xfs_btree_lastrec(tcur, level);
3884 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3885
3886 /* Grab a pointer to the block. */
3887 right = xfs_btree_get_block(tcur, level, &rbp);
3888 #ifdef DEBUG
3889 error = xfs_btree_check_block(tcur, right, level, rbp);
3890 if (error)
3891 goto error0;
3892 #endif
3893 /* Grab the current block number, for future use. */
3894 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3895
3896 /*
3897 * If right block is full enough so that removing one entry
3898 * won't make it too empty, and left-shifting an entry out
3899 * of right to us works, we're done.
3900 */
3901 if (xfs_btree_get_numrecs(right) - 1 >=
3902 cur->bc_ops->get_minrecs(tcur, level)) {
3903 error = xfs_btree_lshift(tcur, level, &i);
3904 if (error)
3905 goto error0;
3906 if (i) {
3907 ASSERT(xfs_btree_get_numrecs(block) >=
3908 cur->bc_ops->get_minrecs(tcur, level));
3909
3910 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3911 tcur = NULL;
3912
3913 error = xfs_btree_dec_cursor(cur, level, stat);
3914 if (error)
3915 goto error0;
3916 return 0;
3917 }
3918 }
3919
3920 /*
3921 * Otherwise, grab the number of records in right for
3922 * future reference, and fix up the temp cursor to point
3923 * to our block again (last record).
3924 */
3925 rrecs = xfs_btree_get_numrecs(right);
3926 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3927 i = xfs_btree_firstrec(tcur, level);
3928 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3929
3930 error = xfs_btree_decrement(tcur, level, &i);
3931 if (error)
3932 goto error0;
3933 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3934 }
3935 }
3936
3937 /*
3938 * If there's a left sibling, see if it's ok to shift an entry
3939 * out of it.
3940 */
3941 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3942 /*
3943 * Move the temp cursor to the first entry in the
3944 * previous block.
3945 */
3946 i = xfs_btree_firstrec(tcur, level);
3947 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3948
3949 error = xfs_btree_decrement(tcur, level, &i);
3950 if (error)
3951 goto error0;
3952 i = xfs_btree_firstrec(tcur, level);
3953 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3954
3955 /* Grab a pointer to the block. */
3956 left = xfs_btree_get_block(tcur, level, &lbp);
3957 #ifdef DEBUG
3958 error = xfs_btree_check_block(cur, left, level, lbp);
3959 if (error)
3960 goto error0;
3961 #endif
3962 /* Grab the current block number, for future use. */
3963 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3964
3965 /*
3966 * If left block is full enough so that removing one entry
3967 * won't make it too empty, and right-shifting an entry out
3968 * of left to us works, we're done.
3969 */
3970 if (xfs_btree_get_numrecs(left) - 1 >=
3971 cur->bc_ops->get_minrecs(tcur, level)) {
3972 error = xfs_btree_rshift(tcur, level, &i);
3973 if (error)
3974 goto error0;
3975 if (i) {
3976 ASSERT(xfs_btree_get_numrecs(block) >=
3977 cur->bc_ops->get_minrecs(tcur, level));
3978 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3979 tcur = NULL;
3980 if (level == 0)
3981 cur->bc_ptrs[0]++;
3982
3983 *stat = 1;
3984 return 0;
3985 }
3986 }
3987
3988 /*
3989 * Otherwise, grab the number of records in right for
3990 * future reference.
3991 */
3992 lrecs = xfs_btree_get_numrecs(left);
3993 }
3994
3995 /* Delete the temp cursor, we're done with it. */
3996 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3997 tcur = NULL;
3998
3999 /* If here, we need to do a join to keep the tree balanced. */
4000 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4001
4002 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4003 lrecs + xfs_btree_get_numrecs(block) <=
4004 cur->bc_ops->get_maxrecs(cur, level)) {
4005 /*
4006 * Set "right" to be the starting block,
4007 * "left" to be the left neighbor.
4008 */
4009 rptr = cptr;
4010 right = block;
4011 rbp = bp;
4012 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4013 if (error)
4014 goto error0;
4015
4016 /*
4017 * If that won't work, see if we can join with the right neighbor block.
4018 */
4019 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4020 rrecs + xfs_btree_get_numrecs(block) <=
4021 cur->bc_ops->get_maxrecs(cur, level)) {
4022 /*
4023 * Set "left" to be the starting block,
4024 * "right" to be the right neighbor.
4025 */
4026 lptr = cptr;
4027 left = block;
4028 lbp = bp;
4029 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4030 if (error)
4031 goto error0;
4032
4033 /*
4034 * Otherwise, we can't fix the imbalance.
4035 * Just return. This is probably a logic error, but it's not fatal.
4036 */
4037 } else {
4038 error = xfs_btree_dec_cursor(cur, level, stat);
4039 if (error)
4040 goto error0;
4041 return 0;
4042 }
4043
4044 rrecs = xfs_btree_get_numrecs(right);
4045 lrecs = xfs_btree_get_numrecs(left);
4046
4047 /*
4048 * We're now going to join "left" and "right" by moving all the stuff
4049 * in "right" to "left" and deleting "right".
4050 */
4051 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4052 if (level > 0) {
4053 /* It's a non-leaf. Move keys and pointers. */
4054 union xfs_btree_key *lkp; /* left btree key */
4055 union xfs_btree_ptr *lpp; /* left address pointer */
4056 union xfs_btree_key *rkp; /* right btree key */
4057 union xfs_btree_ptr *rpp; /* right address pointer */
4058
4059 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4060 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4061 rkp = xfs_btree_key_addr(cur, 1, right);
4062 rpp = xfs_btree_ptr_addr(cur, 1, right);
4063 #ifdef DEBUG
4064 for (i = 1; i < rrecs; i++) {
4065 error = xfs_btree_check_ptr(cur, rpp, i, level);
4066 if (error)
4067 goto error0;
4068 }
4069 #endif
4070 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4071 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4072
4073 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4074 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4075 } else {
4076 /* It's a leaf. Move records. */
4077 union xfs_btree_rec *lrp; /* left record pointer */
4078 union xfs_btree_rec *rrp; /* right record pointer */
4079
4080 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4081 rrp = xfs_btree_rec_addr(cur, 1, right);
4082
4083 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4084 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4085 }
4086
4087 XFS_BTREE_STATS_INC(cur, join);
4088
4089 /*
4090 * Fix up the number of records and right block pointer in the
4091 * surviving block, and log it.
4092 */
4093 xfs_btree_set_numrecs(left, lrecs + rrecs);
4094 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4095 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4096 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4097
4098 /* If there is a right sibling, point it to the remaining block. */
4099 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4100 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4101 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4102 if (error)
4103 goto error0;
4104 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4105 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4106 }
4107
4108 /* Free the deleted block. */
4109 error = xfs_btree_free_block(cur, rbp);
4110 if (error)
4111 goto error0;
4112
4113 /*
4114 * If we joined with the left neighbor, set the buffer in the
4115 * cursor to the left block, and fix up the index.
4116 */
4117 if (bp != lbp) {
4118 cur->bc_bufs[level] = lbp;
4119 cur->bc_ptrs[level] += lrecs;
4120 cur->bc_ra[level] = 0;
4121 }
4122 /*
4123 * If we joined with the right neighbor and there's a level above
4124 * us, increment the cursor at that level.
4125 */
4126 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4127 (level + 1 < cur->bc_nlevels)) {
4128 error = xfs_btree_increment(cur, level + 1, &i);
4129 if (error)
4130 goto error0;
4131 }
4132
4133 /*
4134 * Readjust the ptr at this level if it's not a leaf, since it's
4135 * still pointing at the deletion point, which makes the cursor
4136 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4137 * We can't use decrement because it would change the next level up.
4138 */
4139 if (level > 0)
4140 cur->bc_ptrs[level]--;
4141
4142 /*
4143 * We combined blocks, so we have to update the parent keys if the
4144 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4145 * points to the old block so that the caller knows which record to
4146 * delete. Therefore, the caller must be savvy enough to call updkeys
4147 * for us if we return stat == 2. The other exit points from this
4148 * function don't require deletions further up the tree, so they can
4149 * call updkeys directly.
4150 */
4151
4152 /* Return value means the next level up has something to do. */
4153 *stat = 2;
4154 return 0;
4155
4156 error0:
4157 if (tcur)
4158 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4159 return error;
4160 }
4161
4162 /*
4163 * Delete the record pointed to by cur.
4164 * The cursor refers to the place where the record was (could be inserted)
4165 * when the operation returns.
4166 */
4167 int /* error */
4168 xfs_btree_delete(
4169 struct xfs_btree_cur *cur,
4170 int *stat) /* success/failure */
4171 {
4172 int error; /* error return value */
4173 int level;
4174 int i;
4175 bool joined = false;
4176
4177 /*
4178 * Go up the tree, starting at leaf level.
4179 *
4180 * If 2 is returned then a join was done; go to the next level.
4181 * Otherwise we are done.
4182 */
4183 for (level = 0, i = 2; i == 2; level++) {
4184 error = xfs_btree_delrec(cur, level, &i);
4185 if (error)
4186 goto error0;
4187 if (i == 2)
4188 joined = true;
4189 }
4190
4191 /*
4192 * If we combined blocks as part of deleting the record, delrec won't
4193 * have updated the parent high keys so we have to do that here.
4194 */
4195 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4196 error = xfs_btree_updkeys_force(cur, 0);
4197 if (error)
4198 goto error0;
4199 }
4200
4201 if (i == 0) {
4202 for (level = 1; level < cur->bc_nlevels; level++) {
4203 if (cur->bc_ptrs[level] == 0) {
4204 error = xfs_btree_decrement(cur, level, &i);
4205 if (error)
4206 goto error0;
4207 break;
4208 }
4209 }
4210 }
4211
4212 *stat = i;
4213 return 0;
4214 error0:
4215 return error;
4216 }
4217
4218 /*
4219 * Get the data from the pointed-to record.
4220 */
4221 int /* error */
4222 xfs_btree_get_rec(
4223 struct xfs_btree_cur *cur, /* btree cursor */
4224 union xfs_btree_rec **recp, /* output: btree record */
4225 int *stat) /* output: success/failure */
4226 {
4227 struct xfs_btree_block *block; /* btree block */
4228 struct xfs_buf *bp; /* buffer pointer */
4229 int ptr; /* record number */
4230 #ifdef DEBUG
4231 int error; /* error return value */
4232 #endif
4233
4234 ptr = cur->bc_ptrs[0];
4235 block = xfs_btree_get_block(cur, 0, &bp);
4236
4237 #ifdef DEBUG
4238 error = xfs_btree_check_block(cur, block, 0, bp);
4239 if (error)
4240 return error;
4241 #endif
4242
4243 /*
4244 * Off the right end or left end, return failure.
4245 */
4246 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4247 *stat = 0;
4248 return 0;
4249 }
4250
4251 /*
4252 * Point to the record and extract its data.
4253 */
4254 *recp = xfs_btree_rec_addr(cur, ptr, block);
4255 *stat = 1;
4256 return 0;
4257 }
4258
4259 /* Visit a block in a btree. */
4260 STATIC int
4261 xfs_btree_visit_block(
4262 struct xfs_btree_cur *cur,
4263 int level,
4264 xfs_btree_visit_blocks_fn fn,
4265 void *data)
4266 {
4267 struct xfs_btree_block *block;
4268 struct xfs_buf *bp;
4269 union xfs_btree_ptr rptr;
4270 int error;
4271
4272 /* do right sibling readahead */
4273 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4274 block = xfs_btree_get_block(cur, level, &bp);
4275
4276 /* process the block */
4277 error = fn(cur, level, data);
4278 if (error)
4279 return error;
4280
4281 /* now read rh sibling block for next iteration */
4282 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4283 if (xfs_btree_ptr_is_null(cur, &rptr))
4284 return -ENOENT;
4285
4286 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4287 }
4288
4289
4290 /* Visit every block in a btree. */
4291 int
4292 xfs_btree_visit_blocks(
4293 struct xfs_btree_cur *cur,
4294 xfs_btree_visit_blocks_fn fn,
4295 void *data)
4296 {
4297 union xfs_btree_ptr lptr;
4298 int level;
4299 struct xfs_btree_block *block = NULL;
4300 int error = 0;
4301
4302 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4303
4304 /* for each level */
4305 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4306 /* grab the left hand block */
4307 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4308 if (error)
4309 return error;
4310
4311 /* readahead the left most block for the next level down */
4312 if (level > 0) {
4313 union xfs_btree_ptr *ptr;
4314
4315 ptr = xfs_btree_ptr_addr(cur, 1, block);
4316 xfs_btree_readahead_ptr(cur, ptr, 1);
4317
4318 /* save for the next iteration of the loop */
4319 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4320 }
4321
4322 /* for each buffer in the level */
4323 do {
4324 error = xfs_btree_visit_block(cur, level, fn, data);
4325 } while (!error);
4326
4327 if (error != -ENOENT)
4328 return error;
4329 }
4330
4331 return 0;
4332 }
4333
4334 /*
4335 * Change the owner of a btree.
4336 *
4337 * The mechanism we use here is ordered buffer logging. Because we don't know
4338 * how many buffers were are going to need to modify, we don't really want to
4339 * have to make transaction reservations for the worst case of every buffer in a
4340 * full size btree as that may be more space that we can fit in the log....
4341 *
4342 * We do the btree walk in the most optimal manner possible - we have sibling
4343 * pointers so we can just walk all the blocks on each level from left to right
4344 * in a single pass, and then move to the next level and do the same. We can
4345 * also do readahead on the sibling pointers to get IO moving more quickly,
4346 * though for slow disks this is unlikely to make much difference to performance
4347 * as the amount of CPU work we have to do before moving to the next block is
4348 * relatively small.
4349 *
4350 * For each btree block that we load, modify the owner appropriately, set the
4351 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4352 * we mark the region we change dirty so that if the buffer is relogged in
4353 * a subsequent transaction the changes we make here as an ordered buffer are
4354 * correctly relogged in that transaction. If we are in recovery context, then
4355 * just queue the modified buffer as delayed write buffer so the transaction
4356 * recovery completion writes the changes to disk.
4357 */
4358 struct xfs_btree_block_change_owner_info {
4359 uint64_t new_owner;
4360 struct list_head *buffer_list;
4361 };
4362
4363 static int
4364 xfs_btree_block_change_owner(
4365 struct xfs_btree_cur *cur,
4366 int level,
4367 void *data)
4368 {
4369 struct xfs_btree_block_change_owner_info *bbcoi = data;
4370 struct xfs_btree_block *block;
4371 struct xfs_buf *bp;
4372
4373 /* modify the owner */
4374 block = xfs_btree_get_block(cur, level, &bp);
4375 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4376 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4377 return 0;
4378 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4379 } else {
4380 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4381 return 0;
4382 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4383 }
4384
4385 /*
4386 * If the block is a root block hosted in an inode, we might not have a
4387 * buffer pointer here and we shouldn't attempt to log the change as the
4388 * information is already held in the inode and discarded when the root
4389 * block is formatted into the on-disk inode fork. We still change it,
4390 * though, so everything is consistent in memory.
4391 */
4392 if (!bp) {
4393 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4394 ASSERT(level == cur->bc_nlevels - 1);
4395 return 0;
4396 }
4397
4398 if (cur->bc_tp) {
4399 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4400 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4401 return -EAGAIN;
4402 }
4403 } else {
4404 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4405 }
4406
4407 return 0;
4408 }
4409
4410 int
4411 xfs_btree_change_owner(
4412 struct xfs_btree_cur *cur,
4413 uint64_t new_owner,
4414 struct list_head *buffer_list)
4415 {
4416 struct xfs_btree_block_change_owner_info bbcoi;
4417
4418 bbcoi.new_owner = new_owner;
4419 bbcoi.buffer_list = buffer_list;
4420
4421 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4422 &bbcoi);
4423 }
4424
4425 /* Verify the v5 fields of a long-format btree block. */
4426 xfs_failaddr_t
4427 xfs_btree_lblock_v5hdr_verify(
4428 struct xfs_buf *bp,
4429 uint64_t owner)
4430 {
4431 struct xfs_mount *mp = bp->b_target->bt_mount;
4432 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4433
4434 if (!xfs_sb_version_hascrc(&mp->m_sb))
4435 return __this_address;
4436 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4437 return __this_address;
4438 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4439 return __this_address;
4440 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4441 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4442 return __this_address;
4443 return NULL;
4444 }
4445
4446 /* Verify a long-format btree block. */
4447 xfs_failaddr_t
4448 xfs_btree_lblock_verify(
4449 struct xfs_buf *bp,
4450 unsigned int max_recs)
4451 {
4452 struct xfs_mount *mp = bp->b_target->bt_mount;
4453 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4454
4455 /* numrecs verification */
4456 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4457 return __this_address;
4458
4459 /* sibling pointer verification */
4460 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4461 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4462 return __this_address;
4463 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4464 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4465 return __this_address;
4466
4467 return NULL;
4468 }
4469
4470 /**
4471 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4472 * btree block
4473 *
4474 * @bp: buffer containing the btree block
4475 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4476 * @pag_max_level: pointer to the per-ag max level field
4477 */
4478 xfs_failaddr_t
4479 xfs_btree_sblock_v5hdr_verify(
4480 struct xfs_buf *bp)
4481 {
4482 struct xfs_mount *mp = bp->b_target->bt_mount;
4483 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4484 struct xfs_perag *pag = bp->b_pag;
4485
4486 if (!xfs_sb_version_hascrc(&mp->m_sb))
4487 return __this_address;
4488 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4489 return __this_address;
4490 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4491 return __this_address;
4492 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4493 return __this_address;
4494 return NULL;
4495 }
4496
4497 /**
4498 * xfs_btree_sblock_verify() -- verify a short-format btree block
4499 *
4500 * @bp: buffer containing the btree block
4501 * @max_recs: maximum records allowed in this btree node
4502 */
4503 xfs_failaddr_t
4504 xfs_btree_sblock_verify(
4505 struct xfs_buf *bp,
4506 unsigned int max_recs)
4507 {
4508 struct xfs_mount *mp = bp->b_target->bt_mount;
4509 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4510 xfs_agblock_t agno;
4511
4512 /* numrecs verification */
4513 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4514 return __this_address;
4515
4516 /* sibling pointer verification */
4517 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4518 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4519 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4520 return __this_address;
4521 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4522 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4523 return __this_address;
4524
4525 return NULL;
4526 }
4527
4528 /*
4529 * Calculate the number of btree levels needed to store a given number of
4530 * records in a short-format btree.
4531 */
4532 uint
4533 xfs_btree_compute_maxlevels(
4534 uint *limits,
4535 unsigned long len)
4536 {
4537 uint level;
4538 unsigned long maxblocks;
4539
4540 maxblocks = (len + limits[0] - 1) / limits[0];
4541 for (level = 1; maxblocks > 1; level++)
4542 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4543 return level;
4544 }
4545
4546 /*
4547 * Query a regular btree for all records overlapping a given interval.
4548 * Start with a LE lookup of the key of low_rec and return all records
4549 * until we find a record with a key greater than the key of high_rec.
4550 */
4551 STATIC int
4552 xfs_btree_simple_query_range(
4553 struct xfs_btree_cur *cur,
4554 union xfs_btree_key *low_key,
4555 union xfs_btree_key *high_key,
4556 xfs_btree_query_range_fn fn,
4557 void *priv)
4558 {
4559 union xfs_btree_rec *recp;
4560 union xfs_btree_key rec_key;
4561 int64_t diff;
4562 int stat;
4563 bool firstrec = true;
4564 int error;
4565
4566 ASSERT(cur->bc_ops->init_high_key_from_rec);
4567 ASSERT(cur->bc_ops->diff_two_keys);
4568
4569 /*
4570 * Find the leftmost record. The btree cursor must be set
4571 * to the low record used to generate low_key.
4572 */
4573 stat = 0;
4574 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4575 if (error)
4576 goto out;
4577
4578 /* Nothing? See if there's anything to the right. */
4579 if (!stat) {
4580 error = xfs_btree_increment(cur, 0, &stat);
4581 if (error)
4582 goto out;
4583 }
4584
4585 while (stat) {
4586 /* Find the record. */
4587 error = xfs_btree_get_rec(cur, &recp, &stat);
4588 if (error || !stat)
4589 break;
4590
4591 /* Skip if high_key(rec) < low_key. */
4592 if (firstrec) {
4593 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4594 firstrec = false;
4595 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4596 &rec_key);
4597 if (diff > 0)
4598 goto advloop;
4599 }
4600
4601 /* Stop if high_key < low_key(rec). */
4602 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4603 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4604 if (diff > 0)
4605 break;
4606
4607 /* Callback */
4608 error = fn(cur, recp, priv);
4609 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4610 break;
4611
4612 advloop:
4613 /* Move on to the next record. */
4614 error = xfs_btree_increment(cur, 0, &stat);
4615 if (error)
4616 break;
4617 }
4618
4619 out:
4620 return error;
4621 }
4622
4623 /*
4624 * Query an overlapped interval btree for all records overlapping a given
4625 * interval. This function roughly follows the algorithm given in
4626 * "Interval Trees" of _Introduction to Algorithms_, which is section
4627 * 14.3 in the 2nd and 3rd editions.
4628 *
4629 * First, generate keys for the low and high records passed in.
4630 *
4631 * For any leaf node, generate the high and low keys for the record.
4632 * If the record keys overlap with the query low/high keys, pass the
4633 * record to the function iterator.
4634 *
4635 * For any internal node, compare the low and high keys of each
4636 * pointer against the query low/high keys. If there's an overlap,
4637 * follow the pointer.
4638 *
4639 * As an optimization, we stop scanning a block when we find a low key
4640 * that is greater than the query's high key.
4641 */
4642 STATIC int
4643 xfs_btree_overlapped_query_range(
4644 struct xfs_btree_cur *cur,
4645 union xfs_btree_key *low_key,
4646 union xfs_btree_key *high_key,
4647 xfs_btree_query_range_fn fn,
4648 void *priv)
4649 {
4650 union xfs_btree_ptr ptr;
4651 union xfs_btree_ptr *pp;
4652 union xfs_btree_key rec_key;
4653 union xfs_btree_key rec_hkey;
4654 union xfs_btree_key *lkp;
4655 union xfs_btree_key *hkp;
4656 union xfs_btree_rec *recp;
4657 struct xfs_btree_block *block;
4658 int64_t ldiff;
4659 int64_t hdiff;
4660 int level;
4661 struct xfs_buf *bp;
4662 int i;
4663 int error;
4664
4665 /* Load the root of the btree. */
4666 level = cur->bc_nlevels - 1;
4667 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4668 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4669 if (error)
4670 return error;
4671 xfs_btree_get_block(cur, level, &bp);
4672 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4673 #ifdef DEBUG
4674 error = xfs_btree_check_block(cur, block, level, bp);
4675 if (error)
4676 goto out;
4677 #endif
4678 cur->bc_ptrs[level] = 1;
4679
4680 while (level < cur->bc_nlevels) {
4681 block = xfs_btree_get_block(cur, level, &bp);
4682
4683 /* End of node, pop back towards the root. */
4684 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4685 pop_up:
4686 if (level < cur->bc_nlevels - 1)
4687 cur->bc_ptrs[level + 1]++;
4688 level++;
4689 continue;
4690 }
4691
4692 if (level == 0) {
4693 /* Handle a leaf node. */
4694 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4695
4696 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4697 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4698 low_key);
4699
4700 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4701 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4702 &rec_key);
4703
4704 /*
4705 * If (record's high key >= query's low key) and
4706 * (query's high key >= record's low key), then
4707 * this record overlaps the query range; callback.
4708 */
4709 if (ldiff >= 0 && hdiff >= 0) {
4710 error = fn(cur, recp, priv);
4711 if (error < 0 ||
4712 error == XFS_BTREE_QUERY_RANGE_ABORT)
4713 break;
4714 } else if (hdiff < 0) {
4715 /* Record is larger than high key; pop. */
4716 goto pop_up;
4717 }
4718 cur->bc_ptrs[level]++;
4719 continue;
4720 }
4721
4722 /* Handle an internal node. */
4723 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4724 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4725 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4726
4727 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4728 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4729
4730 /*
4731 * If (pointer's high key >= query's low key) and
4732 * (query's high key >= pointer's low key), then
4733 * this record overlaps the query range; follow pointer.
4734 */
4735 if (ldiff >= 0 && hdiff >= 0) {
4736 level--;
4737 error = xfs_btree_lookup_get_block(cur, level, pp,
4738 &block);
4739 if (error)
4740 goto out;
4741 xfs_btree_get_block(cur, level, &bp);
4742 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4743 #ifdef DEBUG
4744 error = xfs_btree_check_block(cur, block, level, bp);
4745 if (error)
4746 goto out;
4747 #endif
4748 cur->bc_ptrs[level] = 1;
4749 continue;
4750 } else if (hdiff < 0) {
4751 /* The low key is larger than the upper range; pop. */
4752 goto pop_up;
4753 }
4754 cur->bc_ptrs[level]++;
4755 }
4756
4757 out:
4758 /*
4759 * If we don't end this function with the cursor pointing at a record
4760 * block, a subsequent non-error cursor deletion will not release
4761 * node-level buffers, causing a buffer leak. This is quite possible
4762 * with a zero-results range query, so release the buffers if we
4763 * failed to return any results.
4764 */
4765 if (cur->bc_bufs[0] == NULL) {
4766 for (i = 0; i < cur->bc_nlevels; i++) {
4767 if (cur->bc_bufs[i]) {
4768 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4769 cur->bc_bufs[i] = NULL;
4770 cur->bc_ptrs[i] = 0;
4771 cur->bc_ra[i] = 0;
4772 }
4773 }
4774 }
4775
4776 return error;
4777 }
4778
4779 /*
4780 * Query a btree for all records overlapping a given interval of keys. The
4781 * supplied function will be called with each record found; return one of the
4782 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4783 * code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4784 * negative error code.
4785 */
4786 int
4787 xfs_btree_query_range(
4788 struct xfs_btree_cur *cur,
4789 union xfs_btree_irec *low_rec,
4790 union xfs_btree_irec *high_rec,
4791 xfs_btree_query_range_fn fn,
4792 void *priv)
4793 {
4794 union xfs_btree_rec rec;
4795 union xfs_btree_key low_key;
4796 union xfs_btree_key high_key;
4797
4798 /* Find the keys of both ends of the interval. */
4799 cur->bc_rec = *high_rec;
4800 cur->bc_ops->init_rec_from_cur(cur, &rec);
4801 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4802
4803 cur->bc_rec = *low_rec;
4804 cur->bc_ops->init_rec_from_cur(cur, &rec);
4805 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4806
4807 /* Enforce low key < high key. */
4808 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4809 return -EINVAL;
4810
4811 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4812 return xfs_btree_simple_query_range(cur, &low_key,
4813 &high_key, fn, priv);
4814 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4815 fn, priv);
4816 }
4817
4818 /* Query a btree for all records. */
4819 int
4820 xfs_btree_query_all(
4821 struct xfs_btree_cur *cur,
4822 xfs_btree_query_range_fn fn,
4823 void *priv)
4824 {
4825 union xfs_btree_key low_key;
4826 union xfs_btree_key high_key;
4827
4828 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4829 memset(&low_key, 0, sizeof(low_key));
4830 memset(&high_key, 0xFF, sizeof(high_key));
4831
4832 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4833 }
4834
4835 /*
4836 * Calculate the number of blocks needed to store a given number of records
4837 * in a short-format (per-AG metadata) btree.
4838 */
4839 xfs_extlen_t
4840 xfs_btree_calc_size(
4841 uint *limits,
4842 unsigned long long len)
4843 {
4844 int level;
4845 int maxrecs;
4846 xfs_extlen_t rval;
4847
4848 maxrecs = limits[0];
4849 for (level = 0, rval = 0; len > 1; level++) {
4850 len += maxrecs - 1;
4851 do_div(len, maxrecs);
4852 maxrecs = limits[1];
4853 rval += len;
4854 }
4855 return rval;
4856 }
4857
4858 static int
4859 xfs_btree_count_blocks_helper(
4860 struct xfs_btree_cur *cur,
4861 int level,
4862 void *data)
4863 {
4864 xfs_extlen_t *blocks = data;
4865 (*blocks)++;
4866
4867 return 0;
4868 }
4869
4870 /* Count the blocks in a btree and return the result in *blocks. */
4871 int
4872 xfs_btree_count_blocks(
4873 struct xfs_btree_cur *cur,
4874 xfs_extlen_t *blocks)
4875 {
4876 *blocks = 0;
4877 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4878 blocks);
4879 }
4880
4881 /* Compare two btree pointers. */
4882 int64_t
4883 xfs_btree_diff_two_ptrs(
4884 struct xfs_btree_cur *cur,
4885 const union xfs_btree_ptr *a,
4886 const union xfs_btree_ptr *b)
4887 {
4888 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4889 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4890 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4891 }
4892
4893 /* If there's an extent, we're done. */
4894 STATIC int
4895 xfs_btree_has_record_helper(
4896 struct xfs_btree_cur *cur,
4897 union xfs_btree_rec *rec,
4898 void *priv)
4899 {
4900 return XFS_BTREE_QUERY_RANGE_ABORT;
4901 }
4902
4903 /* Is there a record covering a given range of keys? */
4904 int
4905 xfs_btree_has_record(
4906 struct xfs_btree_cur *cur,
4907 union xfs_btree_irec *low,
4908 union xfs_btree_irec *high,
4909 bool *exists)
4910 {
4911 int error;
4912
4913 error = xfs_btree_query_range(cur, low, high,
4914 &xfs_btree_has_record_helper, NULL);
4915 if (error == XFS_BTREE_QUERY_RANGE_ABORT) {
4916 *exists = true;
4917 return 0;
4918 }
4919 *exists = false;
4920 return error;
4921 }